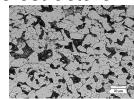

ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN

ARCH 331 DR. ANNE NICHOLS SUMMER 2014

lecture



materials & beams

Architectural Structures F2009abn

Steel Materials

- smelt iron ore
- add alloying elements
- heat treatments
- iron, carbon
- microstructure

A36 steel, JOM 1998

Foundations Structures ARCH 331

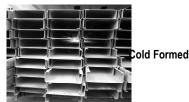
AISC

F2008abr

Steel Beam Design

- American Institute of Steel Construction
 - Manual of Steel Construction
 - ASD & LRFD
 - combined in 13th ed.

Steel Beams 2 Lecture 15

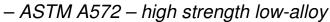

Foundations Structures ARCH 331

F2011abn

Steel Materials

- cast into billets
- hot rolled
- cold formed
- residual stress
- corrosion-resistant "weathering" steels
- stainless

AISC

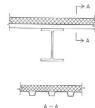

ARCH 331

Foundations Structures

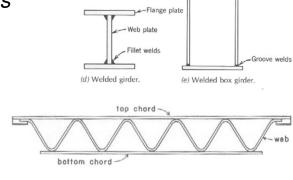
F2008abr

Steel Materials

- steel grades
 - ASTM A36 carbon
 - · plates, angles
 - $F_v = 36 \text{ ksi } \& F_{ij} = 58 \text{ ksi}$

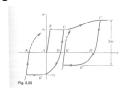

- some beams
- $F_v = 60 \text{ ksi } \& F_u = 75 \text{ ksi}$
- ASTM A992 for building framing
 - most beams
 - $F_v = 50 \text{ ksi } \& F_u = 65 \text{ ksi}$

Steel Beams 5


F2008abn

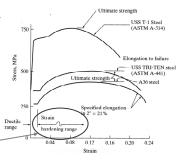
Structural Steel

- standard rolled shapes (W, C, L, T)
- open web joists
- plate girders
- decking



Foundations Structures F2008abn ARCH 331

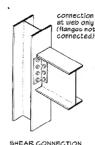
Steel Properties


- · high strength to weight ratio
- elastic limit yield (F_v)
- inelastic plastic
- ultimate strength (F,,)
- ductile
- · strength sensitive to temperature
- can corrode
- fatique

Steel Reams 6 Lecture 18

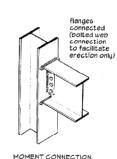
strain hardening

Foundations Structures ARCH 331

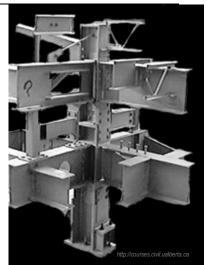


Winnepeg DO7

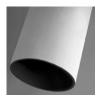
Steel Construction


- welding
- bolts

SHEAR CONNECTION


Steel Reams 8

Lecture 18


Foundations Structures

ARCH 331

Steel Construction

- fire proofing
 - cementicious spray
 - encasement in gypsum
 - intumescent expands with heat
 - sprinkler system

Foundations Structures ARCH 331

F2008abn

Unified Steel Design

• ASD

$$R_a \leq \frac{R_n}{\Omega}$$

bending (braced)

 $\Omega = 1.67$

– bending (unbraced*)

 $\Omega = 1.67$

shear

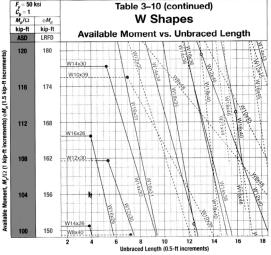
 $\Omega = 1.67$

- shear (bolts & welds) $\Omega = 2.00$

- shear (welds)

 $\Omega = 2.00$

* flanges in compression can buckle


Steel Beams 10 Lecture 18

Foundations Structures ARCH 331

F2008abr

Unified Steel Design

 braced vs. unbraced

AMERICAN INSTITUTE OF STEEL CONSTRUCTION, INC. ARCH 331

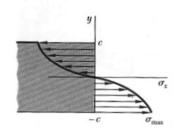
LRFD

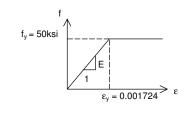
- loads on structures are
 - not constant

- can be more influential on failure
- happen more or less often
- UNCERTAINTY

$$R_u = \gamma_D R_D + \gamma_L R_L \le \phi R_n$$

φ - resistance factor

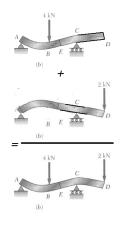

γ - load factor for (D)ead & (L)ive load


Steel Beams 12 Lecture 18

Foundations Structures ARCH 331

LRFD Steel Beam Design

- limit state is yielding <u>all across section</u>
- outside elastic range
- load factors & resistance factors



Steel Beams 13 Lecture 18 Foundations Structures ARCH 331 F2008abn

Beam Design Criteria (revisited)

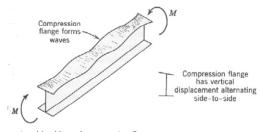
- strength design
 - bending stresses predominate
 - shear stresses occur
- serviceability
 - limit deflection
 - stability
- superpositioning
 - use of beam charts
 - elastic range only!
 - "add" moment diagrams
 - "add" deflection CURVES (not maximums)

Foundations Structures ARCH 331

F2008abn

LRFD Load Combinations

ASCE-7 (2010)


- 1.4D
- $|1.2D + 1.6L| + 0.5(L_r \text{ or } S \text{ or } R)$
- $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$
- $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$
- 1.2D + 1.0E + L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E
 - F has same factor as D in 1-5 and 7
 - H adds with 1.6 and resists with 0.9 (permanent)

Steel Beams 14 Lecture 15 Foundations Structures ARCH 331 F2011a

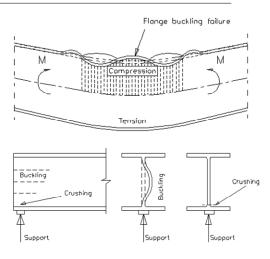
Steel Beams

- · lateral stability bracing
- local buckling stiffen, or bigger I,

Local buckling of compression flange.

Steel Beams 16 Lecture 18

Foundations Structures ARCH 331 F2008abr


Local Buckling

- steel I beams
- flange
 - buckle in direction of smaller radius of gyration
- web
 - force
 - "crippling"

Steel Beams 17 Lecture 18

Steel Reams 19

Lecture 18

F2008abn

F2008abn

Local Buckling

• flange

web

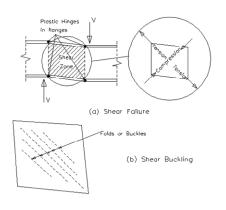
Steel Beams 18

Lecture 18

Foundations Structures ARCH 331 F2008abn

Shear in Web

· panels in plate girders or webs with large shear


Foundations Structures

ARCH 331

Foundations Structures

- buckling in compression direction
- add stiffeners

Shear in Web

· plate girders and stiffeners

Steel Beams 20 Lecture 18 Foundations Structures ARCH 331

Steel Beams

- bearing
 - provide adequate area
 - prevent
 local yield
 of flange
 and web

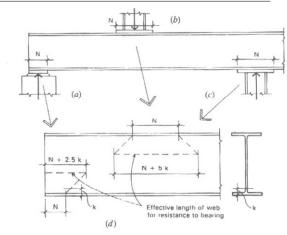


Figure 9.10 Considerations for bearing in beams with thin webs, as related to web crippling (buckling of the thin web in compression).

Steel Beams 21

Foundations Structures ARCH 331 F2008abn

LRFD - Flexure

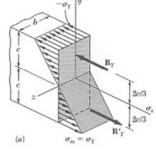
$$\Sigma \gamma_i R_i = M_u \le \phi_b M_n = 0.9 F_y Z$$

M,, - maximum moment

 ϕ_b - resistance factor for bending = 0.9

 M_n - nominal moment (ultimate capacity)

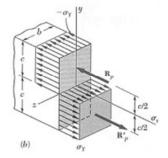
 F_{v} - yield strength of the steel

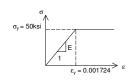

Z - plastic section modulus*

Steel Beams 22 Lecture 18 Foundations Structures ARCH 331 F2008abn

Internal Moments - at yield

· material hasn't failed


$$M_{y} = \frac{I}{c} f_{y} = \frac{bh^{2}}{6} f_{y}$$


$$=\frac{b(2c)^2}{6}f_y = \frac{2bc^2}{3}f_y$$

Internal Moments - ALL at yield

- all parts reach yield
- plastic hinge forms
- ultimate moment
- $A_{tension} = A_{compression}$

$$M_{p} = bc^{2} f_{y} = \frac{3}{2} M_{y}$$

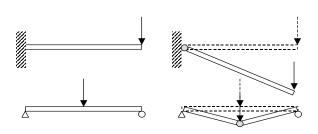
Steel Beams 23 Lecture 18 Foundations Structures ABCH 331 F2008abn

Steel Beams 24 Lecture 18 Foundations Structures ARCH 331

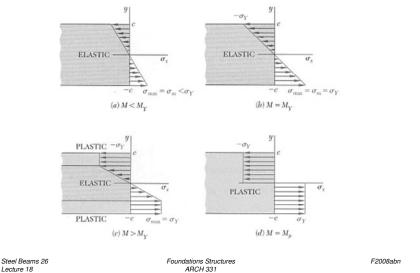
n.a. of Section at Plastic Hinge

- · cannot guarantee at centroid
- $f_v.A_1 = f_v.A_2$
- moment found from yield stress times moment area

$$M_p = f_y A_1 d = f_y \sum_{n,a} A_i d_i$$


Steel Beams 25 Lecture 18

Foundations Structures ARCH 331


F2008abn

Plastic Hinge Examples

stability can be effected

Plastic Hinge Development

Plastic Section Modulus

shape factor, k

 \approx 1.1 for an I

Lecture 18

= 3/2 for a rectangle

• plastic modulus, Z

F2008abn

Steel Beams 28 Lecture 18

Foundations Structures ARCH 331

LRFD – Shear (compact shapes)

$$\Sigma \gamma_i R_i = V_u \le \phi_v V_n = 1.0(0.6 F_{yw} A_w)$$

V,, - maximum shear

 ϕ_{v} - resistance factor for shear = 1.0

 V_n - nominal shear

 F_{vw} - yield strength of the steel in the web

 A_w - area of the web = $t_w d$

Steel Beams 29 Lecture 18 Foundations Structures ARCH 331 F2008abr

Compact Sections

- plastic moment can form before any buckling

 TABLE A.3 Properties of W Shapes
- criteria $-\frac{b_f}{2t_f} \leq 0.38 \sqrt{\frac{E}{F_y}} \sqrt{\frac{t_y}{E}} \sqrt{\frac{E}{F_y}} \sqrt{\frac{E}{F_y}}$ and $\frac{h_c}{t_w} \leq 3.76 \sqrt{\frac{E}{F_y}}$

LRFD - Flexure Design

- limit states for beam failure
 - 1. yielding

$$L_p = 1.76r_y \frac{r_y}{E}$$

- 2. lateral-torsional buckling*
- 3. flange local buckling
- 4. web local buckling
- minimum M_n governs

$$\sum \gamma_i R_i = M_u \leq \phi_b M_n$$

Lecture 18

Foundations Structures ARCH 331 F2008abn

Lateral Torsional Buckling

$$M_n = C_b \begin{bmatrix} moment \ based \ on \end{bmatrix} \le M_p$$

$$C_b = \frac{12.5M_{max}}{2.5M_{max} + 3M_A + 4M_B + 3M_C}$$

 C_b = modification factor

*M*_{max} - |max moment|, unbraced segment

 M_A - |moment|, 1/4 point

 $M_B = |moment|$, center point

 $M_C = |moment|$, 3/4 point

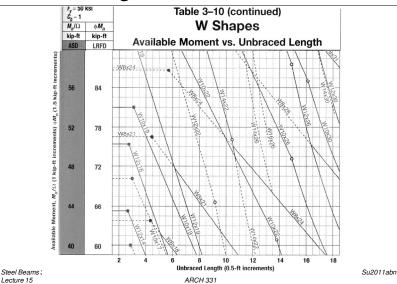
M₈

M₄

L₄

L₄

L₄


L₆

F2008abn

Steel Beams 32

undations Structures ARCH 331

Beam Design Charts

Design Procedure (revisited)

- 1. Know unbraced length, material, design method (Ω, ϕ)
- 2. Draw V & M, finding M_{max}
- 3. Calculate $S_{reg'd}$ $(M_a \leq M_n/\Omega)$ $(M_u \leq \phi_b M_n)$
- 4. Choose (economical) section from section or beam capacity charts

Charts & Deflections

- beam charts
 - solid line is most economical
 - dashed indicates there is another more economical section
 - self weight is NOT included in M_n
- deflections
 - no factors are applied to the loads
 - often governs the design

Steel Beams 34

Foundations Structures ARCH 331

F2008abn

Beam Charts by S_x (Appendix A)

Table 11 Listing of W Shapes in Descending Order of Sx for Beam Design.

S_x —US		S_x —SI	S _x —US		S,—SI
(in. ³)	Section	$(10^3 \times \text{mm}^3)$	(in. ³)	Section	(10 ³ × mm ³
448	W33×141	7350	188	W18 × 97	3080
439	W36 × 135	7200	0.50		
411	W27 × 146	6740	176	W24 × 76	2890
			175	W16×100	2870
406	W33 × 130	6660	173	W14×109	2840
380	W30 × 132	6230	171	W21 × 83	2800
371	W24 × 146	6080	166	W18 × 86	2720
			157	W14 × 99	2570
359	W33 × 118	5890	155	W16 × 89	2540
355	W30 × 124	5820			
			154	W24 × 68	2530
329	W30 × 116	5400	151	W21×73	2480
329	W24 × 131	5400	146	W18×76	2390
329	W21 × 147	5400	143	$W14 \times 90$	2350

Steel Beams 36 Lecture 18

Su2011ahn

Foundations Structures ARCH 331

F2008abn

Lecture 15

Beam Charts by Z_x

TABLE 9.1	Load Factor Resistance Design Selection for Shapes Used as Beams

Designation		$F_y = 36 \text{ ksi}$					$F_y = 5$	50 ksi						
	Z_{x} in. ³	L _p ft	L, ft	M _p kip-ft	M, kip-ft	L _p ft	L, ft	M _p kip-ft	M _r kip-ft	r _y in.	$b_f/2t_f$	h/t _w	X ₁ ksi	$\begin{array}{c} X_2 \times 10^6 \\ (1/\text{ksi})^2 \end{array}$
W 33 × 141	514	10.1	30.1	1,542	971	8.59	23.1	2,142	1,493	2.43	6.01	49.6	1,800	17,800
W 30 × 148	500	9.50	30.6	1,500	945	8.06	22.8	2,083	1,453	2.28	4.44	41.6	2,310	6,270
W 24 × 162	468	12.7	45.2	1,404	897	10.8	32.4	1,950	1,380	3.05	5.31	30.6	2,870	2,260
W 24 × 146	418	12.5	42.0	1,254	804	10.6	30.6	1,742	1,237	3.01	5.92	33.2	2,590	3,420
W 33 × 118	415	9.67	27.8	1,245	778	8.20	21.7	1,729	1,197	2.32	7.76	54.5	1,510	37,700
W 30 × 124	408	9.29	28.2	1,224	769	7.88	21.5	1,700	1,183	2.23	5.65	46.2	1,930	13,500
W 21 × 147	373	12.3	46.4	1,119	713	10.4	32.8	1,554	1,097	2.95	5.44	26.1	3,140	1,590
W 24 × 131	370	12.4	39.3	1,110	713	10.5	29.1	1,542	1,097	2.97	6.70	35.6	2,330	5,290
W 18 \times 158	356	11.4	56.5	1,068	672	9.69	38.0	1,483	1,033	2.74	3.92	19.8	4,410	403
W 30 × 108	346	8.96	26.3	1,038	648	7.60	20.3	1,442	997	2.15	6.89	49.6	1,680	24,200
W 27 × 114	343	9.08	28.2	1.029	648	7.71	21.3	1,429	997	2.18	5.41	42.5	2,100	9,220
W 24 × 117	327	12.3	37.1	981	631	10.4	27.9	1.363	970	2.94	7.53	39.2	2.090	8,190
W 21 × 122	307	12.2	41.0	921	592	10.3	29.8	1,279	910	2.92	6.45	31.3	2,630	3,160
W 18 × 130	290	11.3	47.7	870	555	9.55	32.8	1,208	853	2.7	4.65	23.9	3,680	810
W 30 × 90	283	8.71	24.8	849	531	7.39	19.4	1,179	817	2.09	8.52	57.5	1,410	49,600
W 24 × 103	280	8.29	27.0	840	531	7.04	20.0	1,167	817	1.99	4.59	39.2	2,390	5,310
W 27 × 94	278	8.83	25.9	834	527	7.50	19.9	1,158	810	2.12	6.70	49.5	1,740	19,900
W 14 × 145 W 24 × 94	260 254	8.25	81.6	780 762	503	14.1	54.7	1,083	773	3.98	7.11	16.8	4,400	348
				702				1,058	740	1.98	5.18	41.9	2,180	7,800

Steel Beams 37 Foundations Structures ARCH 331 Lecture 18

F2011abn

Su2011abn

Beam Design (revisited)

- 6. Evaluate shear stresses horizontal
 - $(V_a \le V_n/\Omega)$ or $(V_u \le \phi_v V_n)$
 - rectangles and W's $f_{v-max} = \frac{3V}{2A} \approx \frac{V}{A_{wab}}$ $V_n = 0.6 F_{vw} A_w$
 - general

$$f_{v-max} = \frac{VQ}{Ib}$$

Beam Design (revisited)

4*. Include self weight for M_{max}

it's dead load

and repeat 3 & 4 *if necessary*

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper

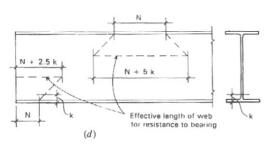
Steel Beams 37 Lecture 15

Foundations Structures ARCH 331

Su2011abn

Weight per linear foot Wide Flange

Weight per linear foot Nominal depth Channel


Thickness

C 9 x 15

L 6 x 4 x 1/2

Beam Design (revisited)

7. Provide adequate bearing $(P_a \leq P_n/\Omega)$ area at supports $(P_u \leq \phi P_n)$

Foundations Structures

ARCH 331

Steel Beams 39 Lecture 18

Beam Design (revisited)

8. Evaluate torsion

$$(f_v \leq F_v)$$

circular cross section

$$f_{v} = \frac{T\rho}{J}$$

rectangular

$$f_{v} = \frac{T}{c_1 a b^2}$$

Steel Beams 40 Lecture 18 Foundations Structures ARCH 331

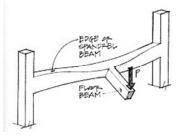


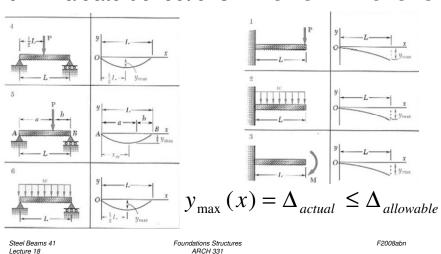
TABLE 3.1. Coefficients for Rectangular Bars in Torsion

a/b	C ₁	C ₂
1.0	° 0.208	0.1406
1.2	0.219	0.1661
1.5	0.231	0.1958
2.0	0.246	0.229
2.5	0.258	0.249
3.0	0.267	0.263
4.0	0.282	0.281
5.0	0.291	0.291
10.0	0.312	0.312
∞	0.333	0.333
		FZUU

Load Tables & Equivalent Load

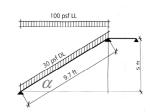
uniformly distributed loads

• equivalent "w"


$$M_{\text{max}} = \frac{w_{equivalent}L^2}{8}$$

Joist	10K1	12K1	12K3	12K5	14K1	14K3	14K4	14K6	4K6 16K2	16K3	16K4	16K5	16K6	16K7	16K9	
Designation	14111															4
Depth (in.)	10	12	12	12	14	14	14	14	16	16	16	16	16	16	16	4
Approx. Wt (lbs./ft.)	5.0	5.0	5.7	7.1	5.2	6.0	6.7	7.7	5.5	6.3	7.0	7.5	8.1	8.6	10.0	
Span (ft.)																
10	825 550						1	วลด	l for	live	e lo	ad	det	lec	tion I	limit
11	825						• •									
12	542 825	825	825	825					in 🗆	$D = \Gamma$) to	いけつし	in l	DI /	1CK	
12	455	550	550	550					шг	1 L L	⁄, ιι	nai	11 I L	ンレア	1UN	
13	718	825	825	825											_	_
	363	510	510	510												4
14	618	750	825	825	825	825	825	825								4
	289	425	463	463	550	550	550	550								4
15	537 234	651 344	814 428	825 434	766 475	825 507	825 507	825 507								4
16	469	570	714	825	672	825	825	825	825	825	825	825	825	825	825	4
16	192	202	351	396	390	467	467	467	550	550	550	550	550	550	550	4
17	415	504	630	825	592	742	825	825	768	825	825	825	825	825	825	4
	159	234	291	366	324	404	443	443	488	526	526 825	526	526	526 826	526	4
18	369	448	561	760	528	661	795	825	684	762		825	825		825	4
	134	197	245	317	272	339	397	408	409	456	490	490	490	490	490	4
19	331	402 167	502 207	601 269	472 230	592 287	712 336	025 383	612 347	602 386	020 452	825 455	025	025 455	025 455	4
20	298	361	453	613	426	534	642	787	552	615	739	825	825	825	825	4
20	97	142	177	230	197	246	287	347	297	330	386	426	426	426	426	4
21		327	409	555	385	483	582	712	499	556	670	754	822	825	825	4
		123	153	198	170	212	248	200	255	285	333	373	405	406	406	4
22		298	373	505	351	439	529	648	454	505	609	687	747	825	825	4
		108	132	172	147	184	215	259	222	247	289	323	351	385	385	4
		271	340 116	462 150	321 128	402 160	483	592 226	415	462	556	627	682	760	825 363	4
23							188		194	216	252	282	307	339		

ARCH 331


Beam Design (revisited)

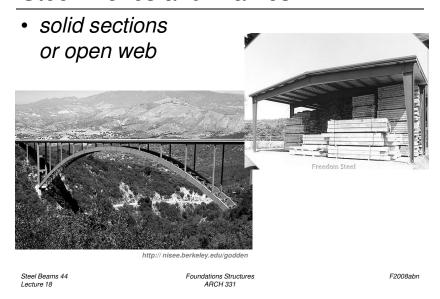
9. Evaluate deflections - NO LOAD FACTORS

Sloped Beams

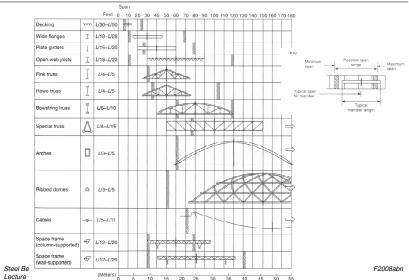
- stairs & roofs
- projected live load
- · dead load over length

perpendicular load to beam:

$$w_{\perp} = w \cdot \cos \alpha$$


• equivalent distributed load:

$$w_{adj.} = \frac{w}{\cos \alpha}$$
Foundations Structures


F2008abn

Steel Beams 4 Lecture 18

Steel Arches and Frames

Approximate Depths

Steel Shell and Cable Structures

Steel Beams 45 Foundations Structures F2008abn
Lecture 18 ARCH 331