ARCHITECTURAL STRUCTURES:

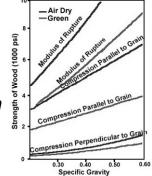
FORM, BEHAVIOR, AND DESIGN ARCH 331

DR. ANNE NICHOLS
SUMMER 2014

lecture twelve

wood construction: materials & beams

ood Beams 1 Architectural S cture 12 ARCH 3 F2009abn


F2008ahn

Timber

- lightweight : strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by "flaws"
- size varies by tree growth
- · renewable resource
- manufactured wood
 - assembles pieces
 - adhesives

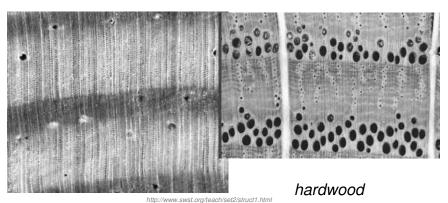
Wood Beams 3

Lecture 15

Foundations Structures

ARCH 331

Wood Beam Design


- National Design Specification
 - National Forest Products Association
 - ASD & LRFD (combined in 2005)
 - adjustment factors x tabulated stress = allowable stress
 - adjustment factors terms, C with subscript
 - i.e, bending:

 $f_b \le F_b' = F_b \times (product \ of \ adjustment \ factors)$

Wood Beams 2 Lecture 15 Foundations Structures ARCH 331 F2008abn

Wood Properties

cell structure and density

softwood

Wood Beams 4 Lecture 15 Foundations Structures ARCH 331

Wood Properties

- moisture
 - exchanges with air easily

- excessive drying causes warping and shrinkage

- strength varies some
- temperature
 - steam
 - volatile products
 - combustion

Wood Reams 5 Lecture 15

Foundations Structures ARCH 331

F2008abn

Structural Lumber

- dimension 2 x's (nominal)
- · beams, posts, timber, planks
- grading
 - select structural
 - no. 1, 2, & 3
- tabular values by species
- glu-lam
- plywood

Lecture 15

				Design v	alues in pound	ls per square inch	
	Size		ne fiber in ing "F _b "	Tension	Horizontal	Compression	
Species and commercial grade	classification	Single- member uses	Repetitive- member uses	to grain "F _t "	shear "F _v "	to grain	
SOUTHERN PINE (Surfaced of Select Structural	ry. Used at 19% m	ax. m.c.)	2300	1150	100	565	
Dense Select Structural No. 1		2350 1700	2700 1950	1350 1000	100	660 565	
No. 1 Dense No. 2	2" to 4" thick 2" to 4"	2000	2300 1650	1150 825	100	660 565	
No. 2 Dense No. 3	wide	1650 775	1900	975 450	90	660 565	
No. 3 Dense Stud		925 775	1050 900	525 450	90 90	660 565	
Construction Standard Utility	2" to 4" thick 4" wide	1000 575 2/5	1150 676 300	600 350 150	100 90 90	565 565 565	
Select Structural		1750	2000	1150	90	565	

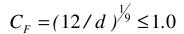
Foundations Structures ARCH 331

F2008abn

Wood Properties

- load duration
 - short duration
 - higher loads
 - normal duration
 - > 10 years

Wood Beams 6


Lecture 15

additional deformation with no additional load

Foundations Structures F2008abn ARCH 331

Adjustment Factors

- terms
 - $-C_D$ = load duration factor
 - $-C_{M}$ = wet service factor
 - 1.0 dry ≤ 16% MC
 - $-C_F = size factor$
 - · visually graded sawn lumber and round timber > 12" depth

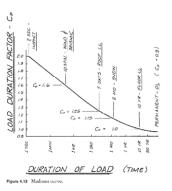


Table 10.3 (pg 376)

Wood Reams 8 Lecture 15

Foundations Structures

Adjustment Factors

- terms
 - $-C_{fu}$ = flat use factor
 - · not decking
 - $-C_i$ = incising factor
 - · increase depth for pressure treatment
 - $-C_t$ = temperature factor
 - · lose strength at high temperatures

Wood Beams 9 Lecture 15 Foundations Structures ARCH 331 F2008abn

Allowable Stresses

- design values
 - − *F_b*: bending stress
 - − F_t: tensile stress | strong
 - $-F_{v}$: horizontal shear stress
 - $-F_{c\perp}$: compression stress (perpendicular to grain)
 - F_c: compression stress (parallel to grain) strong
 - E: modulus of elasticity
 - $-F_p$: bearing stress (parallel to grain)

Adjustment Factors

- terms
 - $-C_r$ = repetitive member factor
 - $-C_H$ = shear stress factor
 - splitting
 - $-C_V = volume factor$
 - same as C_F for glue laminated timber
 - $-C_L$ = beam stability factor
 - · beams without full lateral support
 - $-C_c$ = curvature factor for laminated arches

Wood Beams 10 Lecture 15 Foundations Structures ARCH 331 F2008ahr

Load Combinations

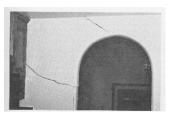
- · design loads, take the bigger of
 - (dead loads)/0.9
 - (dead loads + any possible combination of live loads)/C_D
- · deflection limits
 - no load factors
 - for stiffer members:
 - Δ_T max from LL + 0.5(DL)

Wood Beams 11 Lecture 15 Foundations Structures

Wood Beams 12

Foundations Structures
ABCH 331

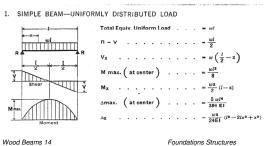
Beam Design Criteria

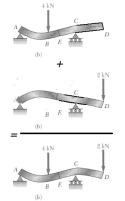

- · strength design
 - bending stresses predominate
 - shear stresses occur
- · serviceability
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage

Wood Beams **Bonding**

Foundations Structure ARCH 331

ARCH 331

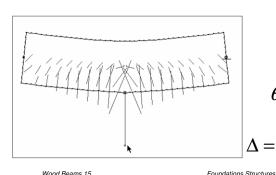




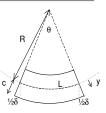
F2008abn

Beam Design Criteria

- superpositioning
 - use of beam charts
 - elastic range only!
 - "add" moment diagrams
 - "add" deflection CURVES (not maximums)



F2008abn


Beam Deformations

- · curvature relates to
 - bending moment
 - modulus of elasticity
 - moment of inertia

Lecture 15

 $\frac{1}{R} = \frac{M}{EI}$

$$curvature = \frac{M(x)}{EI}$$

$$\theta = slope = \int \frac{M(x)}{EI} dx$$

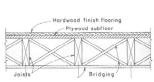
$$\Delta = deflection = \int \int \frac{M(x)}{EI} dx$$

Deflection Limits

• based on service condition, severity

Use	LL only	DL+LL
Roof beams:		
Industrial	L/180	L/120
Commercial		
plaster ceiling	L/240	L/180
no plaster	L/360	L/240
Floor beams:		
Ordinary Usage	L/360	L/240
Roof or floor (damage	eable elements)	L/480

Wood Beams 16 Lecture 15


Lecture 15

Foundations Structures ARCH 331

Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels

stiffen, brace or bigger I,

Wood Reams 17 Lecture 15

Foundations Structures ARCH 331

F2008ahn

Design Procedure

- 1. Know F_{all} for the material or F,, for LRFD
- 2. Draw V & M, finding M_{max}

3. Calculate $S_{reg'd}$ $(f_b \le F_b)$

4. Determine section size

$$S = \frac{bh^2}{6}$$

F2008abn

Table 9.3 Lateral bracing requirements for timber beams

Timber Beam Bracing

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	
3 to 1	The ends of the beam should be held in position	End blocking Joist or beam
5 to 1	Hold the compression edge in line (continuously)	Nailing or decking Joist or rafter
6 to 1	Diagonal bracing should be used	Nailed sheathing/decking Bridging Joist
7 to 1	Both edges of the beam should be held in line	Nalled sheathing/decking. top and bottom Bridging Joist

Wood Reams 18 Lecture 15

Foundations Structures ARCH 331

F2008ahn

Beam Design

- 4^* . Include self weight for M_{max}
 - and repeat 3 & 4 if necessary
- 5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper

Wood Beams 19 Lecture 15

Foundations Structures ARCH 331

Beam Design

6. Evaluate shear stresses - horizontal

•
$$(f_v \leq F_v)$$

rectangles and W's
$$f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{web}}$$

• general

$$f_{v-\text{max}} = \frac{VQ}{Ih}$$

Wood Beams 20

Foundations Structures ARCH 331 F2008abn

Beam Design

8. Evaluate torsion

$$(f_v \leq F_v)$$

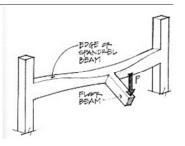
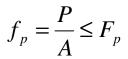
· circular cross section

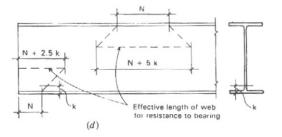
$$f_{v} = \frac{T\rho}{J}$$

rectangular

$$f_{v} = \frac{T}{c_{1}ab^{2}}$$

Wood Beams 22 Foundations Structures
Lecture 15 ARCH 331

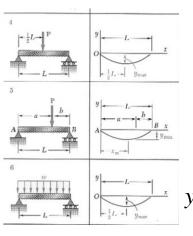



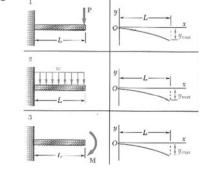

TABLE 3.1. Coefficients for Rectangular Bars in Torsion

nectangular bars ili lorsion				
a/b	c ₁	C ₂		
1.0	° 0.208	0.1406		
1.2	0.219	0.1661		
1.5	0.231	0.1958		
2.0	0.246	0.229		
2.5	0.258	0.249		
3.0	0.267	0.263		
4.0	0.282	0.281		
5.0	0.291	0.291		
10.0	0.312	0.312		
∞	0.333	0.333		

Beam Design

7. Provide adequate bearing area at supports





Wood Beams 21 Lecture 15 Foundations Structures ARCH 331 F2008abn

Beam Design

9. Evaluate deflections

 $y_{\text{max}}(x) = \Delta_{actual} \le \Delta_{allowable}$

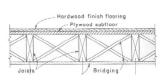
Wood Beams 23 Lecture 15 Foundations Structures ARCH 331

Decking

- · across beams or joists
- floors: 16 in. span common
 - 3/4 in. tongue-in-groove plywood
 - 5/8 in. particle board over ½ in. plywood
 - hardwood surfacing
- roofs: 24 in. span common
 - ½ in. plywood

Wood Beams 24

Foundations Struc ARCH 331


Engineered Wood

- plywood
 - veneers at different orientations
 - glued together
 - split resistant
 - higher and uniform strength
 - limited shrinkage and swelling
 - used for sheathing, decking, shear walls, diaphragms

Joists & Rafters

- allowable load tables (w)
- allowable length tables for common live & dead loads

 TABLE 5.5 Allowable Spans in Feet and In
- lateral bracing needed
- common spacings

Wood Beams 25 Lecture 15 Foundations Structures ARCH 331 F2008abn

Engineered Wood

- glued-laminated timber
 - glulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength
 - more expensive than sawn timber
 - large members (up to 100 feet!)
 - flexible forms

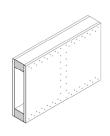
Wood Beams 26 Lecture 15 Foundations Structures ARCH 331 F2008abn

Wood Beams 27 Lecture 15 Foundations Structures ARCH 331

Engineered Wood

- I sections
 - beams
- other products
 - pressed veneer strip panels (Parallam)
 - -(LVL)
- wood fibers
 - Hardieboard: cement & wood

Architectural Structures ARCH 331



Timber Elements

- built-up box sections
 - built-up beams
 - usually site-fabricated
 - bigger spans

Wood Reams 30 Lecture 15

Foundations Structures ARCH 331

F2008abn

Timber Elements

- stressed-skin elements
 - modular built-up "plates"
 - typically used for floors or roofs

Figure 1. Typical Two-Sided Stressed-Skin Panel Scarf joint in lower skin is preferred method (alternate; spliced butt joint)

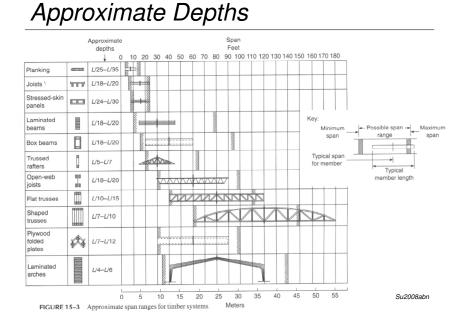
ARCH 331

Wood Beams 29 Foundations Structures F2008abn

Timber Elements

- trusses
 - long spans
 - versatile
 - common in roofs

Foundations Structures


Timber Elements

- folded plates and arch panels
 - usually of plywood

 Wood Beams 32
 Structural Systems I
 Su2008abn

 Lecture 15
 COSC 321

Timber Elements

- · arches and lamellas
 - arches commonly laminated timber
 - long spans
 - usually only for roofs

Su2008abn