ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

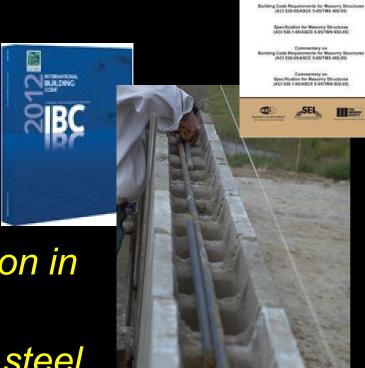
ARCH 331

DR. ANNE NICHOLS

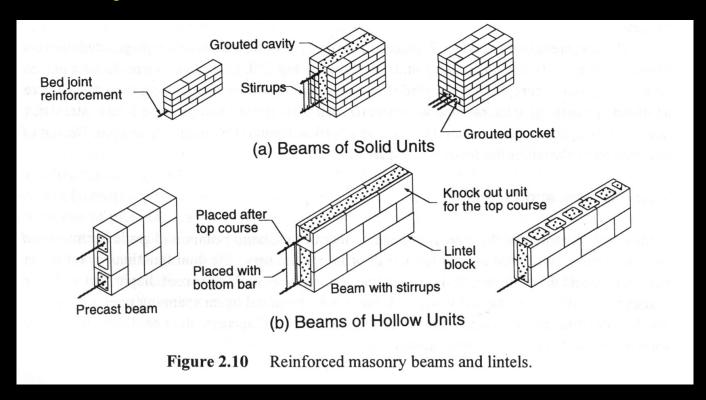
SUMMER 2014

twenty four

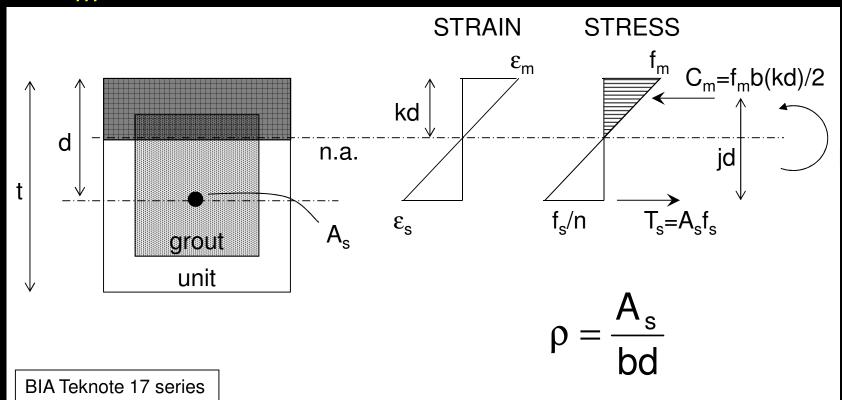
www tamu edu


Office Hours

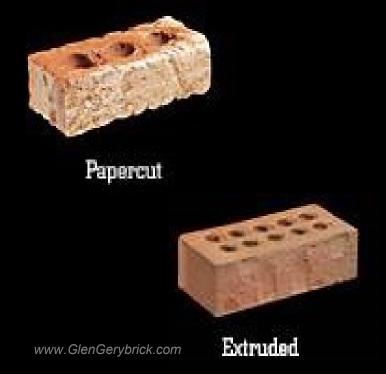
Masonry Design


Masonry Standards Joint Committee

- ACI, ASCE, TMS
- ASD (+empirical)
 - linear-elastic stresses
- LRFD added in 2002
- referenced by IBC
- unreinforced allows tension in flexure
- reinforced all tension in steel
- walls are also in compression


Masonry Beam & Wall Design

reinforcement increases capacity & ductility



Masonry Design

- f_s is not the yield stress
- f_m is the stress in the masonry

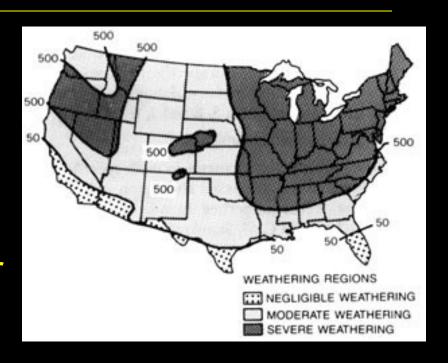
- units
 - stone, brick, concrete block, clay tile

National Concrete Masonry Association

- mortar
 - water,masonry cement,sand, lime
 - types:
 - M higher strength 2500 psi (ave.)
 - S medium high strength 1800 psi
 - N medium strength 750 psi
 - O medium low strength 350 psi
 - K low strength 75 psi

National Concrete
Masonry Association

- rebar
- grout
 - fills voids and fixes rebar
- prisms
 - used to test strength, f'_m
- fire resistant



Ryan-Briggs Associates

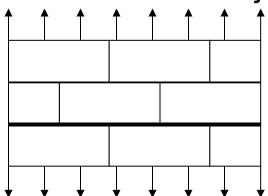
National Concrete Masonry Association

- moisture resistance
 - weathering index for brick
 - bond and detailing
 - expansion or shrinking from water
 - provide control joints
 - parapets, corners, long walls

parapet with no control joint

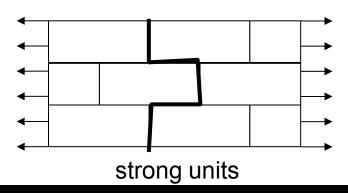
Allowable Masonry Stresses

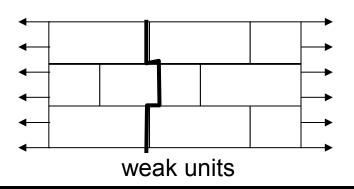
tension - <u>unreinforced</u> only


Table 2.2.3.2 — Allowable flexural tensile stresses for clay and concrete masonry, psi (kPa)

Direction of flexural tensile stress and masonry type	Mortar types			
	Portland cement/lime or mortar cement		Masonry cement or air entrained portland cement/lime	
	M or S	N	M or S	N
Normal to bed joints				
Solid units	53 (366)	40 (276)	32 (221)	20 (138)
Hollow units ¹				
Ungrouted	33 (228)	25 (172)	20 (138)	12 (83)
Fully grouted	86 (593)	84 (579)	81 (559)	77 (531)
Parallel to bed joints in running bond				
Solid units	106 (731)	80 (552)	64 (441)	40 (276)
Hollow units				
Ungrouted and partially grouted	66 (455)	50 (345)	40 (276)	25 (172)
Fully grouted	106 (731)	80 (552)	64 (441)	40 (276)
Parallel to bed joints in masonry not laid in running bond				
Continuous grout section parallel to bed joints	133 (917)	133 (917)	133 (917)	133 (917)
Other	0 (0)	0 (0)	0 (0)	0 (0)

For partially grouted masonry, allowable stresses shall be determined on the basis of linear interpolation between fully grouted hollow units and ungrouted hollow units based on amount (percentage) of grouting.


Masonry Walls


tension normal to bed joints

Not allowed in MSJC code

tension parallel to bed joints

Allowable Masonry Stresses

flexure

- $-F_b = 1/3 f'_m$ (unreinforced)
- $-F_b = 0.45 f'_m$ (reinforced)
- shear, unreinforced masonry

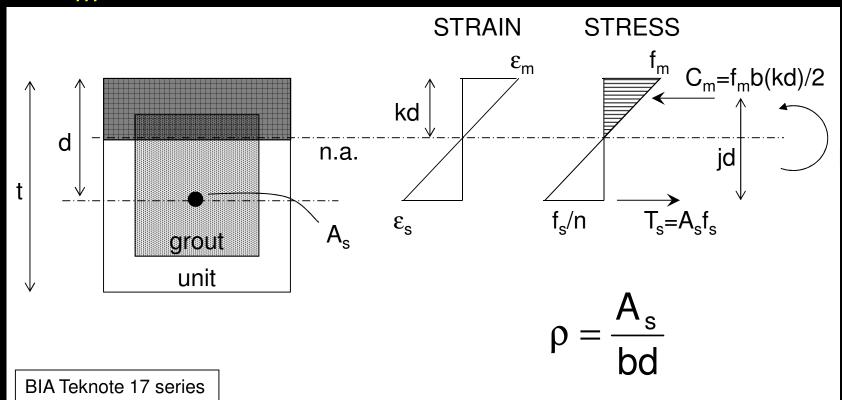
$$-F_{v} = 1.5\sqrt{f'_{m}} \le 120 \text{ psi}$$

shear, reinforced masonry

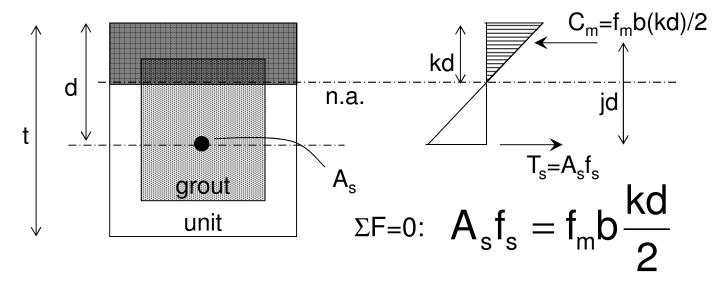
$$- M/Vd \le 0.25$$
:

$$F_{v} = 3.0 \sqrt{f'_{m}}$$

 $F_{v} = 2.0 \sqrt{f'_{m}}$


Allowable Reinforcement Stress

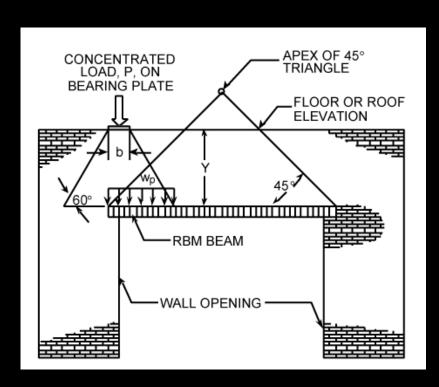
- tension
 - a) Grade 40 or 50 $F_s = 20 \text{ ksi}$
 - b) Grade 60 $F_s = 32 \text{ ksi}$
 - c) Wire joint $F_s = 30 \text{ ksi}$

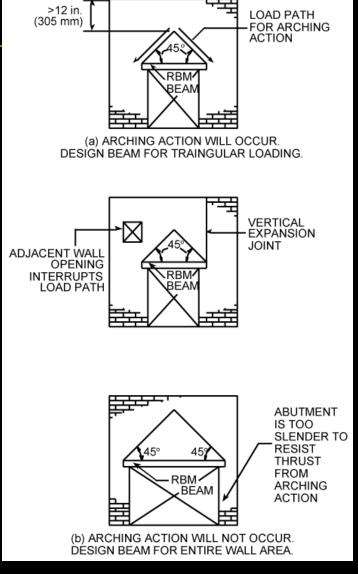

- *no allowed increase by 1/3 for combinations with wind & earthquake
 - did before 2011 MSJC code

Masonry Design

- f_s is not the yield stress
- f_m is the stress in the masonry

Reinforcement, M_s


$$\Sigma M$$
 about C_m : $M_s = A_s f_s jd = \rho bd^2 jf_s$


if f_s=F_s (allowable) the moment capacity is limited by the steel

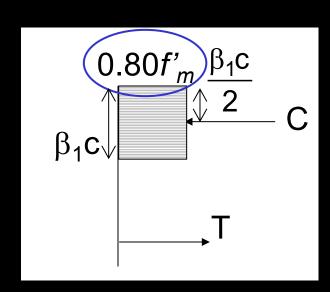
MSJC: $F_s = 20$ ksi, 32 ksi or 30 ksi by type

Masonry Lintels

- distributed load
 - triangular or trapezoidal

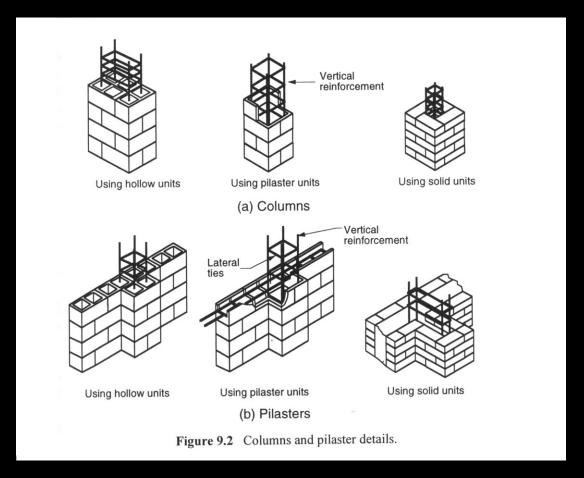
Strategy for RM Flexural Design

- to size section and find reinforcement
 - find ρ_b knowing f'_m and f_y
 - size section for some $\rho < \rho_b$
 - get k, j• $bd^2 = \frac{M}{\rho j F_s}$


needs to be sized for shear also

- get b & d in nice units
- size reinforcement (bar size & #): $A_s = \frac{M}{F_s jd}$
- check design: $M_s = A_s F_s jd > M$

$$f_b = \frac{M}{0.5bd^2jk} < F_b$$


Ultimate Strength Design

- LRFD
- like reinforced concrete
- useful when beam shear is high
- improved inelastic model
 - ex. earthquake loads

Masonry Columns and Pilasters

must be reinforced

Masonry Columns and Pilasters

- considered a column when b/t<3 and h/t>4
 - b is width of "wall"
 - t is thickness of "wall"
- slender is
 - -8" one side
 - $-h/t \leq 25$
- needs ties
- eccentricity may be required

Masonry Columns

allowable axial load

$$P_{a} = \begin{bmatrix} 0.25 f'_{m} A_{n} + 0.65 A_{st} F_{s} \end{bmatrix} 1 - \left(\frac{h}{140 r} \right)^{2}$$

$$h/r \le 99$$

$$P_a = \left[0.25 f'_m A_n + 0.65 A_{st} F_s\right] \left(\frac{70 r}{h}\right)^2$$

$$h/r > 99$$

h = effective length

r = radius of gyration

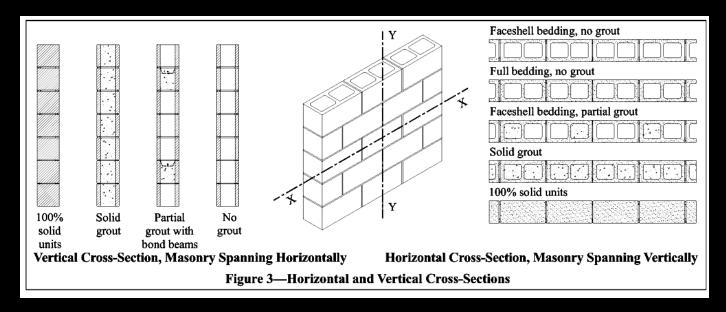
 A_n = effective area of masonry

 A_{st} = effective area of column reinforcement

 F_s = allowable compressive stress in column reinforcement

Masonry Walls (unreinforced)

- allowable axial stresses


$$F_{a} = 0.25 f'_{m} \left[1 - \left(\frac{h}{140r} \right)^{2} \right] \qquad F_{a} = 0.25 f'_{m} \left(\frac{70r}{h} \right)^{2}$$

$$h/r \le 99$$

$$h/r > 99$$

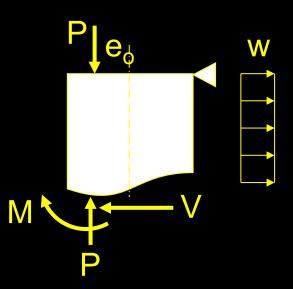
$$F_a = 0.25 f'_m \left(\frac{70r}{h}\right)^2$$

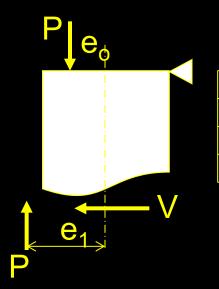
$$h/r > 99$$

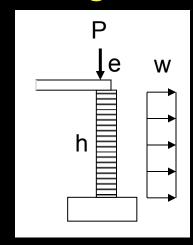
Design

masonry columns and walls (unreinforced)

$$\frac{f_a}{F_a} + \frac{f_b}{F_b} \le 1.0 \quad \text{and} \quad f_b - f_a \le F_t$$

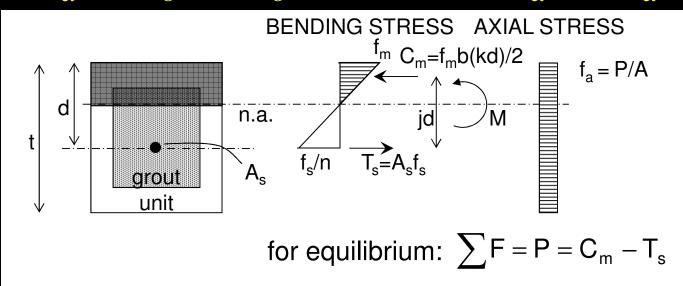

$$-h/r < 99 \qquad F_a = 0.25 f_m' \left[1 - \left(\frac{h}{140r} \right)^2 \right]$$


$$-h/r > 99 \qquad F_a = 0.25 f_m' \left(\frac{70r}{h} \right)^2$$


$$F_b = 0.33 f_m'$$

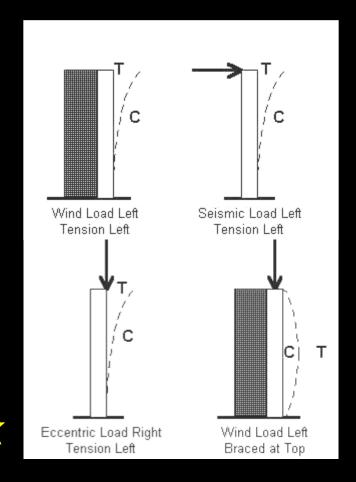
Design

- masonry columns and walls loading
 - wind loading
 - eccentric axial load
 - "virtual" eccentricity, e₁


$$e_1 = \frac{M}{P}$$

virtual eccentricity

Design


- masonry columns and walls with rebar
 - wall reinforcement usually at center and ineffective in compression

$$f_a + f_b \le F_b$$
 provided $f_a \le F_a$

Design Steps Knowing Loads

- 1. assume limiting stress
 - buckling, axial stress, combined stress
- 2. solve for r, A or S
- 3. pick trial section
- 4. analyze stresses
- 5. section ok?
- 6. stop when section is ok

Final Exam Material

- my list:
 - systems
 - components & levels
 - design considerations
 - equilibrium ΣF & ΣM
 - supports, trusses, cables, beams, pinned frames, rigid frames
 - materials
 - strain & stress (E), temperature, constraints

Final Exam Material

my list (continue):

- beams
 - distributed loads, tributary width, V&M, stresses, design, section properties (I & S), pitch, deflection
- columns
 - stresses, design, section properties (I & r)
- frames
 - P, V & M, P-∆, effective length with joint stiffness, connection design, tension member design

Final Exam Material

- my list (continued):
 - foundations
 - types
 - sizing & structural design
 - overturning and sliding
 - design specifics
 - steel (ASD & LRFD)
 - concrete
 - wood
 - masonry