ARCHITECTURAL STRUCTURES: FORM. BEHAVIOR. AND DESIGN

ARCH 331 DR. ANNE NICHOLS SUMMER 2014

lecture seventeen Cor-Ten Steel Sculpture By Richard Serra Museum of Modern Art Fort Worth TX (AISC - Steel Structures of the Everyday)

steel construction: columns & tension members

Steel Columns & Tension 1 Lecture 17

Architectural Structures

F2008abr

Design Methods (revisited)

- know
 - loads or lengths
- select
 - section or load
 - adequate for strength and no buckling

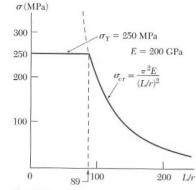


Fig. 10.9

Structural Steel

- standard rolled shapes (W, C, L, T)
- tubing
- pipe
- built-up

F2008abr

Steel Columns & Tension 2 Lecture 20

ARCH 331

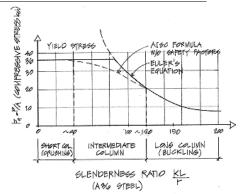
Allowable Stress Design (ASD)

AICS 9th ed

$$F_a = \frac{f_{critical}}{F.S.} = \frac{12\pi^2 E}{23(Kl/r)^2}$$

• slenderness ratio

- for
$$kl/r \ge C_c$$
 = 126.1 with F_y = 36 ksi = 107.0 with F_v = 50 ksi


Steel Columns & Tension 4

Foundations Structures ARCH 331

F2008abn

C_c and Euler's Formula

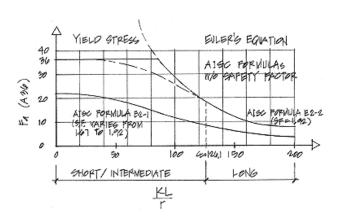
- $KI/r < C_c$
 - short and stubby
 - parabolic transition
- $KI/r > C_c$
 - Euler's relationship
 - < 200 preferred

$$C_c = \sqrt{\frac{2\pi^2 E}{F_y}}$$

Steel Columns & Tension 5 Lecture 20

Foundations Structures ARCH 331

F2008abn


Short / Intermediate

 $F_{a} = \left[1 - \frac{\left(\frac{Kl}{r}\right)^{2}}{2C_{c}^{2}}\right] \frac{F_{y}}{F.S.}$

- where

$$F.S. = \frac{5}{3} + \frac{3(Kl/r)}{8C_c} - \frac{(Kl/r)^3}{8C_c^3}$$

C_c and Euler's Formula

Steel Columns & Tension 6 Lecture 20

Foundations Structures ARCH 331

F2008abn

Unified Design

limit states for failure

$$P_a \leq P_n / \Omega$$

$$P_u \leq \phi_c P_n$$

$$\phi_c = 0.90 \quad P_n = F_{cr} A_g$$

1. yielding
$$\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{F_y}}$$
 or $F_e \ge 0.44F_y$
2. buckling $\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}$ or $F_e < 0.44F_y$

2. buckling
$$\frac{KL}{r} > 4.71 \sqrt{\frac{\vec{E}}{F_v}}$$
 or $F_e < 0.44F_g$

F - elastic buckling stress (Euler)

Steel Columns & Tension 8

Foundations Structures ARCH 331

Su2011abn

Unified Design

•
$$P_n = F_{cr}A_g$$

- for $\frac{KL}{r} \le 4.71\sqrt{\frac{E}{F_y}}$ $F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right]F_y$
- for $\frac{KL}{r} > 4.71\sqrt{\frac{E}{F_y}}$ $F_{cr} = 0.877F$
- where $F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$

Steel Columns & Tension 9 Lecture 17 Foundations Structures ARCH 331 Su2011abn

Procedure for Design

- 1. guess a size (pick a section)
- 2. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 3. find F_a or F_{cr} from appropriate equations
 - or find a chart
- 4. compute $P_{allowable} = F_a A$ (or $P_n / \Omega = F_{cr} A$) or $P_n = F_{cr} A_g$
 - or find $f_{actual} = P/A$

Procedure for Analysis

- 1. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 2. find F_a or F_{cr} from appropriate equation
 - · tables are available
- 3. compute $P_{allowable} = F_a \cdot A \underline{or} P_n = F_{cr} A_g$
 - or find $f_{actual} = P/A$
- 4. is $P \le P_{allowable}$ $(P_a \le P_n/\Omega)$? or is $P_u \le \phi P_n$?
 - yes: ok
 - no: insufficient capacity and no good

Steel Columns & Tension 10 Lecture 17 Foundations Structures ARCH 331 F2011abn

Procedure for Design (cont'd)

- 5. is $P \le P_{allowable}$? or is $P_u \le \phi P_n$?
 - yes: ok
 - no: pick a bigger section and go back to step 2.
- 6. check design efficiency
 - percentage of stress = $\frac{P_r}{P_c} \cdot 100\%$
 - if between 90-100%: good
 - if < 90%: pick a smaller section and go back to step 2.

Steel Columns & Tension 12 Lecture 17 Foundations Structures ARCH 331 Su2011abn

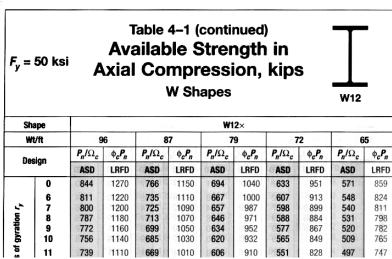

Column Charts, F_a (pg. 361-364)

Table 10.1 Allowable stress for compression members ($F_v = 36 \text{ ksi and } F_v = 250 \text{ MPa}$).

$\frac{KL}{r}$	F_a (ksi)	F _a (MPa)	$\frac{KL}{r}$	F _a (ksi)	F _a (MPa)	$\frac{KL}{r}$	F _a (ksi)	F _a (MPa)
1	21.56	148.7	41	19.11	131.8	81	15.24	105.1
2	21.52	148.4	42	19.03	131.2	82	15.13	104.3
3	21.48	148.1	43	18.95	130.7	83	15.02	103.6
4	21.44	147.8	44	18.86	130.0	84	14.90	102.7
5	21.39	147.5	45	18.78	129.5	85	14.79	102.0
6	21.35	147.2	46	18.70	128.9	86	14.67	101.1
7	21.30	146.9	47	18.61	128.3	87	14.56	100.4
8	21.25	146.5	48	18.53	127.8	88	14.44	99.6
9	21.21	146.2	49	18.44	127.1	89	14.32	98.7
10	21.16	145.9	50	18.35	126.5	90	14.20	97.9
11	21.10	145.5	51	18.26	125.9	91	14.09	97.2
12	21.05	145.1	52	18.17	125.3	92	13.97	96.3
13	21.00	144.8	53	18.08	124.7	93	13.84	95.4
14	20.95	144.5	54	17.99	124.0	94	13.72	94.6
15	20.89	144.0	55	17.90	123.4	95	13.60	93.8
16	20.83	143.6	56	17.81	122.8	96	13.48	92.9
17	20.78	143.3	57	17.71	122.1	97	13.35	92.0
18	20.72	142.9	58	17.62	121.5	98	13.23	91.2

Steel Columns & Tension 11 Foundations Structures F2008abn Lecture 20 ARCH 331

Column Charts

Steel Columns & Tension 14 Foundations Structures Su2011abn
Lecture 17 ARCH 331

Column Charts, φF_{cr}

Available Critical Stress, $\phi_c F_{cr.}$ for Compression Members, ksi ($F_v = 50$ ksi and $\phi_c = 0.90$)

KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$
1	45.0	41	39.8	81	27.9	121	15.4	161	8.72
2	45.0	42	39.6	82	27.5	122	15.2	162	8.61
3	45.0	43	39.3	83	27.2	123	14.9	163	8.50
4	44.9	44	39.1	84	26.9	124	14.7	164	8.40
5	44.9	45	38.8	85	26.5	125	14.5	165	8.30
6	44.9	46	38.5	86	26.2	126	14.2	166	8.20
7	44.8	47	38.3	87	25.9	127	14.0	167	8.10
8	44.8	48	38.0	88	25.5	128	13.8	168	8.00
9	44.7	49	37.8	89	25.2	129	13.6	169	7.91
10	44.7	50	37.5	90	24.9	130	13.4	170	7.82
11	44.6	51	37.2	91	24.6	131	13.2	171	7.73
12	44.5	52	36.9	92	24.2	132	13.0	172	7.64
13	44.4	53	36.6	93	23.9	133	12.8	173	7.55
14	44.4	54	36.4	94	23.6	134	12.6	174	7.46
15	44.3	55	36.1	95	23.3	135	12.4	175	7.38
16	44.2	56	35.8	96	22.9	136	12.2	176	7.29
17	44.1	57	35.5	97	22.6	137	12.0	177	7.21
18	43.9	58	35.2	98	22.3	138	11.9	178	7.13
19	43.8	59	34.9	99	22.0	139	11.7	179	7.05
20	43.7	60	34.6	100	21.7	140	11.5	180	6.97
21	43.6	61	34.3	101	21.3	141	11.4	181	6.90
22	43.4	62	34.0	102	21.0	142	11.2	182	6.82
23	43.3	63	33.7	103	20.7	143	11.0	183	6.75
24	43.1	64	33.4	104	20.4	144	10.9	184	6.67
25	43 N	65	33 N	105	20 1	145	10.7	185	6.60
el Columns ture 17	& Tension 1	4			ions Structure RCH 331	es			F20

Beam-Column Design

• moment magnification (P-∆)

$$M_{u} = B_{1} M_{max-factored} B_{1} = \frac{C_{m}}{1 - (P_{u}/P_{e1})}$$

 C_m – modification factor for end conditions = 0.6 – 0.4(M_1/M_2) or 0.85 restrained, 1.00 unresrained P_{e1} – Euler buckling strength $P_{e1} = \frac{\pi^2 EA}{\left(Kl/r\right)^2}$

Steel Columns & Tension 15 Lecture 17 Foundations Structures ARCH 331 Su2011abn

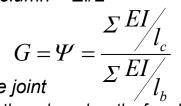
Beam-Column Design

• LRFD (Unified) Steel

$$- \text{ for } \frac{P_r}{P_c} \ge 0.2 : \quad \frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \le 1.0$$

$$- \text{ for } \frac{P_r}{P_c} < 0.2 : \quad \frac{P_u}{2\phi_c P_n} + \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \le 1.0$$

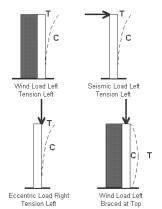
 P_r is required, P_c is capacity


 ϕ_c - resistance factor for compression = 0.9

 $\phi_{\rm b}$ - resistance factor for bending = 0.9

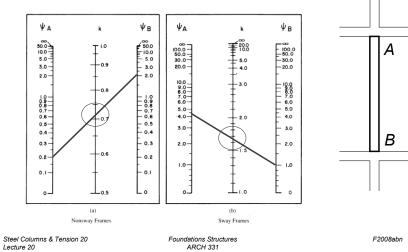
Steel Columns & Tension 16 Lecture 17 Foundations Structures ARCH 331 Su2011abn

Rigid Frame Design (revisited)


- columns in frames
 - ends can be "flexible"
 - stiffness affected by beams and column = El/L

- for the joint
 - Ic is the column length of each column
 - *I_b* is the beam length of each beam
 - · measured center to center

Design Steps Knowing Loads (revisited)

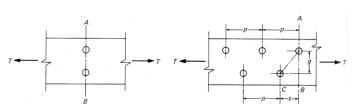

- 1. assume limiting stress
 - buckling, axial stress, combined stress
- 2. solve for r, A or S
- 3. pick trial section
- 4. analyze stresses
- 5. section ok?
- 6. stop when section is ok

Steel Columns & Tension 18 Lecture 20 Foundations Structures ARCH 331 F2008abr

Rigid Frame Design (revisited)

column effective length, k


Steel Columns & Tension 19 Lecture 20 Foundations Structures ARCH 331 F2008abn


Tension Members

- steel members can have holes
- reduced area

$$A_n = A_g - A_{of \ all \ holes} + t\Sigma \frac{s}{4g}$$

ARCH 331

F2008abn

Tension Members

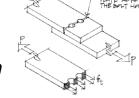
limit states for failure

$$P_a \leq P_n / P_u \leq \phi_t P_n$$

1. yielding $\phi_t = 0.90$ $P_n = F_v A_g$

$$P_n = F_y A_g$$

2. rupture* $\phi_t = 0.75$ $P_n = F_u A_e$

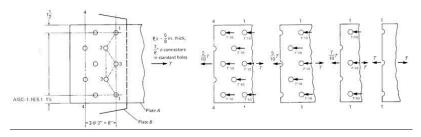

$$P_n = F_u A_e$$

A_a - gross area

A - effective net area (holes 1/8" + d)

F, = the tensile strength

of the steel (ultimate)



Su2011abn

Effective Net Area

- likely path to "rip" across
- bolts divide transferred force too
- shear lag $A_e \leq A_n U$

$$A_e \le A_n U$$

Steel Columns & Tension 20

Foundations Structures ARCH 331

F2008abn