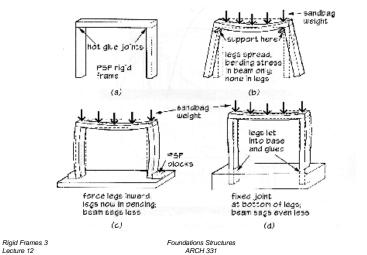
ARCHITECTURAL STRUCTURES:

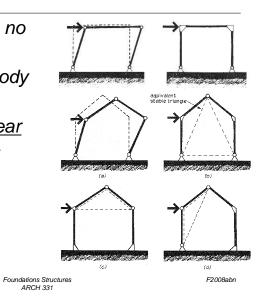
FORM, BEHAVIOR, AND DESIGN ARCH 331 DR. ANNE NICHOLS SUMMER 2014 lecture ter rigid frames: compression & buckli

Rigid Frames 1 Lecture 10


Lecture 12

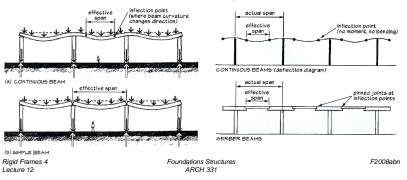
Architectural Structures =2009abı http:// nisee.berkeley.edu/godden ARCH 331

F2008abr

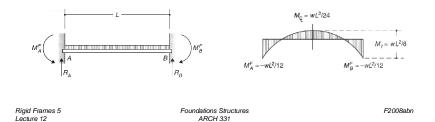

Rigid Frames

behavior

Rigid Frames

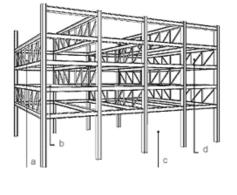

- rigid frames have no pins
- frame is all one body
- joints transfer moments and shear
- typically statically indeterminate
- types
 - portal
- gable

Rigid Frames 2 Lecture 12


Rigid Frames

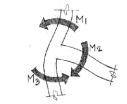
- moments get redistributed
- deflections are smaller
- effective column lengths are shorter
- very sensitive to settling

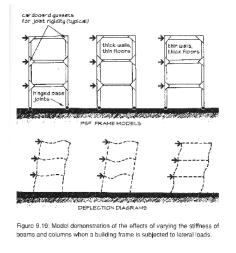
Moment Redistribution


- continuous slabs & beams with uniform loading
 - joints similar to fixed ends, but can rotate
- change in moment to center = wL^2
 - $-M_{max}$ for simply supported beam 8

Rigid Frames

- staggered truss
 - rigidity
 - clear stories

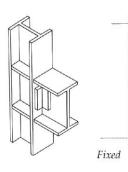

Rigid Frames 7 Lecture 12


Foundations Structures ARCH 331

F2008abn

Rigid Frames

- resists lateral loadings
- shape depends on stiffness of beams and columns
- 90° maintained


Rigid Frames 6 Lecture 12

Foundations Structures ARCH 331

F2008ahn

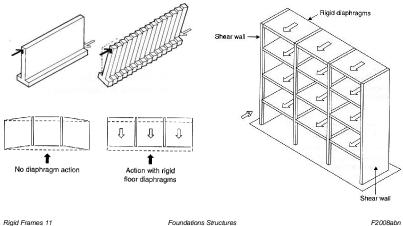
Rigid Frames

- connections
 - steel
 - concrete

Rigid Frames 8 Lecture 12 Foundations Structures ARCH 331

Braced Frames

- pin connections
- bracing to prevent lateral movements



Rigid Frames 9 Lecture 12

Foundations Structures ARCH 331

Shear Walls

• resist lateral load in plane with wall

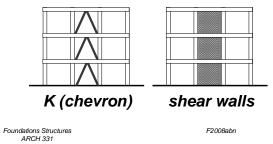
Lecture 12

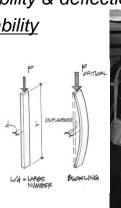
Foundations Structures ARCH 331

F2008abn

F2008abn

Braced Frames

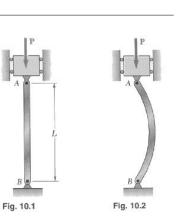

- types of bracing
 - knee-bracing
 - diagonal
 - -X
 - K or chevron
 - shear walls



Rigid Frames 10 Lecture 12

Compression Members

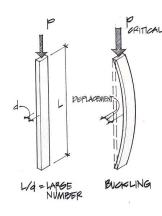
- designed for strength & stresses
- · designed for serviceability & deflection
- need to design for <u>stability</u>
 - ability to support a specified load without sudden or unacceptable deformations

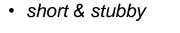


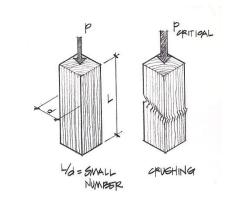
Rigid Frames 12 Lecture 12

Foundations Structures ARCH 331

Column Buckling

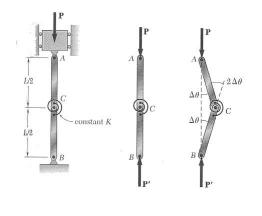

- axially loaded columns
- long & slender
 - unstable equilibrium = buckling
 - sudden and not good




Rigid Frames 13 Lecture 12 Foundations Structures ARCH 331

Effect of Length

• long & slender


Rigid Frames 15 Lecture 12

Foundations Structures ARCH 331 F2008abn

F2008abn

Modeling

- can be modeled with a spring at mid-height
- when moment from deflection exceeds the spring capacity ... "boing"
- critical load P

Rigid Frames 14	
Lecture 12	

Foundations Structures ARCH 331 F2008abn

Buckling Load

- related to deflected shape (P∆)
- shape of sine wave
- Euler's Formula
- smallest I governs

$$P_{critical} = \frac{\pi^2 EI}{\left(L\right)^2}$$

Figure 9.3 Leonhard Euler (1707–1783).

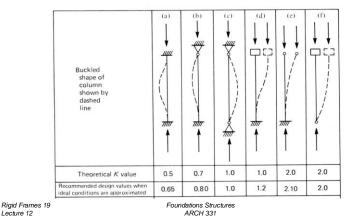
F2008abn

Rigid Frames 16 Lecture 12

Critical Stress short columns PITICAL $f_{critical} = \frac{P_{actual}}{A} < F_a$ DISPLACEMENT; • slenderness ratio = L_e/r (L/d) • radius of gyration = $r = \sqrt{\frac{I}{\Lambda}}$ weak axis $f_{critical} = \frac{P_{critical}}{A} = \frac{\pi^2 E A r^2}{A (L_e)^2} = \frac{\pi^2 E}{\left(L_e/\right)^2} \quad P_{critical} = -\frac{\pi^2 E}{\left(L_e/\right)^2}$

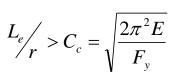
Rigid Frames 17

Lecture 12


Lecture 12

Effective Length

- · end conditions affect shape
- $L_e = K \cdot L$ • effective length factor, K


Foundations Structures

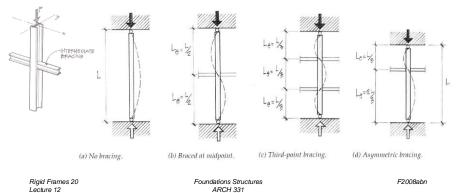
ARCH 331

Critical Stresses

- when a column gets stubby, F_{v} will limit the load
- real world has loads with eccentricity
- C_c for steel and allowable stress

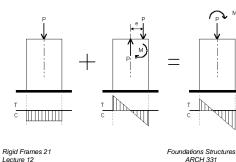
Rigid Frames 18 Lecture 12

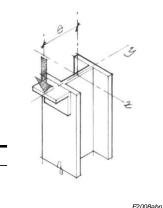
F2008abn


F2008abn

Foundations Structures ARCH 331

F2008abn

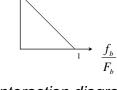

Bracing


- bracing affects shape of buckle in one direction
- both should be checked!

Centric & Eccentric Loading

- centric
 - allowable stress from strength or buckling
- eccentric
 - combined stresses

Lecture 12


Stress Limit Conditions

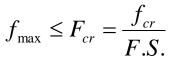
- ASD interaction formula

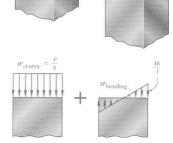
$$\frac{f_a}{F_a} + \frac{f_b}{F_b} \le 1.0$$

- with biaxial bending

$$\frac{f_a}{F_a} + \frac{f_{bx}}{F_{bx}} + \frac{f_{by}}{F_{by}} \le 1.0$$

 $\frac{f_a}{F_a}$


1

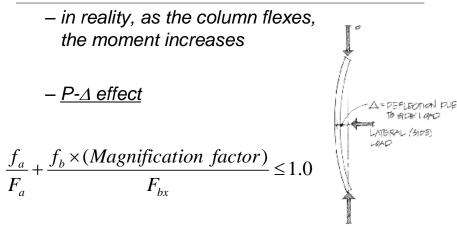

interaction diagram

Combined Stresses

- axial + bending

$$f_{\max} = \frac{P}{A} + \frac{Mc}{I}$$
$$M = P \cdot e$$

=


Rigid Frames 22 Lecture 12

Foundations Structures ARCH 331

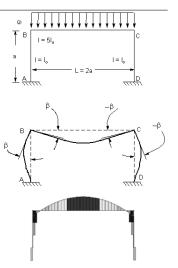
F2008abn

 $\mathbf{M} = P \mathbf{e}$

Stress Limit Conditions

Rigid Frames 23 Lecture 12

Foundations Structures ARCH 331

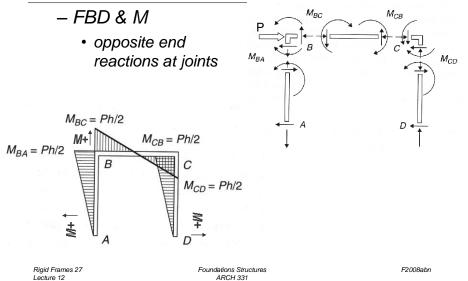

F2008abn

Rigid Frames 24 Lecture 12

Foundations Structures ARCH 331

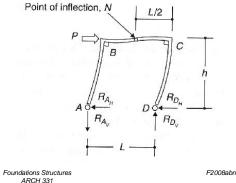
Rigid Frame Analysis

- members see
 - shear
 - axial force
 - bending
- V & M diagrams ٠ - plot on "outside"



F2008abn

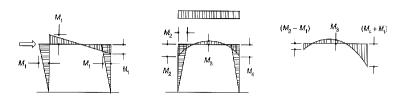
Rigid Frames 25 Lecture 12


Foundations Structures ARCH 331

Rigid Frame Analysis

Rigid Frame Analysis

- need support reactions
- free body diagram each member
- end reactions are equal and opposite on next member
- "turn" member like beam
- draw V & M



Rigid Frames 26

Lecture 12

Rigid Frame Design

- loads and combinations
 - usually uniformly distributed gravity loads
 - worst case for largest moments...
 - wind direction can increase moments

Rigid Frames 28 Lecture 12

Foundations Structures ARCH 331

Rigid Frame Design

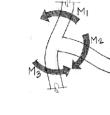
- frames & floors
 - rigid frame can have slab floors or slab with connecting beams
- other
 - slabs or plates on columns

THO-MAY SLAB

heavily reinforced to resist shear around columns

FLAT PLATE

F2008abn



THO-WAY SLAB (with dropped panels Foundations Structures

ARCH 331

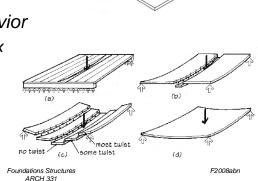
Rigid Frame Design

- columns in frames
 - ends can be "flexible"
 - stiffness affected by beams and column = EI/L

- for the joint
 - I_c is the column length of each column
 - I_{b} is the beam length of each beam

 $G = \Psi = \frac{\frac{2}{l_c}}{\Gamma L}$

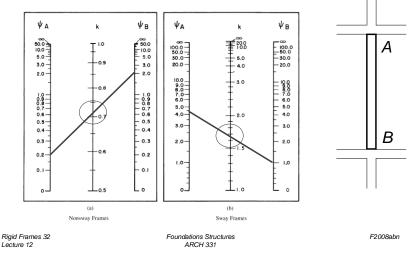
measured center to center

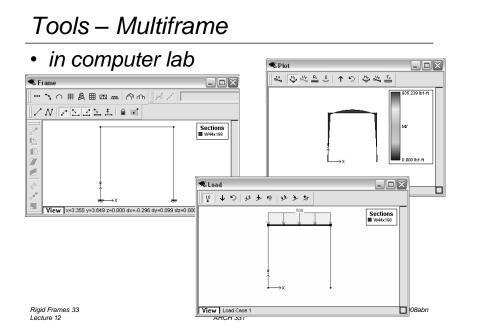


Foundations Structures ARCH 331

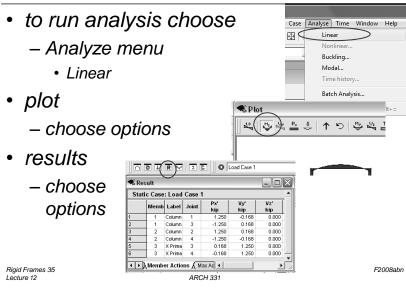
F2008abn

Rigid Frame Design

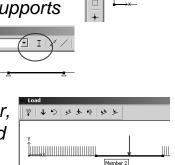

- floors plates & slabs
 - one-way behavior
 - side ratio > 1.5
 - "strip" beam
 - two-way behavior
 - more complex



Rigid Frames 30 Lecture 12


Rigid Frame Design

• column effective length, k



Tools – Multiframe

Tools – Multiframe

- frame window
 - define frame members
 - or pre-defined frame
 - select points, assign supports
 - select members, assign <u>section</u>
 - load window
 - select point or member, add point or distributed loads

主日日 📷

`用爲刪`四∞ | 今∩

S Fram

ZN

Rigid Frames 34 Lecture 12 Foundations Structures ARCH 331