ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 331

DR. ANNE NICHOLS

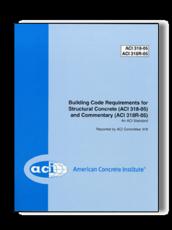
SUMMER 2014

lecture NINETEEN

concrete construction. http://nisee.berkeley.edu/godden materials & beams

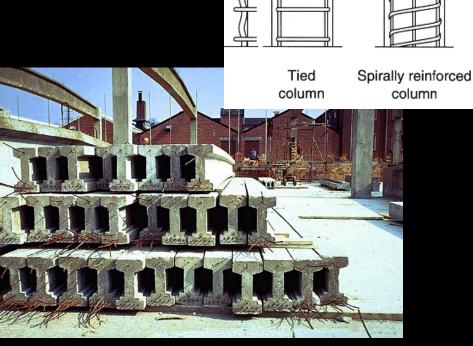
Concrete Beam Design

- composite of concrete and steel
- American Concrete Institute (ACI)
 - design for maximum stresses
 - limit state design
 - service loads x load factors
 - concrete holds no tension
 - failure criteria is yield of reinforcement
 - failure capacity x reduction factor
 - factored loads < reduced capacity
 - concrete strength = f'_c



Concrete Construction

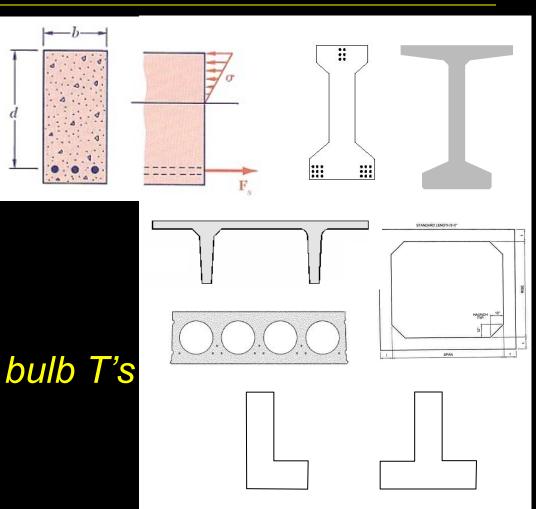
- cast-in-place
- tilt-up
- prestressing
- post-tensioning



arch.mcgill.ca

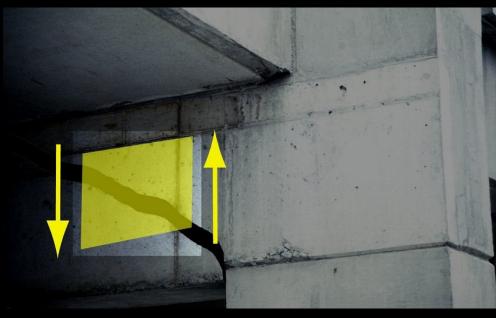
Concrete Beams

- types
 - reinforced
 - precast
 - prestressed
- shapes
 - rectangular, I
 - T, double T's, bulb T's
 - -box
 - spandrel

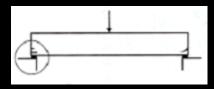


Concrete Beams

- shear
 - vertical
 - horizontal
 - combination:
 - tensile stresses at 45°
- bearing
 - crushing

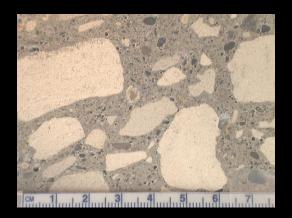


http://urban.arch.virginia.edu



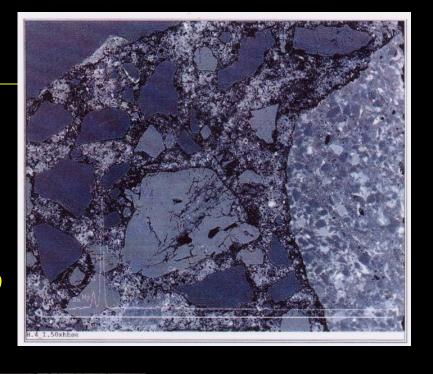
Concrete

- low strength to weight ratio
- relatively inexpensive
 - Portland cement
 - types I V
 - aggregate
 - · course & fine
 - water
 - admixtures
 - air entraining
 - superplasticizers



Concrete

- hydration
 - chemical reaction
 - workability
 - water to cement ratio
 - mix design
- fire resistant
- cover for steel
- creep & shrinkage



Concrete

placement (not pouring!)

vibrating

screeding

floating

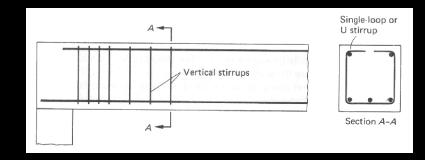
troweling

- curing
- finishing

Reinforcement

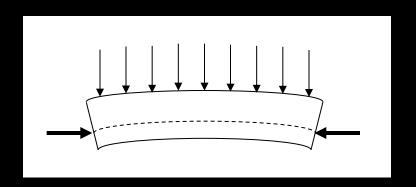
- deformed steel bars (rebar)
 - Grade 40, $F_{v} = 40 \text{ ksi}$
 - Grade 60, F_v = 60 ksi most common
 - *Grade 75,* $F_y = 75 \text{ ksi}$
 - US customary in # of 1/8" φ

- longitudinally placed
 - bottom
 - top for compression reinforcement



Reinforcement

- prestressing strand
- post-tensioning
- stirrups
- detailing
 - development length
 - anchorage
 - splices

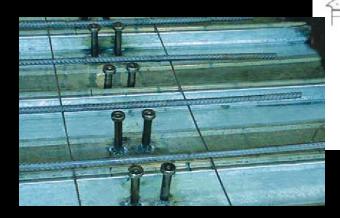


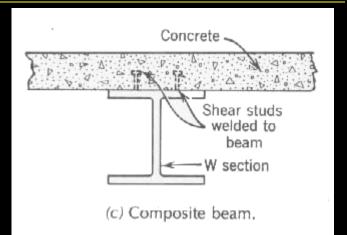
http://nisee.berkeley.edu/godden Su2014ab

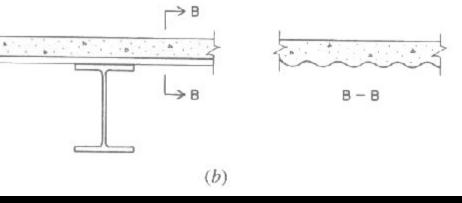
Composite Beams

- concrete
 - in compression
- steel
 - in tension

shear studs

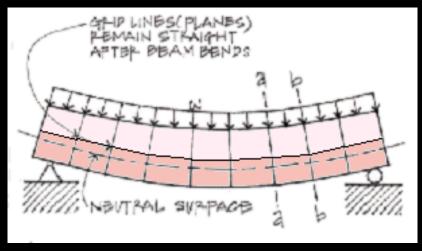


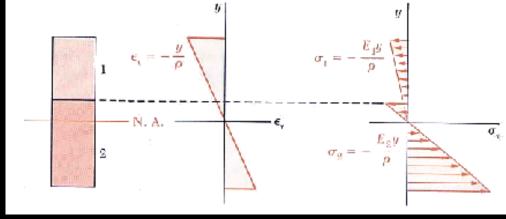




Behavior of Composite Members

- plane sections remain plane
- stress distribution changes





$$f_1 = E_1 \varepsilon = -\frac{E_1 y}{\rho}$$

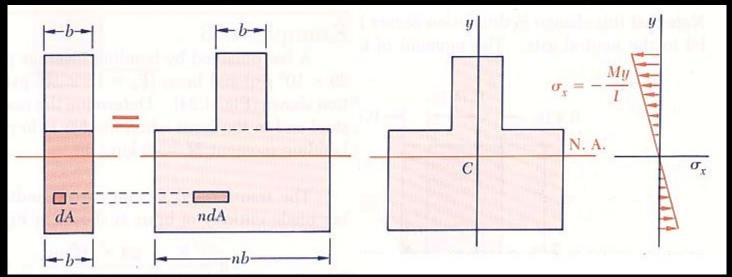
$$f_2 = E_2 \varepsilon = -\frac{E_2 y}{\rho}$$

Transformation of Material

n is the ratio of E's

$$n=rac{E_2}{E_1}$$

 effectively widens a material to get same stress distribution



Stresses in Composite Section

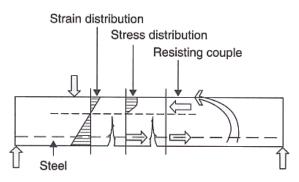
- with a section transformed to one material, new I
 - stresses in that material are determined as usual
 - stresses in the other material need to be adjusted by n

$$n = rac{E_2}{E_1} = rac{E_{steel}}{E_{concrete}}$$

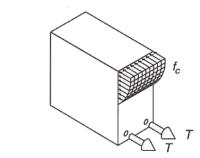
$$f_c = -rac{My}{I_{transformel}}$$

$$f_{s} = -\frac{Myn}{I_{transformel}}$$

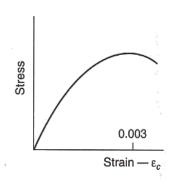
Reinforced Concrete - stress/strain



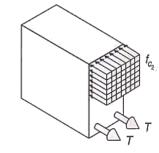
Stresses in the concrete above the neutral axis are compressive and nonlinearly distributed. In the tension zone below the neutral axis, the concrete is assumed to be cracked and the tensile force present to be taken up by reinforcing steel.



Actual stress distribution near ultimate strength (nonlinear).



Typical stress-strain curve for concrete.



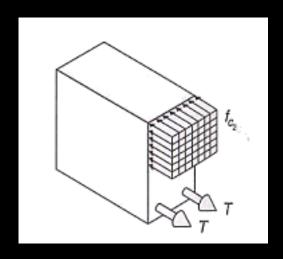
Ultimate strength analysis. (A rectangular stress block is used to idealize the actual stress distribution. Calculations are based on ultimate loads and failure stresses.)

Working stress analysis. (Concrete stress distribution is assumed to be linear. Service loads are used in calculations.)

FIGURE 6-37 Reinforced concrete beams.

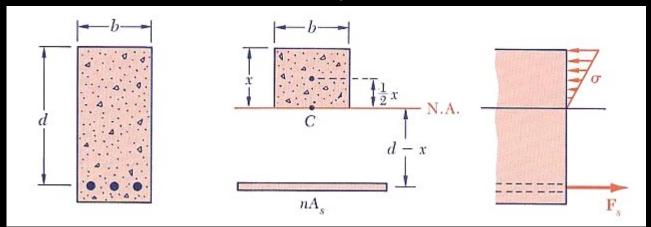
Reinforced Concrete Analysis

- for stress calculations
 - steel is transformed to concrete
 - concrete is in compression above n.a. and represented by an equivalent <u>stress block</u>
 - concrete takes <u>no tension</u>
 - steel takes tension
 - force <u>ductile</u> failure



Location of n.a.

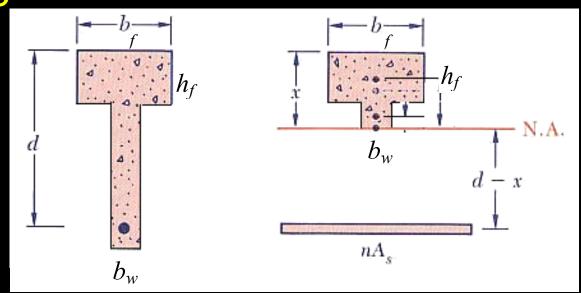
- ignore concrete below n.a.
- transform steel
- same area moments, solve for x



$$bx \cdot \frac{x}{2} - nA_s(d - x) = 0$$

T sections

 n.a. equation is different if n.a. below flange



$$b_f h_f \left(x - \frac{h_f}{2} \right) + \left(x - h_f \right) b_w \frac{\left(x - h_f \right)}{2} - n A_s (d - x) = 0$$

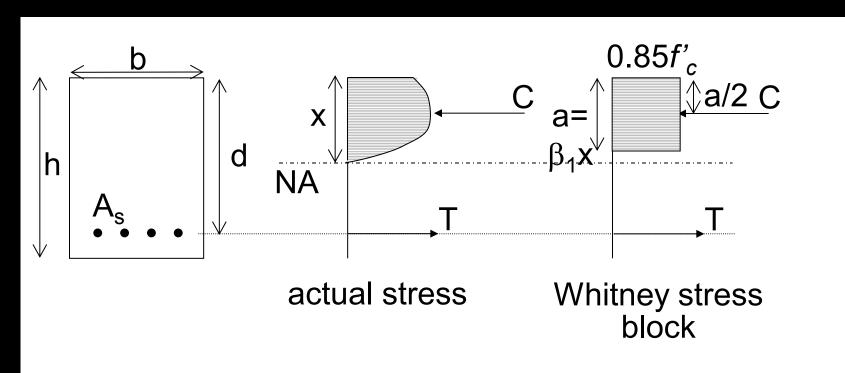
ACI Load Combinations*

- 1.4D
- $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
- $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (1.0L \text{ or } 0.5W)$
- $1.2D + 1.0W + 1.0L + 0.5(L_r \text{ or } S \text{ or } R)$
- 1.2D + 1.0E + 1.0L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E

*can also use old ACI factors

Reinforced Concrete Design

stress distribution in bending



Wang & Salmon, Chapter 3

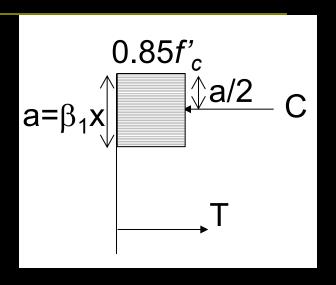
Force Equations

- $C = 0.85 \, f'_c ba$
- $T = A_s f_v$
- where
 - $-f'_c$ = concrete compressive strength
 - a = height of stress block

$$-\beta_1$$
 = factor based on f_c

$$- y = location to the n a$$

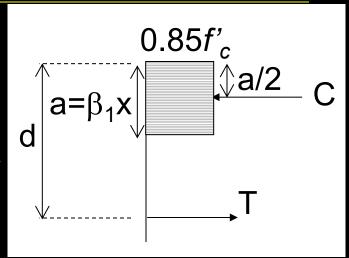
- -x = location to the n.a.
- -b = width of stress block
- $f_v = steel yield strength$
- $-A_s$ = area of steel reinforcement



 $\beta_1 = 0.85 - \left(\frac{f_c' - 4000}{1000}\right)(0.05) \ge 0.65$

Equilibrium

- T = C
- $M_n = T(d-a/2)$
 - -d = depth to the steel n.a.
- with A_s $-a = \frac{A_s f_y}{0.85 f' b}$



*
$$\phi = 0.65 + (\varepsilon_t - \varepsilon_y) \frac{0.25}{(0.005 - \varepsilon_y)} \ge 0.65$$

- $-M_u \le \phi M_n$ $\phi = 0.9$ for flexure*
- $-\phi M_n = \phi T(d-a/2) = \phi A_s f_y (d-a/2)$

Over and Under-reinforcement

- over-reinforced
 - steel won't yield
- under-reinforced
 - steel will yield
- reinforcement ratio

http://people.bath.ac.uk/abstji/concrete_video/virtual_lab.htm

$$- \rho = \frac{A_s}{hd}$$

- use as a design estimate to find A, b, d
- max ρ is found with $\varepsilon_{\text{steel}} \ge 0.004$ (not ρ_{bal})

— *with
$$arepsilon_{ ext{steel}} \geq 0.005$$
, $\phi = 0.9$

A_s for a Given Section

- several methods
 - guess a and iterate
 - 1. guess a (less than n.a.)

2.
$$A_s = \frac{0.85 f_c' ba}{f_v}$$

3. solve for a from $M_u = \phi A_s f_v (d-a/2)$

$$a = 2 \left(d - \frac{M_u}{\phi A_s f_y} \right)$$

4. repeat from 2. until a from 3. matches a in 2.

A_s for a Given Section (cont)

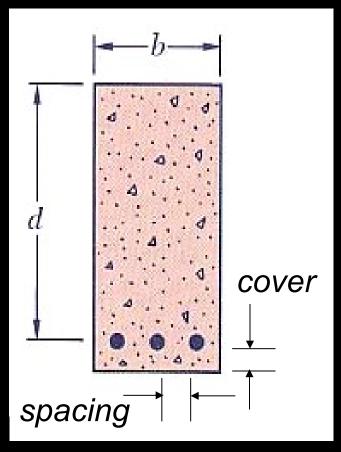
- chart method
 - Wang & Salmon Fig. 3.8.1 R_n vs. ρ

1. calculate
$$R_n = \frac{M_n}{bd^2}$$

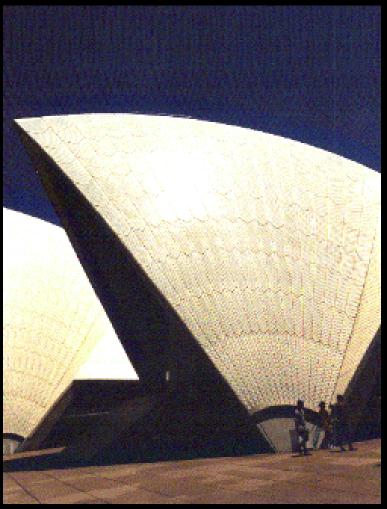
- 2. find curve for f'_c and f_v to get ρ
- 3. calculate A_s and a
- simplify by setting h = 1.1d

Reinforcement

- min for crack control
- required $A_s = \frac{3\sqrt{f_c'}}{f_v}(bd)$
- not less than $A_s = \frac{200}{f_v} (bd)$
- A_{s-max} : $a = \beta_1(0.375d)$
- typical cover
 - 1.5 in, 3 in with soil
- bar spacing



Shells



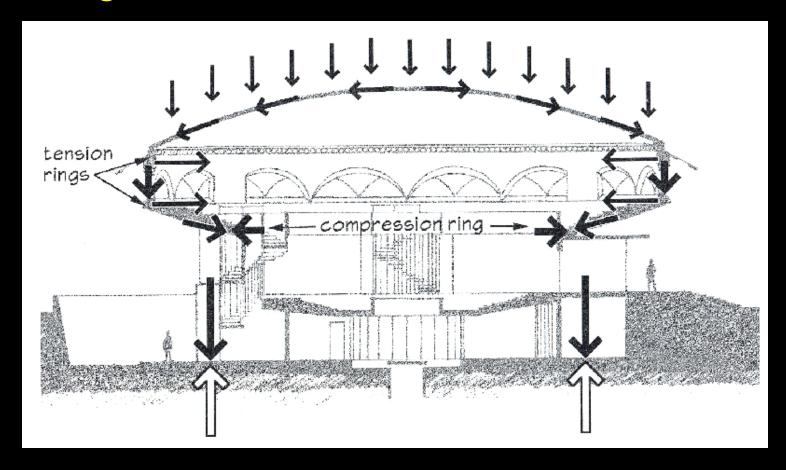
http:// nisee.berkeley.edu/godden Architectural Structures
Concrete Beams 27 ARCH 331

Annunciation Greek Orthodox Church

• Wright, 1956

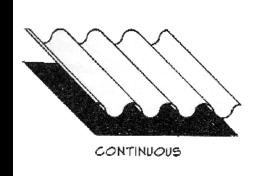
Annunciation Greek Orthodox Church

• Wright, 1956

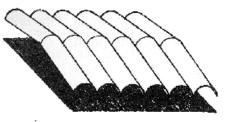


Cylindrical Shells

- can resist tension
- shape adds "depth"

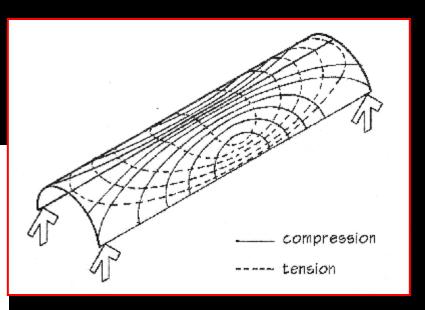


DISCONTINUOUS (to admit daylight)



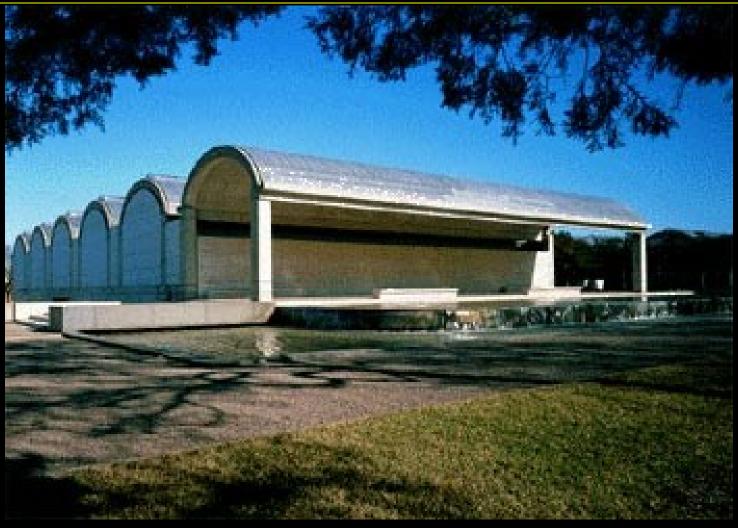


FREE FORM



- not vaults
- barrel shells

Kimball Museum, Kahn 1972

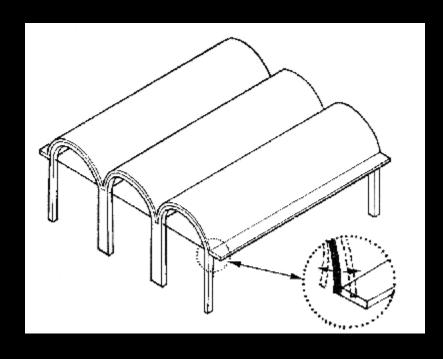


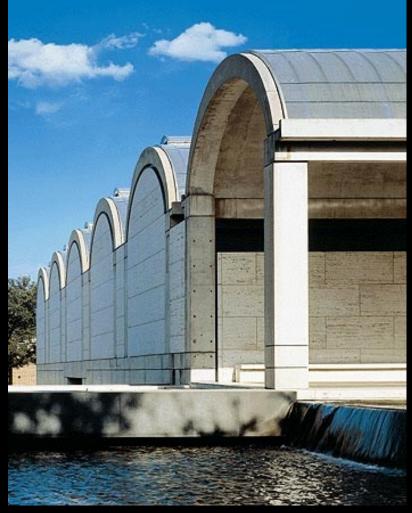
Concrete Beams 31 Lecture 19

Architectural Structures
ARCH 331

Kimball Museum, Kahn 1972

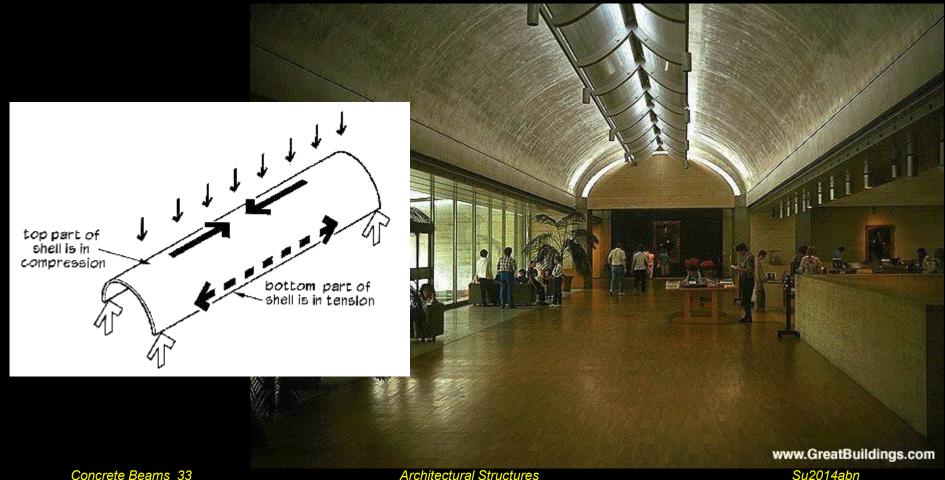
outer shell edges





Kimball Museum, Kahn 1972

skylights at peak



Approximate Depths

Concret Lecture

