ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 331

DR. ANNE NICHOLS

SUMMER 2014

Lecture SIX

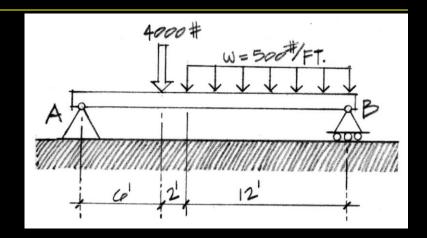
http://nisee.berkeley.edu/godden

beams -

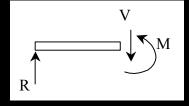
internal forces & diagrams

Beams

- span horizontally
 - floors
 - bridges
 - roofs



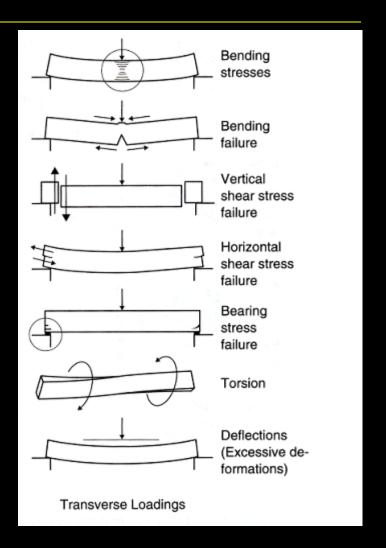
- loaded transversely by gravity loads
- may have internal axial force
- will have internal shear force



will have internal moment (bending)

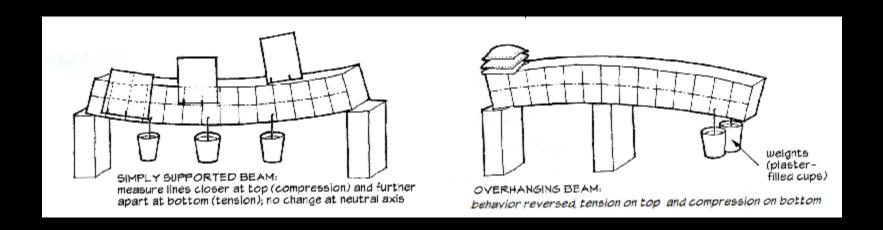
Beams

- transverse loading
- sees:
 - bending
 - shear
 - deflection
 - torsion
 - bearing
- behavior depends on cross section shape

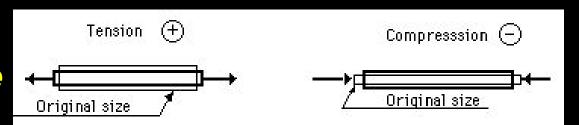


Beams

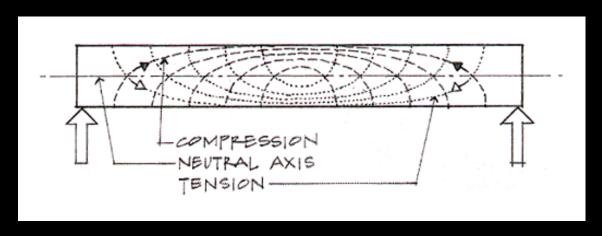
- bending
 - bowing of beam with loads
 - one edge surface stretches
 - other edge surface squishes

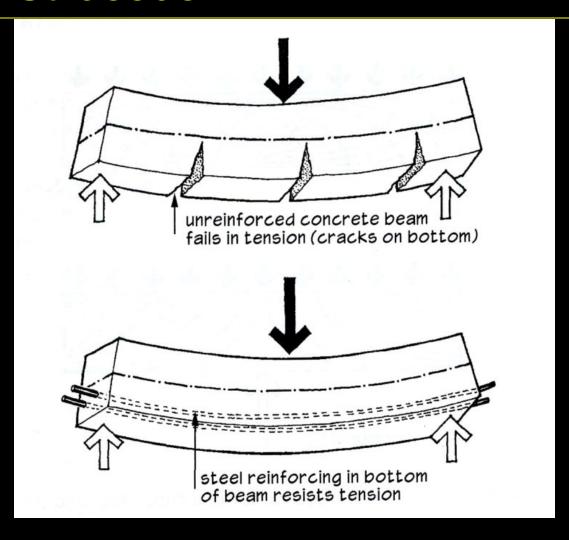


- stress = relative force over an area
 - tensile
 - compressive
 - bending

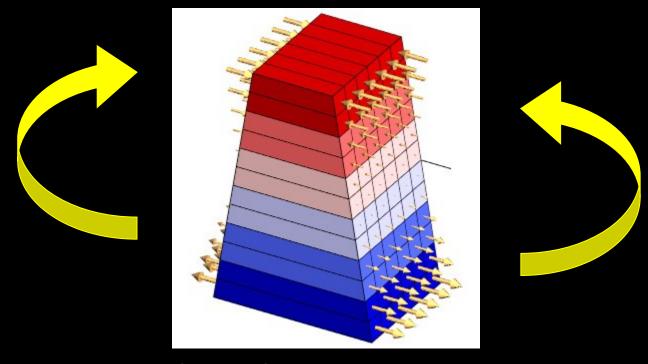


• tension and compression + ...



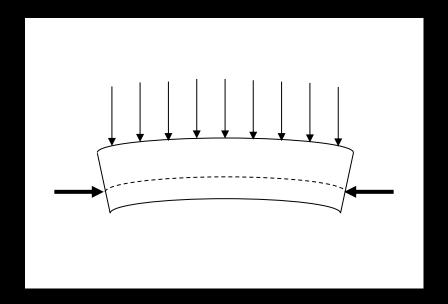


- tension and compression
 - causes moments

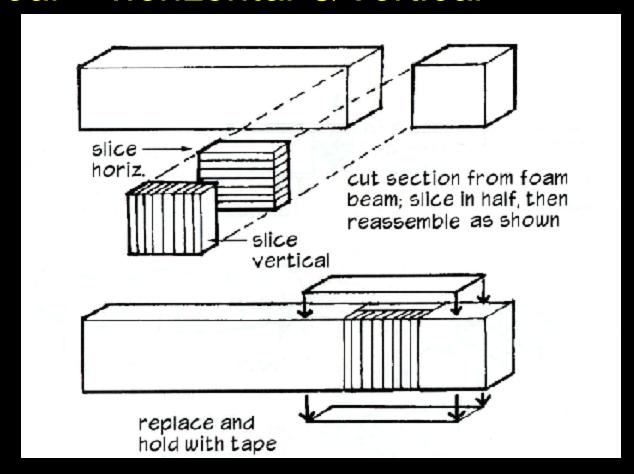


Copyright © 1996-2000 Kirk Martini.

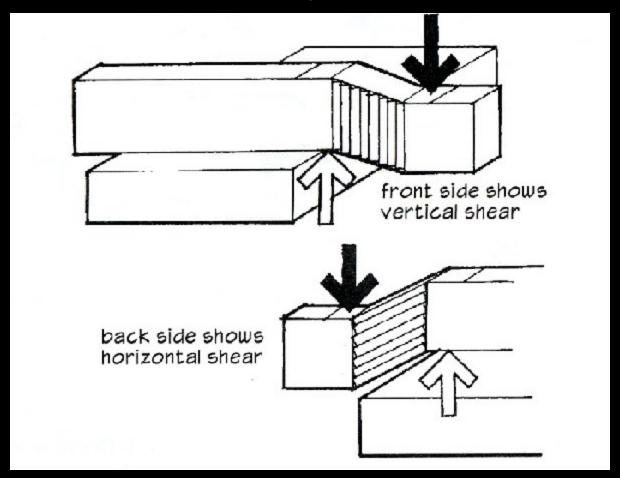
- prestress or post-tensioning
 - put stresses in tension area to "pre-compress"



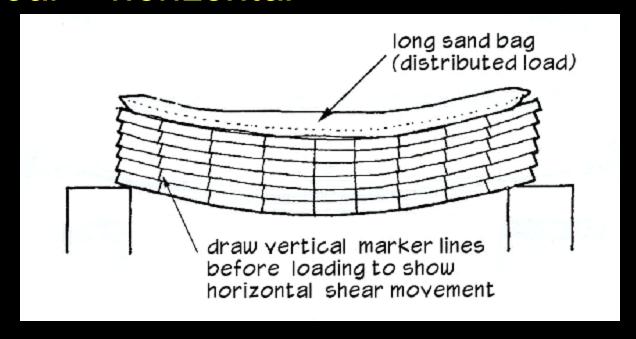
shear – horizontal & vertical



shear – horizontal & vertical



shear – horizontal



Beam Deflections

- depends on
 - load
 - section
 - material

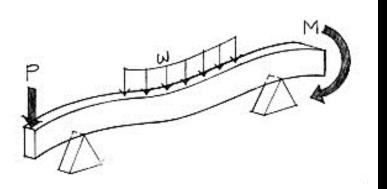
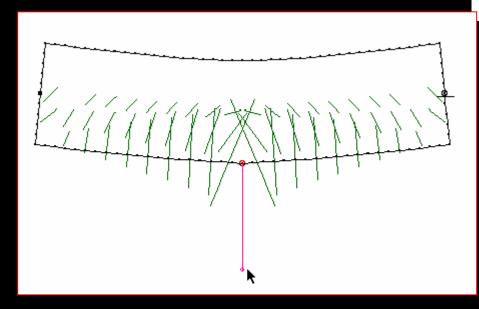
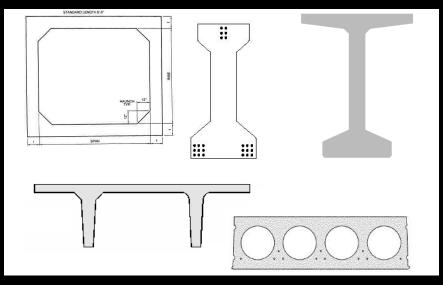


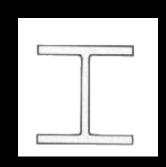
Figure 5.4 Bending (flexural) loads on a beam.

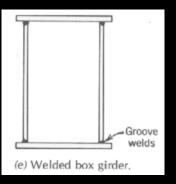


Beam Deflections

• "moment of inertia"





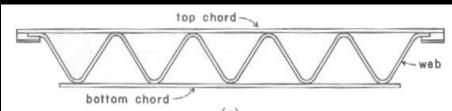


Beam Styles

vierendeel

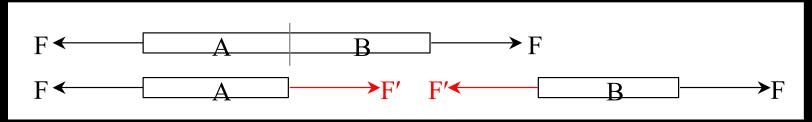
http://nisee.berkeley.edu/godden

- open web joists
- manufactured

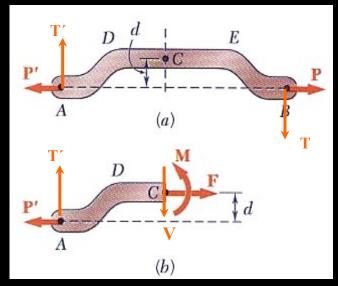


Internal Forces

- trusses
 - axial only, (compression & tension)

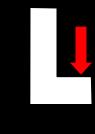


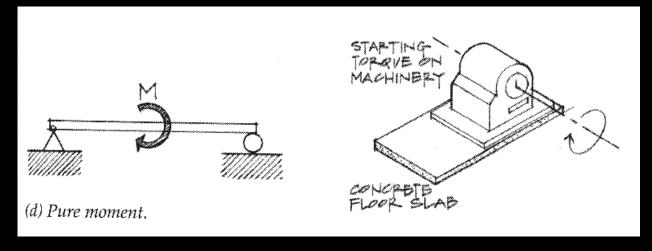
- in general
 - axial force
 - shear force, V
 - bending moment, M



Beam Loading

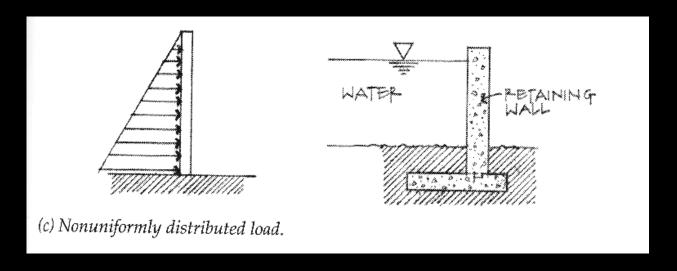
- concentrated force
- concentrated <u>moment</u>
 - spandrel beams





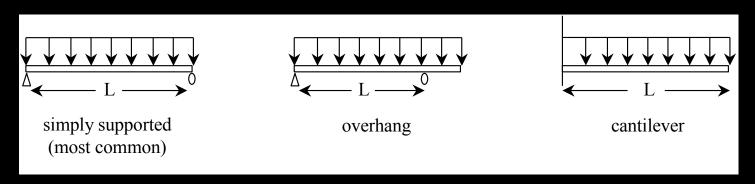
Beam Loading

- uniformly distributed load (line load)
- non-uniformly distributed load
 - hydrostatic pressure = γh
 - wind loads

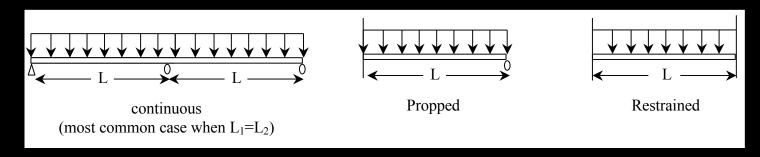


Beam Supports

statically determinate

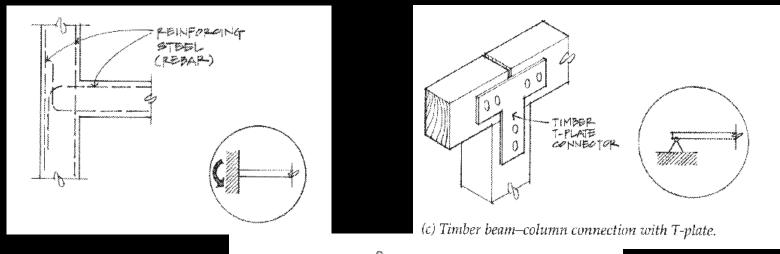


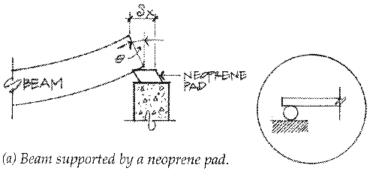
statically indeterminate



Beam Supports

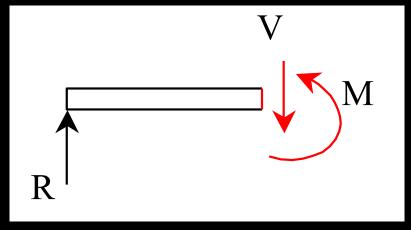
• in the real world, modeled type





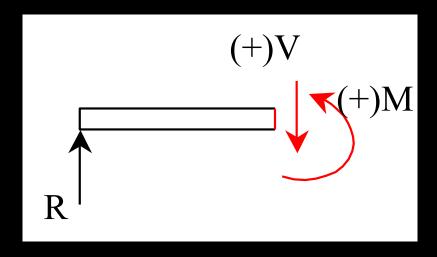
Internal Forces in Beams

- like method of sections / joints
 - no axial forces
- section <u>must</u> be in equilibrium
- want to know where biggest internal forces and moments are for designing



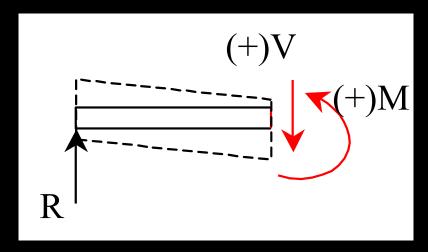
V & M Diagrams

- tool to locate V_{max} and M_{max} (at V = 0)
- necessary for designing
- have a <u>different sign convention</u> than external forces, moments, and reactions

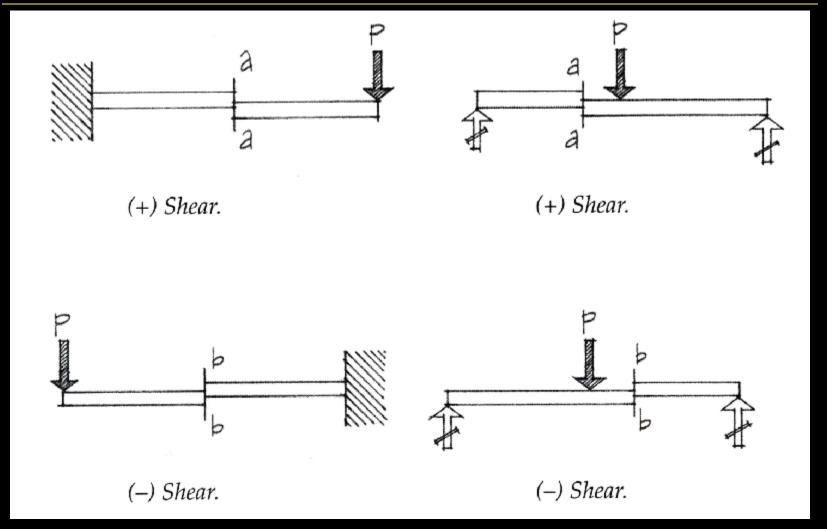


Sign Convention

- shear force, V:
 - cut section to LEFT
 - if ∑F_y is positive by statics, V acts down and is POSITIVE
 - beam has to resist shearing apart by V

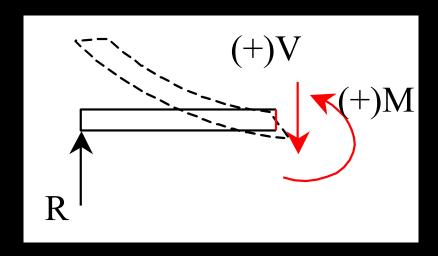


Shear Sign Convention

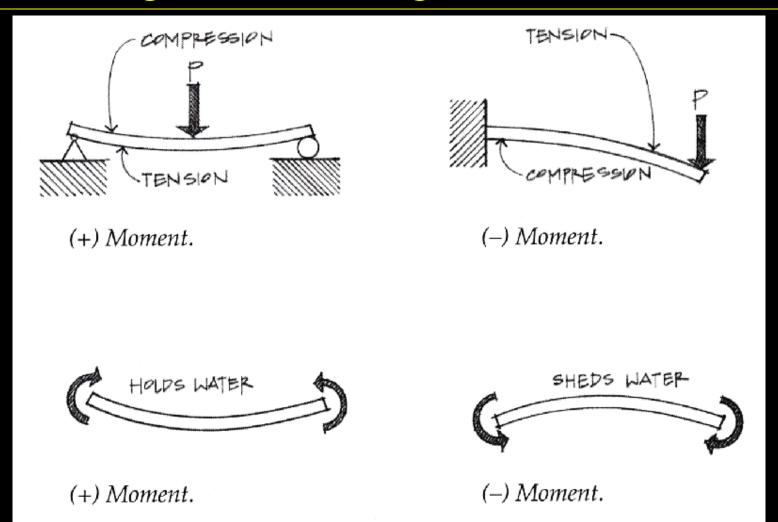


Sign Convention

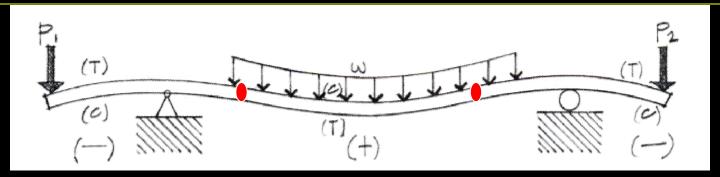
- bending moment, M:
 - cut section to LEFT
 - if ∑M_{cut} is clockwise, M acts ccw and is POSITIVE – flexes into a "smiley" beam has to resist bending apart by M



Bending Moment Sign Convention



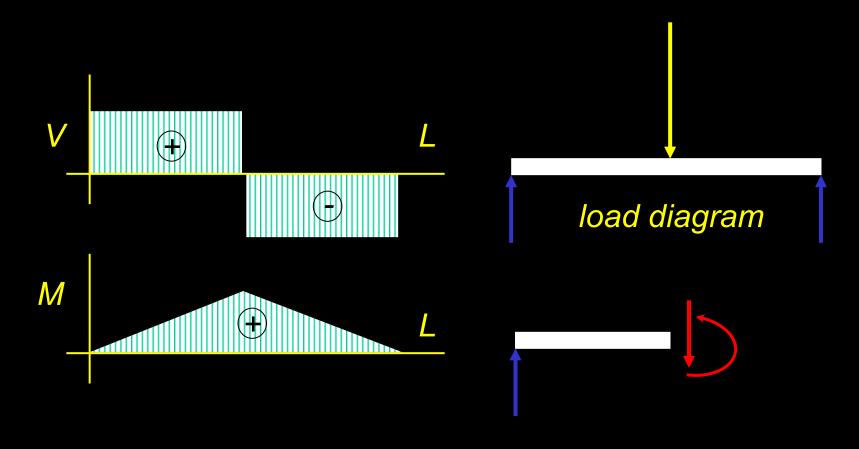
Deflected Shape



- positive bending moment
 - tension in bottom, compression in top
- negative bending moment
 - tension in top, compression in bottom
- zero bending moment
 - inflection point

Constructing V & M Diagrams

along the beam length, plot V, plot M



Mathematical Method

cut sections with x as width

write functions of V(x) and M(x)

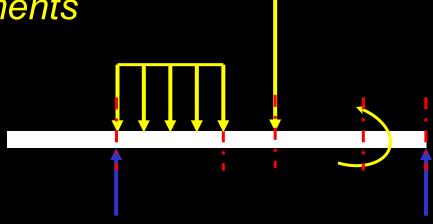
Method 1: Equilibrium

cut sections at important places

 plot V & M M

Method 1: Equilibrium

- important places
 - supports
 - concentrated loads
 - start and end of distributed loads
 - concentrated moments
- free ends
 - zero forces



Method 2: Semigraphical

by knowing

- area under loading curve = change in V
- area under shear curve = change in M
- concentrated forces cause "jump" in V
- concentrated moments cause "jump" in M

$$V_{D} - V_{C} = -\int_{C}^{X_{D}} w dx \qquad M_{D} - M_{C} = \int_{C}^{X_{D}} V dx$$

$$x_{C}$$

Method 2

relationships

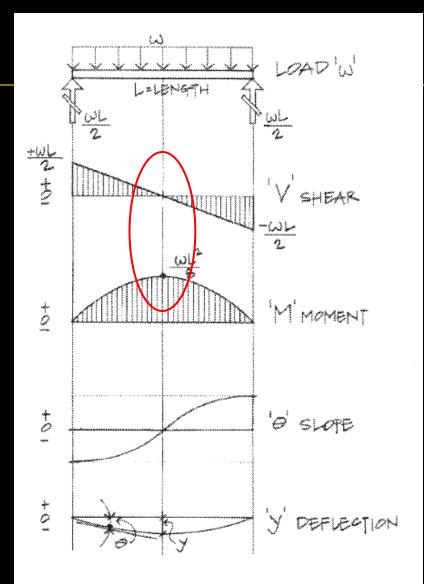
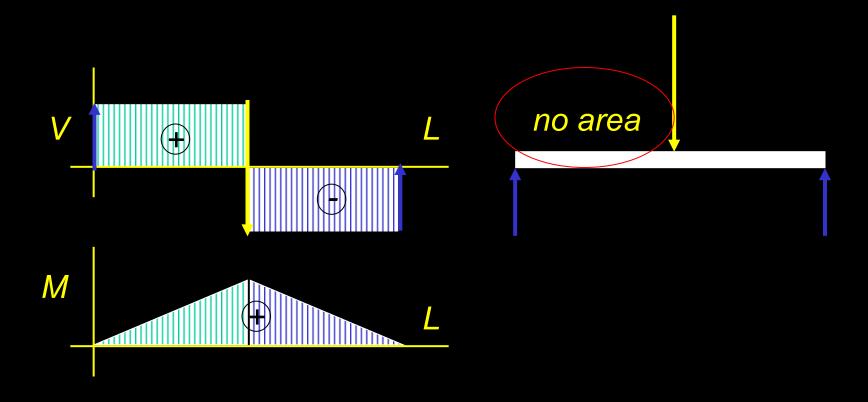


Figure 7.11 Relationship of load, shear, moment, slope, and deflection diagrams.

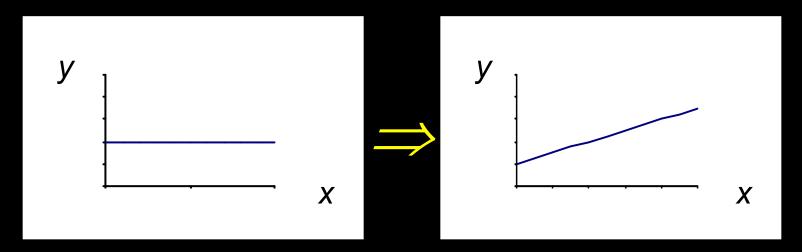
Method 2: Semigraphical

• M_{max} occurs where V = 0 (calculus)



Curve Relationships

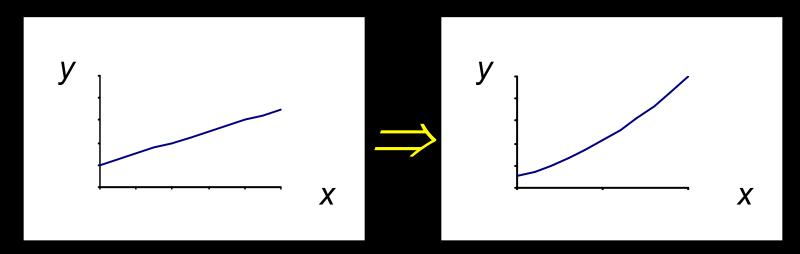
- integration of functions
- line with 0 slope, integrates to sloped



ex: load to shear, shear to moment

Curve Relationships

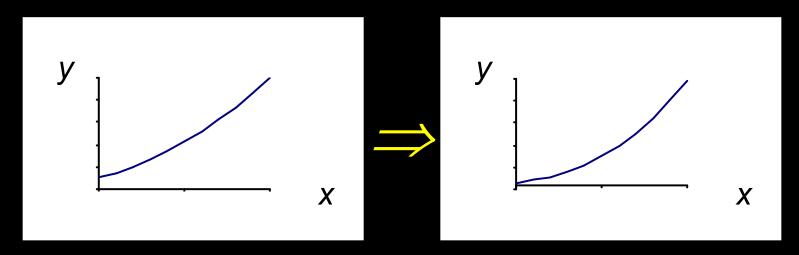
line with slope, integrates to parabola



ex: load to shear, shear to moment

Curve Relationships

parabola, integrates to 3rd order curve



ex: load to shear, shear to moment

Basic Procedure with Sections

1. Find reaction forces & moments

Plot axes, underneath beam load diagram

V:

- 2. Starting at left
- 3. Shear is 0 at free ends
- 4. Shear has 2 values at point loads
- 5. Sum vertical forces at each section

Basic Procedure with Sections

M:

- 6. Starting at left
- 7. Moment is 0 at free ends
- 8. Moment has 2 values at moments
- 9. Sum moments at each section
- 10. Maximum moment is where shear = 0! (locate where V = 0)

Basic Procedure by Curves

1. Find reaction forces & moments

Plot axes, underneath beam load diagram

V

- 2. Starting at left
- 3. Shear is 0 at free ends
- 4. Shear jumps with concentrated load
- 5. Shear changes with area under load

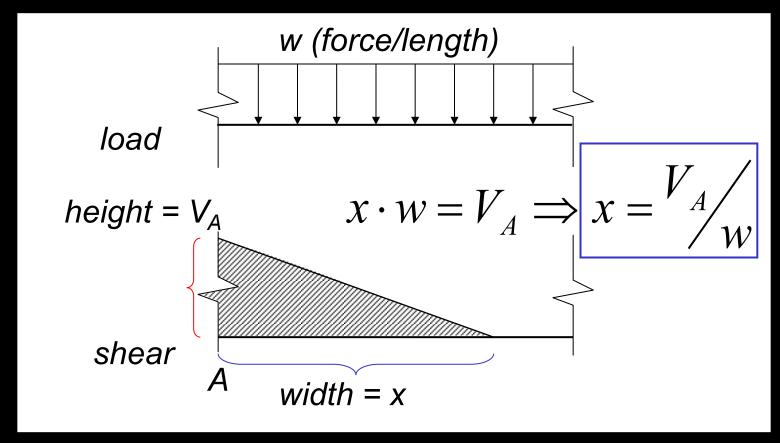
Basic Procedure by Curves

M:

- 6. Starting at left
- 7. Moment is 0 at free ends
- 8. Moment jumps with moment
- 9. Moment changes with area under V
- 10. Maximum moment is where shear = 0! (locate where V = 0)

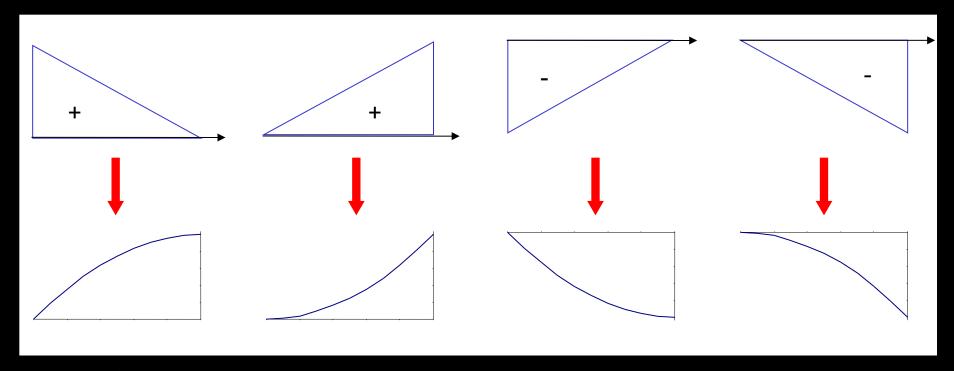
Shear Through Zero

slope of V is w (-w:1)



Parabolic Shapes

cases

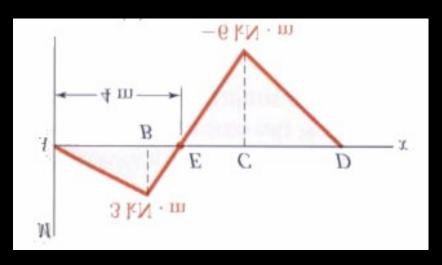


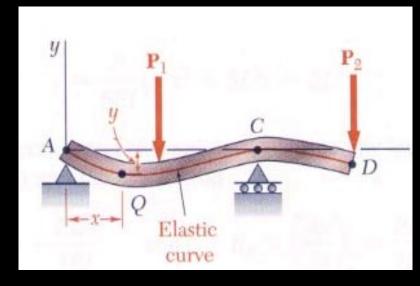
up fast, then slow

up slow, then fast down fast, then slow down slow, then fast

Deflected Shape & M(x)

- -M(x) gives shape indication
- boundary conditions must be met

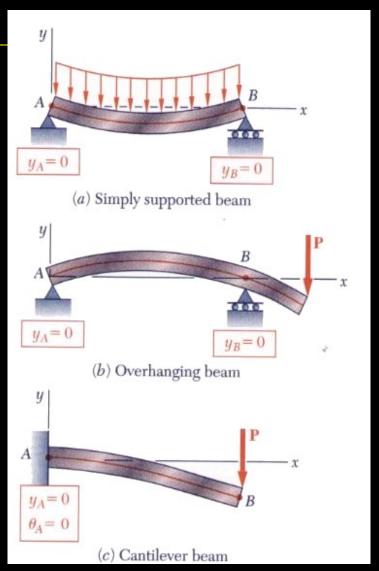




Boundary Conditions

- at pins, rollers, fixed supports: y = 0
- at fixed supports: $\theta = 0$
- at inflection points from symmetry: $\theta = 0$

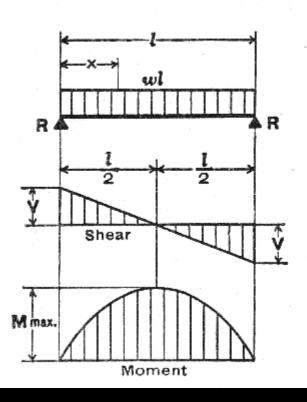
•
$$y_{max}$$
 at $\frac{dy}{dx} = 0$



Tabulated Beam Formulas

how to read charts

SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOAD



Total Equiv. Uniform Load . . . =
$$wl$$

R = V = $\frac{wl}{2}$

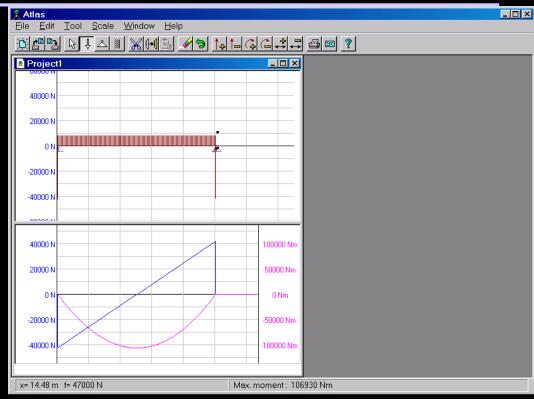
Vx = $w\left(\frac{l}{2} - x\right)$

M max. (at center) . . . = $\frac{wl^2}{8}$

Mx = $\frac{wx}{2}(l-x)$
 Δmax . (at center) . . . = $\frac{5wl^4}{384 \text{ El}}$
 Δx = $\frac{wx}{24\text{El}}(l^3-2lx^2+x^3)$

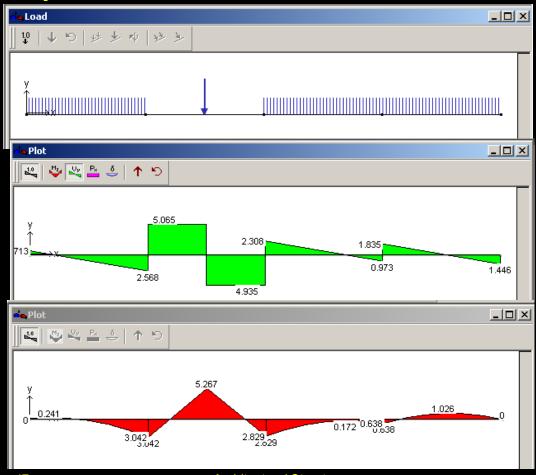
Tools

- software & spreadsheets help
- http://www.rekenwonder.com/atlas.htm



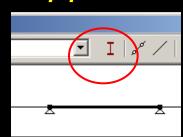
Tools – Multiframe

• in computer lab

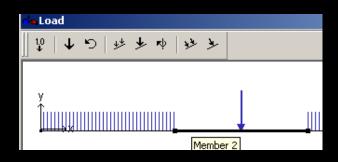


Tools – Multiframe

- frame window
 - define beam members
- select points, assign supports
- select members,assign <u>section</u>



- load window
 - select point or member, add point or distributed loads

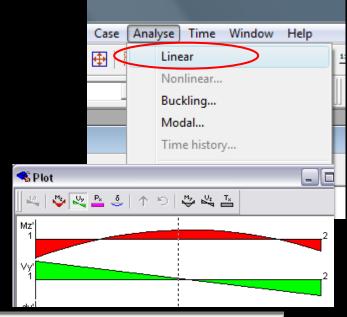


Tools – Multiframe

- to run analysis choose
 - Analyze menu
 - Linear
- plot
 - choose options
 - double click (all)

Arc

- results
 - choose options



ri≤ Result ×						
Static Case: Load Case 1						
	Joint	Label	Rx' kip	Ry' kip	Mz' kip-ft	
1	1		0.000	-0.000	0.000	
2	2		0.000	9.250	0.000	
3	3		0.000	6.102	0.000	
4	4		0.000	3.093	0.000	
5	5		0.000	1.398	-0.000	
6	Total	(Global)	Rx=0.000	Ry=19.843		
▼ Displacements Reactions ▼						