ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

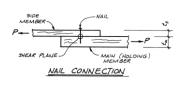
DR. ANNE NICHOLS SUMMER 2014

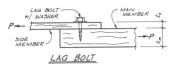
lecture fourteen

wood construction: connections

Wood Connections 1 Lecture 14

Architectural Structures ARCH 331

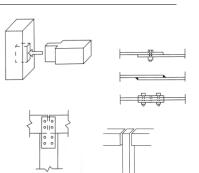

F2009abn


Wood Connectors

- adhesives
 - used in a controlled environment
 - can be used with nails
- mechanical
 - bolts
 - lag bolts or lag screws
 - nails
 - split ring and shear plate connectors

wood Connections 3 ber rivets

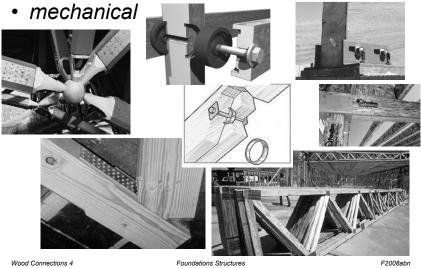
Architectural Structures



F2008abn

Connectors

- joining
 - lapping
 - interlocking
 - butting
- mechanical
 - "third-elements"



• transfer load at a point, line or surface - generally more than a point due to stresses

Wood Connections 2 Lecture 17

Foundations Structures

Wood Connections

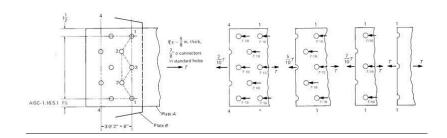
Lecture 17

ARCH 331

Bolted Joints

 connected members in tension cause shear stress

 connected members in compression cause bearing stress

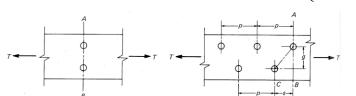

Bearing stress on plate.

Wood Connections 5

Foundations Structures ARCH 331 F2008abn

Effective Net Area

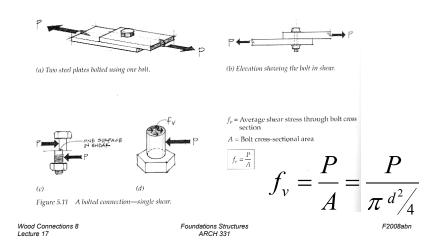
- likely path to "rip" across
- bolts divide transferred force too



Wood Connections 7 Lecture 17 Foundations Structures ARCH 331 F2008abn

Tension Members

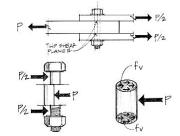
- members with holes have reduced area
- increased tension stress


• A_e is effective net area $f_t = \frac{1}{A_t}$

Wood Connections 6 Lecture 17 Foundations Structures ARCH 331 F2008abn

Single Shear

seen when 2 members are connected


Double Shear

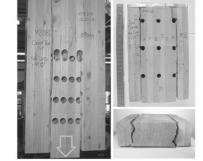
seen when 3 members are connected

$$\Sigma F = 0 = -P + 2(\frac{P}{2})$$

$$f_{v} = \frac{P}{2A} = \frac{P/2}{A} = \frac{P/2}{\pi^{d^{2}/4}}$$

Free-body diagram of middle section of the bolt in shear. Figure 5.12 A bolted connection in double shear

Wood Connections 9 Lecture 17

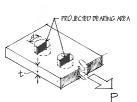

ARCH 331

F2008abn

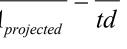
Bolted Joints

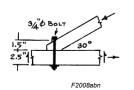
twisting


- tear out
 - shear strength
 - end distance & spacing
- Figure 1.—Higher connection capacities can be achieved with increased fastener spacings.

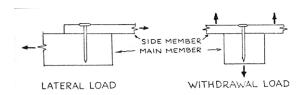

F2008abn

Taylor & Line 2002


Bearing Stress


- compression & contact
- stress limited by species & grain direction to load

projected area



Nailed Joints

Wood Connections 10

Lecture 17

- tension stress (pullout)
- · shear stress nails presumed to share load by distance from centroid of nail pattern

Wood Connections 12 Lecture 17

Foundations Structures ARCH 331

F2008abn

Nailed Joints

- sized by pennyweight units / length
- embedment length
- dense wood, more capacity

TABLE 7.1 Lateral Load Capacity of Common Wire Nails (lb/nail)

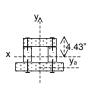
Side Member Thickness, t_s (in.)	Nail Length, L (in.)	Nail Diameter, D (in.)	Pennyweight	Load per Nail for Douglas Fir-Larch G = 0.50, Z (lb)
Structural Plywo	od Side Memb	ers		
3/8	2	0.113	6d	48
	21/2	0.131	8d	63
	3	0.148	10d	76
1/2	2	0.113	6d	50
	21/2	0.131	8d	65
	3	0.148	10d	78
	31/2	0.162	16d	92

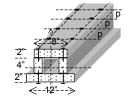
Wood Connections 13

Foundations Structure ARCH 331 F2008abn

Vertical Connectors

isolate an area with vertical interfaces


$$nF_{connector} \ge \frac{VQ_{connected\ area}}{I} \cdot p$$


Wood Connections 15 Lecture 17 Foundations Structures ARCH 331 F2008abn

Connectors Resisting Beam Shear

plates with

- nails
- rivets
- bolts

splices

 V from beam load related to V_{longitudinal}

$$V_{cor} \ge \frac{VQ_{connected\ area}}{I}$$

 $V_{longitudinal}$

Wood Connections 14 Lecture 17

Foundations Structu ARCH 331 F2008abn