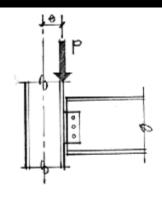
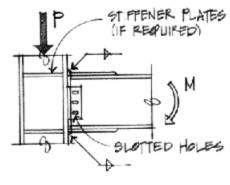
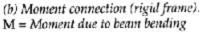
Architectural Structures: Form, Behavior, and Design

Arch 331 Dr. Anne Nichols


SUMMER 2014

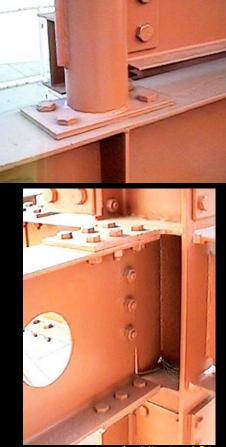
eighteen

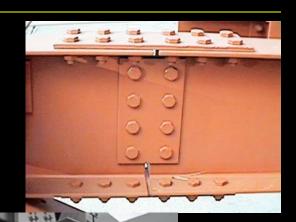

steel construction


Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

(a) Framed beam (shear) connection. $e = Eccentricity; M = P \times e$





• bolted steel connections

http://courses.civil.ualberta.ca

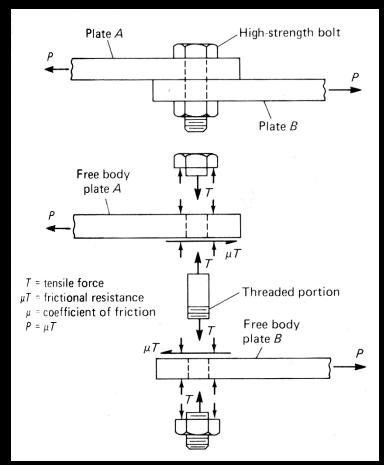
Steel Bolts & Welding 3 Lecture 18

Architectural Structures ARCH 331

(AISC - Steel Structures of the Everyday)

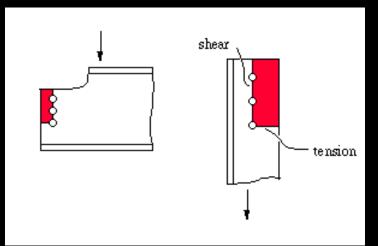
Welds

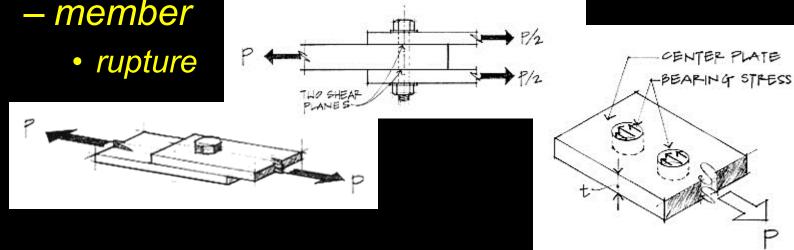
welded steel connections


http://courses.civil.ualberta.ca

Steel Bolts & Welding 4 Lecture 18 Architectural Structures ARCH 331

- types
 - materials




- high strength
 A207 A225 A
- A307, A325, A490
- location of threads
 - included N
 - excluded X
- friction or bearing (SC)
 always tightened

Bolted Connection Design

 considerations bearing stress yielding - shear stress • single & double *– member* • rupture THO SHEAP ANES

Steel Bolts & Welding 6 Lecture 18 Architectural Structures ARCH 331

- rarely fail in bearing
- holes considered 1/8" larger
- shear & tension

- single shear or tension

- double shear

 $R_n = F_n A_b$ $R_n = F_n 2 A_b$

R

 $R_{\mu} \leq \phi_{\nu} R_{\mu}$

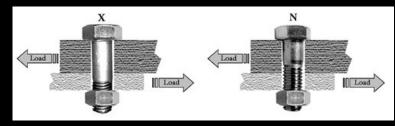

 $\phi_{v} = 0.75$

Table 7-1 Available Shear Strength of Bolts, kips

N	ominal Bolt	Diamete	er, d, in.		5	/8	S 3	4	7	/8	icotion	1.00
	Nominal B	lolt Area	in.2	oZ _e xsj	0.3	07	0.4	42	0.0	601	0.	.785
ASTM	Thread	F _{nv} /Ω (ksi)	¢ <i>F_{nv}</i> (ksi)	Load-	r _n /Ω	φ r n	r _n /Ω	φ r n	r _n /Ω	φ r _n	r _n /Ω	¢ľn
Desig.	Cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group	oga <mark>N</mark> iCO	27.0	40.5	S D	8.29 16.6	12.4 24.9	11.9 23.9	17.9 35.8	16.2 32.5	24.3 48.7	21.2 42.4	31.6
A	0- X qq	34.0	51.0	S D	10.4 20.9	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0
Group	N N	34.0	51.0	S D	10.4 20.9	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0
В	ers, Des X	42.0	63.0	S D	12.9 25.8	19.3 38.7	18.6 37.1	27.8 55.7	25.2 50.5	37.9 75.7	33.0 65.9	49.9 98.9
A307	eV. T <u>e</u> gnik	13.5	20.3	S D	4.14 8.29	6.23 12.5	5.97 11.9	8.97 17.9	8.11 16.2	12.2 24.4	10.6 21.2	15.9 31.9
No	ominal Bolt	Diamete	r, <i>d</i> , in.	ot suo	200 Al	/8	ពតាមិ៍¶1	/4	1	3/8	ю. D.	1/2
	Nominal B	olt Area,	in. ²		0.9	94	1.	23	1.	48	C 1084	.77
ASTM	Thread	<i>F_{nv}/</i> Ω (ksi)	¢ <i>F_{nv}</i> (ksi)	Load-	r _n /Ω	φ r n	r _n /Ω	φ r n	r _n /Ω	φ r n	r _n /Ω	¢r _n
Desig.	Cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFC
Group	N	27.0	40.5	S D	26.8 53.7	40.3 80.5	33.2 66.4	49.8 99.6	40.0 79.9	59.9 120	47.8 95.6	71.7 143
A	х	34.0	51.0	S D	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181
Group	N	34.0	51.0	S D	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181
В	x	42.0	63.0	S D		62.6 125	51.7 103	77.5 155	62.2 124	93.2 186	74.3 149	112 223
A307	-	13.5	20.3	S D	13.4 26.8	20.2 40.4	16.6 33.2	25.0 49.9	20.0 40.0	30.0 60.1	23.9 47.8	35.9 71.9
ASD	LRFD	For end I	oaded co	nnections	greater th	an 38 in.	, see AISC	Specifica	ation Table	J3.2 foo	tnote b.	

Table 7-2 Available Tensile Strength of Bolts, kips

Nominal B	olt Diameter,	<i>d</i> , in.	5	/8	ផ្សេរចាស	3/4	:	/8		1	
Nomina	l Bolt Area, ir	1. ²	0.:	307	0.	442	0.	601	0.	785	
ASTM Desig	<i>F_{nt}/Ω</i> (ksi)	¢ <i>F_{nt}</i> (ksi)	r _/Ω	ф г п	r _n /Ω	ф г п	r _n /Ω	ф г п	r n/Ω	ф г п	
and the second	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD LRF		ASD	LRFD	
Group A	45.0	67.5	13.8	20.7	19.9	29.8	27.1	40.6	35.3	53.0	
Group B	56.5	84.8	17.3	26.0	25.0	37.4	34.0	51.0	44.4	66.6	
A307	22.5	33.8	6.90	10.4	9.94	14.9	13.5	20.3	17.7	26.5	
Nominal Bolt Diameter, d, in.		1	1/8	1	1/4	1	³ /8	1	1/2		
Nomina	l Bolt Area, in	1.2	0.9	0.994 1.23			1	48	1.77		
ASTM Desig	F _{nt} /Ω (ksi)	<i></i> ¢ <i>F_{nt}</i> (ksi)	r _n /Ω	φ r _n	r _n /Ω	φ r n	r _n /Ω	ф г п	r _n /Ω	ф г п	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
Group A	45.0	67.5	44.7	67.1	55.2	82.8	66.8	100	79.5	119	
Group B	56.5	84.8	56.2	84.2	69.3	104	83.9	126	99.8	150	
A307	22.5	33.8	22.4	33.5	27.6	41.4	33.4	50.1	39.8	59.6	
ASD	LRFD		neo se ilo					o rebacut	1.00	vî stak	
$\Omega = 2.00$	$\phi = 0.75$										

Steel Bolts & Welding 8 Lecture 18 Architectural Structures ARCH 331 http://www.fastenal.com

•

- bearing $R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi R_n$ $\phi = 0.75$
 - deformation is concern
 - $R_{n} = 1.2L_{c}tF_{u} \leq 2.4dtF_{u}$ deformation isn't concern $R_{n} = 1.5L_{c}tF_{u} \leq 3.0dtF_{u}$ long slotted holes $R_{n} = 1.0L_{c}tF_{u} \leq 2.0dtF_{u}$

 L_c – clear length to edge or next hole (ex. 1¹/₄", 3")

Table 7-5 **Available Bearing Strength at Bolt Holes Based on Edge Distance**

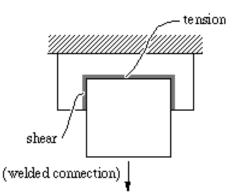
kips/in. thickness

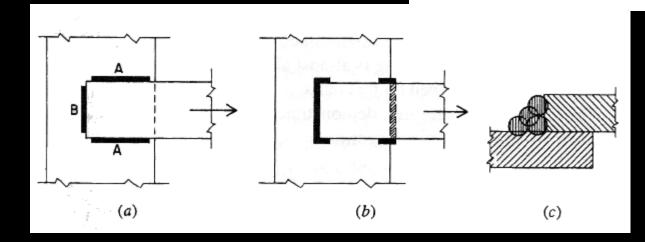
	Edge Distance	neter, d, h	a naid No8 Ianimold Nominal Bolt Diameter, d, in.											
Hole Type		F _u , ksi		5/8		3/4		7/8	B	1				
noie type	L_{θ} , in.	/ J, KSI	r_n/Ω	φ r n	r _n /Ω	ф г п	r_n/Ω	φ r _n	r_n/Ω	¢r _n				
	AS 038	1 08	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRF				
STD	11/4	58 65	31.5 35.3	47.3 53.0	29.4 32.9	44.0 49.4	27.2 30.5	40.8 45.7	25.0 28.0	37.5				
SSLT	2	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	53.3 59.7	79.9 89.6	51.1 57.3	76.1				
SSLP	1 ¹ /4	58 65	28.3 31.7	42.4 47.5	26.1 29.3	39.2 43.9	23.9 26.8	35.9 40.2	20.7 23.2	31.(34.7				
551	2	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	50.0 56.1	75.0 84.1	46.8 52.4	70.1 78.6				
ovs	1 ¹ /4	58 65	29.4 32.9	44.0 49.4	27.2 30.5	40.8 45.7	25.0 28.0	37.5 42.0	21.8 24.4	32.6 36.6				
	2	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	51.1 57.3	76.7 85.9	47.9 53.6	71.8				
LSLP	1 ¹ /4	58 65	16.3 18.3	24.5 27.4	10.9 12.2	16.3 18.3	5.44 6.09	8.16 9.14	(³ -	1				
LOLF	2	58 65	42.4 47.5	63.6 71.3	37.0 41.4	55.5 62.2	31.5 35.3	47.3 53.0	26.1 29.3	39.2 43.9				
LSLT	1 ¹ /4	58 65	26.3 29.5	39.4 44.2	24.5 27.4	36.7 41.1	22.7 25.4	34.0 38.1	20.8 23.4	31.3 35.0				
LOLI	2	58 65	36.3 40.6	54.4 60.9	43.5 48.8	65.3 73.1	44.4 49.8	66.6 74.6	42.6 47.7	63.9 71.6				
STD, SSLT, SSLP, OVS, LSLP	$L_e \ge L_e full$	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	60.9 68.3	91.4 102	69.6 78.0	104 117				
LSLT	$L_{\theta} \ge L_{\theta}$ full	58 65	36.3 40.6	54.4 60.9	43.5 48.8	65.3 73.1	50.8 56.9	76.1 85.3	58.0 65.0	87.0 97.5				
Edge di for full t		STD, SSLT, LSLT	15,	/8	1	¹⁵ /16	21/	4	29/16					
stren		OVS	11	1/16	2	12	25	/16	25					
$L_e \ge L_e$	_{full} a, in.	SSLP		1/16	2		25			1/16				
hannon Spi	accent 2	LSLP	21/	16	2	7/16	27/	8	31	/4				

SSLT = short-slotted	hole	oriented	transverse to the line of force
SSLP = short-slotted	hole	oriented	parallel to the line of force

OVS = oversized hole

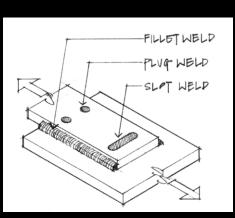
LSLP = long-slotted hole oriented parallel to the line of force

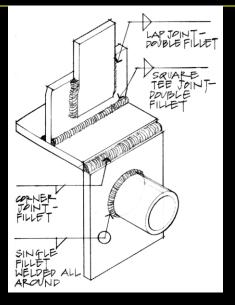

I CIT - long eletted hele eviented transverse to the line of fer

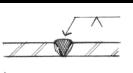

		ip-C	ritica		onne	ctio		Grou Bo	-			
		Availab ass A			•	•	. 30) F	A490, A4 ⁼2280 A354 Gra				
1	801 ₈ *		Gr	oup B Bo	lts		12.1	Bolt	1/2			
No Abba UK	100	$\Omega(n^{1}\alpha)$	10 06	Non	ninal Bolt I	Diameter,	<i>d</i> , in.	ni s://	(ing Caracterio			
9.81 9.02	C OFFL	024 6 5	/8	OdA 10 3	/4	al 95 7	/8	SSQ 1 LEFT				
8.1		Minimum Group B Bolt Pretension, kips										
Hole Type	Loading	24		3	35 49				64			
5.		r _n /Ω	φ r n	r_n/Ω	¢ r n	r_n/Ω	φ r _n	r_n/Ω	¢ r n			
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFI			
STD/SSLT	S D	5.42 10.8	8.14 16.3	7.91 15.8	11.9 23.7	11.1 22.1	16.6 33.2	14.5 28.9	21.7 43.4			
OVS/SSLP	S D	4.62 9.25	6.92 13.8	6.74 13.5	10.1 20.2	9.44 18.9	14.1 28.2	12.3 24.7	18.4 36.9			
LSL	S D	3.80 7.60	5.70 11.4	5.54 11.1	8.31 16.6	7.76 15.5	11.6 23.3	10.1 20.3	15.2 30.4			
.60.1	54 963 S (1) (1) (1) (1) (1)	Nominal Bolt Diameter, d, in.										
		11	/8	1	1 ¹ /4 1 ³ /8				1 ¹ /2			
		Minimum Group B Bolt Pretension, kips										
Hole Type	Loading	8	0	1	02	1	21	148				
0.1		r_n/Ω	φ r n	r_n/Ω	¢r _n	r_n/Ω	¢r _n	r_n/Ω	φ r _n			
1.6.81		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRF			
STD/SSLT	S D	18.1 36.2	27.1 54.2	23.1 46.1	34.6 69.2	27.3 54.7	41.0 82.0	33.4 66.9	50.2 100			
OVS/SSLP	S D	15.4 30.8	23.1 46.1	19.6 39.3	29.4 58.8	23.3 46.6	34.9 69.7	28.5 57.0	42.6 85.3			
LSL	S D	12.7 25.3	19.0 38.0	16.2 32.3	24.2 48.4	19.2 38.3	28.7 57.4	23.4 46.9	35.1 70.2			
STD = standard $DVS = oversizeSSLT = short-slSSLP = short-slSL = long-slo$	ed hole otted hole tran otted hole para	allel to the li	ne of forc	е	rce	S = single D = doubl		[™] , in. 5 Spacing [≇] indard hole	numin 10 = ste			
Hole Type	ASD	LRFD	Note: Slip	o-critical bol	t values assu				n provide			
STD and SSLT	$\Omega = 1.50$	φ = 1.00		nave been a	dded to distr In Sections J				VC = - 2 m 1 0			

STD and SSLI $\Omega = 1.50$ See AISC Specification Sections J3.8 and J5 for provisions when filler 1.00 are present

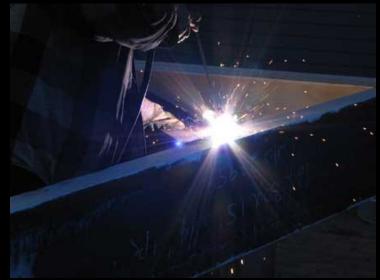
ra

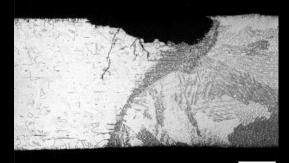

considerations
 shear stress
 yielding
 rupture


Steel Bolts & Welding 11 Lecture 18


- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat
- field welding
- shop welding

(AISC - Steel Structures of the Everyday)

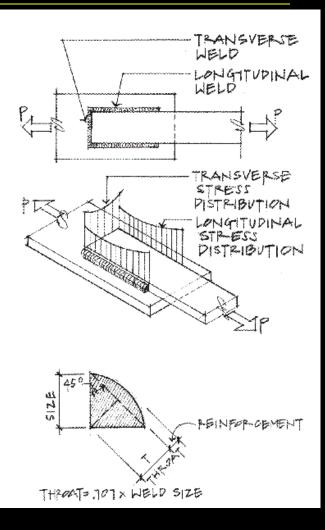




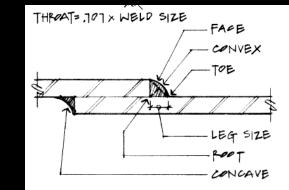
D.) SINGLE VEE GROOVE JOINT

- weld process

 melting of material
 melted filler electrode
 shielding gas / flux
 potential defects
- weld materials
 - *E60XX*
 - E70XX F_{EXX} = 70 ksi



- shear failure assumed
- throat


- *T* = 0.707 x weld size

- area
 A = T x length of weld
- weld metal generally stronger than base metal (ex. F_v = 50 ksi)

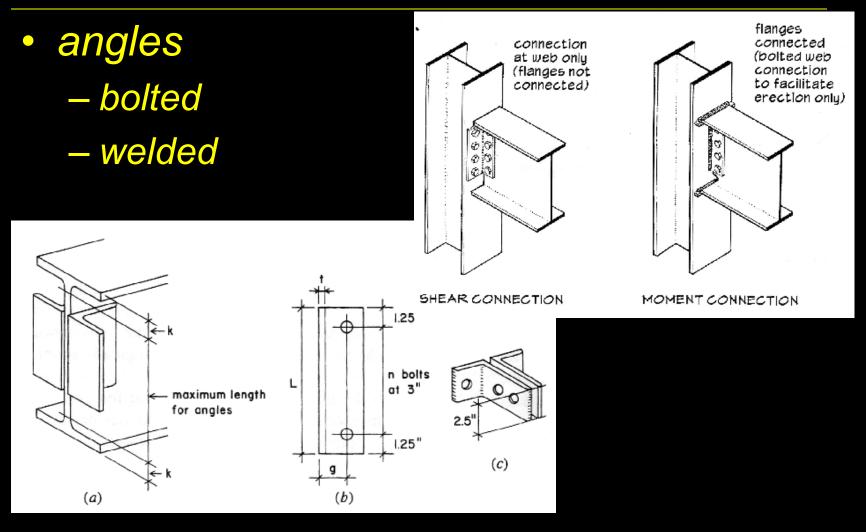
- minimum
 - table
- maximum
 - material thickness (to 1/4")
 - 1/16" less
- min. length
 - 4 x size min.
 - −≥ 1 ½"

TABLE Minimum Size o	-				
Material Thickness of	Minimum Size of				
Thicker Part Joined, in. (mm)	Fillet Weld[a] in. (mm)				
To $\frac{1}{4}$ (6) inclusive	$\frac{1}{8}$ (3)				
Over $\frac{1}{4}$ (6) to $\frac{1}{2}$ (13)	$\frac{3}{16}$ (5)				
Over $\frac{1}{2}$ (13) to $\frac{3}{4}$ (19)	$\frac{1}{4}$ (6)				
Over $\frac{3}{4}$ (19)	$\frac{5}{16}$ (8)				
a] Leg dimension of fil et welds. Single pass welds mus] See Section J2.25 for maximum size of fillet welds.	be used.				

R

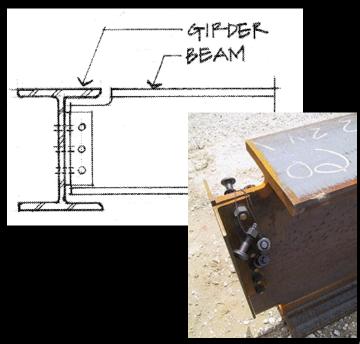
shear

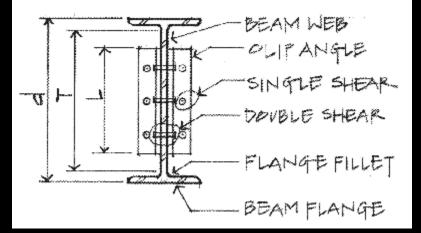
	Strength of Fil	
• ·	inch of weld (/ ·
Weld Size	E60XX	E70XX
(in.)	(k/in.)	(k/in.)
3/16	3.58	4.18
1⁄4	4.77	5.57
3/16	5.97	6.96
3/8	7.16	8.35
76	8.35	9.74
1/2	9.55	11.14
3/8	11.93	13.92
3⁄4	14.32	16.70
(• • •	


 $R_{u} \leq \phi R_{n}$ $\phi = 0.75$

(not considering increase in throat with submerged arc weld process)

$$R_n = 0.6F_{EXX} Tl = Sl$$
 area


- table for ϕS


R

Steel Bolts & Welding 17 Lecture 18

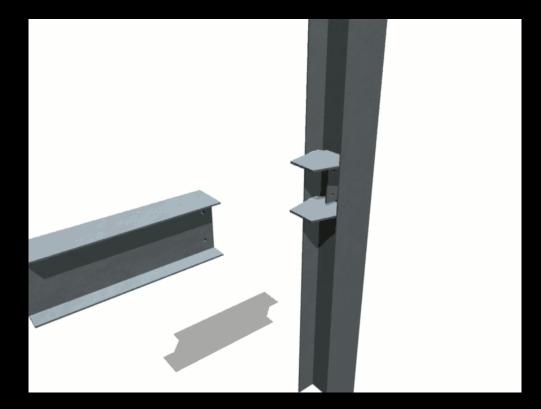
- terms
 - coping

(AISC - Steel Structures of the Everyday)

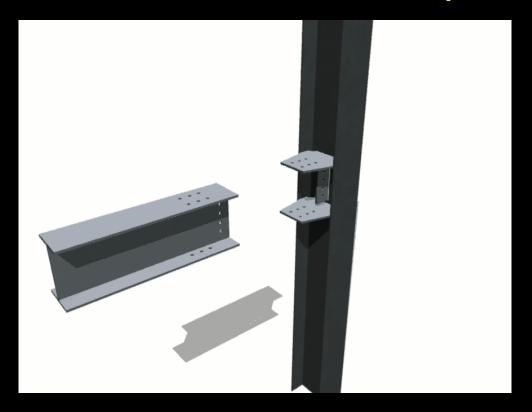
Framed Beam Conne

- tables for standard bolt sizes & spacings
- # bolts
- bolt diameter, angle leg thickness
- bearing on beam web

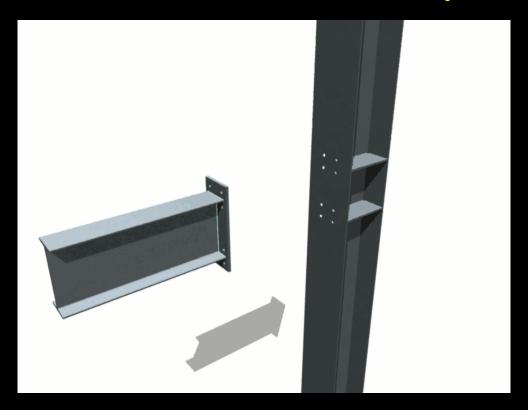
Beam	F _y = 50 ksi F _u = 65 ksi	elt) Al				•	onti ubl			gle	i ksi 5 ksi		-in.	
Angle	$F_y = 36$ ksi	Connections Bolts													
₹	<i>F_u</i> = 58 ksi	- 2 Q i	igtin, k	te Strei	de lie B e	olt and	Angle	Availab	le Stre	ngth, k	ips	-224-6	1	1	
	4 Rows	Bolt	Th	Thread Hole Angle Thick						ckness	, in.	in. 8408.8			
		Group		ond.	- 23	/pe	.80	/4	5/16		aucra) ³	/8	and the second	12	
W	24, 21, 18, 16	0.84	1.874	450	1981	ASO	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
	1012 701	813 E	0.40	N	S	TD	67.1	101	83.9	126	95.5	143	95.5	143	
		A 35		X	S	TD	67.1	101	83.9	126	101	151	120	180	
		9.30 ₁		SC	-	TD	50.6	75.9	50.6	75.9	50.6	75.9	50.6	75.9	
	13.4 32.9	Group	1.0.8	ISS A		VS	43.1	64.5	43.1	64.5	43.1	64.5	43.1	64.5	
		A	Ula	155 A		SLT	50.6	75.9	50.6	75.9	50.6	75.9	50.6	75.9	
	1 2 1	2,03		SC	STD		67.1	101	83.9	126	84.4	127	84.4	127	
	<u> </u>	2.53	1.000	iss B		VS	65.3	97.9	71.9	108	71.9	108	71.9	108	
	4			-0.30		SLT	65.8	98.7	82.2	123	84.4	127	84.4	127	
3	90.02	2.42		N	-	TD	67.1	101	83.9	126	101	151	120	180	
•	• •		X			TD	67.1	101	83.9	126	101	151	134	201	
9	÷Ž	3.3	s	SC		TD	63.3	94.9	63.3	94.9	63.3	94.9	63.3	94.9	
5		Group B	B Class A SC Class B		-	VS	53.9	80.7	53.9	80.7	53.9	80.7	53.9	80.7	
						SLT	63.3	94.9	63.3	94.9	63.3	94.9	63.3	94.9	
					STD OVS		67.1	101	83.9	126	101	151	105	158	
		8 - 10 - 1 1 - 1 - 1					65.3	97.9	81.6	122	89.9	134	89.9	134	
	1.84							98.7	82.2	123	98.7	148	105	158	
		Be	am We	eb Avail	able S	trength	per In	ch Thic	kness	, kips/i	n.				
	Hole Type	!		S	TD			0			SSLT				
	1010 1340			. n. j	as)			L _{eh} *	', in.						
	Lev, in.	i	1	1/2	1	3/4	1	1/2	1 ¹	3/4		1/2	12	3/4	
	LAF 0 1650	[.AS0	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
	021 2.31	11/4	167	250	175	262	156	234	164	246	164	245	172	257	
	187 133	13/8	169	254	177	266	158	238	167	250	166	249	174	261	
C	oped at Top	11/2	171	257	180	269	161	241	169	254	168	253	177	265	
F	Flange Only	15/8	174	261	182	273	163	245	171	257	171	256	179	268	
	241 005	2	181	272	189	284	171	256	179	268	178	267	186	279	
	234 164	3	201	301	209	313	190	285	198	297	198	296	206	309	
		11/4	156	234	156	234	146	219	146	219	156	234	156	234	
	011 071	13/8	161	241	161	241	151	227	151	227	161	241	161	241	
Ce	oped at Both	11/2	166	249	166	249	156	234	156	234	166	249	166	249	


STD/ OVS/ SSLT	468	702	Note: S	terrun in beam length. Slip-critical bolt values assume no more than one filler has been provided or bolts added to distribute loads in the fillers.										
Hole Type	ASD	LRFD		* Tabulated values include 1/4-in. reduction in end distance, Leh, to account for possible										Нањ Туре
S	port Availa trength pe h Thicknes kips/in.	r ^{tolinia}	OVS =	Standa Oversiz Short-s to direc	ed holes	les tran	sverse			reads in reads ex p critica	cluded			
	Uncoped	176	234	351	234	351	234	351	234	351	234	351	234	351
	205 - 14 284 - 16	23	181 201	272 301	185 209	278 313	171 190	256 285	176 198	263 297	178 198	267 296	185 206	278 309
Fla	anges	15/8	171	256	171	256	161	241	161	241	171	256	171	256
Coped at Both		11/2	166	249	166	249	156	234	156	234	166	249	166	249
		1 ¹ /4 1 ³ /8	156 161	234 241	156	234 241	146 151	219 227	146 151	219 227	156	234 241	156	234
	234 154	3	201	301	209	313	190	285	198	297	198	296	206	309
11211	ge only	2	181	272	189	284	171	256	179	268	178	267	186	279
	ge Only	15/8	174	261	182	273	163	245	171	257	171	256	179	268
Cone	d at Top	1 ³ /8 1 ¹ /2	169 171	254 257	177	266 269	158	230	167 169	250 254	166 168	249 253	174	261 265
		17/4	107	250	1/5	202	100	234	104	240	104	245	172	207

• welded example (shear)

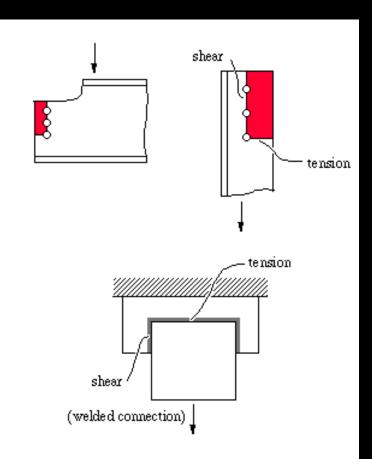

(AISC - Steel Structures of the Everyday)

• welded moment example


(AISC - Steel Structures of the Everyday)

welded/bolted moment example

(AISC - Steel Structures of the Everyday)


welded/bolted moment example

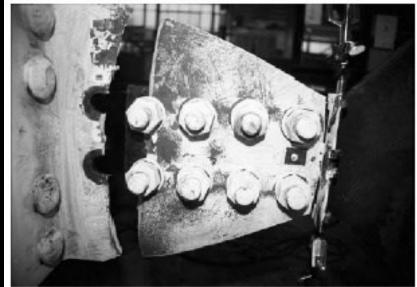
(AISC - Steel Structures of the Everyday)

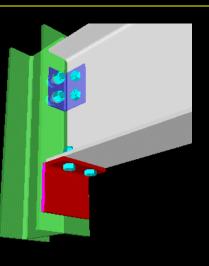
Beam Connections

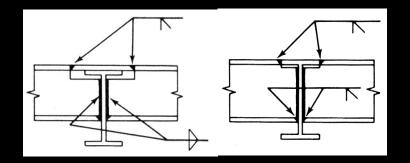
- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

$\begin{array}{l} \textbf{Beam Connections} & \phi = 0.75 \\ \hline R_n = 0.6F_uA_{nv} + U_{bs}F_uA_{nt} \leq 0.6F_yA_{gv} + U_{bs}F_uA_{nt} \\ - \textit{where } U_{bs}\textit{ is 1 for uniform tensile stress} \end{array}$

Figure 2-1. Block Shear Rupture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)




Figure 2-14. Tension Fracture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)


block shear rupture

tension rupture

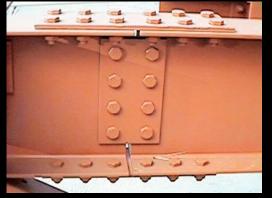
Steel Bolts & Welding 25 Lecture 18 Architectural Structures ARCH 331

- seated beam
- continuous
 beam to column
 beam to beam

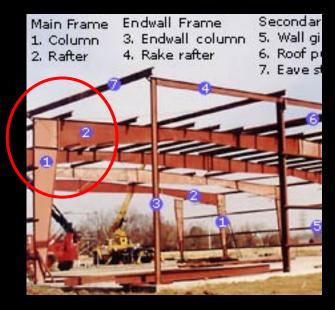
Steel Bolts & Welding 26 Lecture 18

Architectural Structures ARCH 331

• splices



The Royal Ontario Museum Toronto . Canada Daniel Libeskind (AISC - Steel Structures of the Everyday)

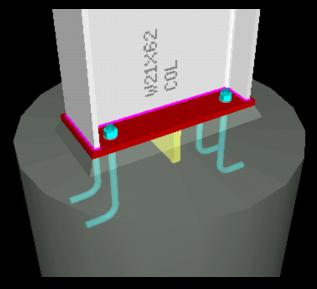

http://courses.civil.ualberta.ca Su2014abn

Steel Bolts & Welding 27 Lecture 18

- rigid frame knees
- gussets & joints

(AISC - Steel Structures of the Everyday)

Steel Bolts & Welding 28 Lecture 18 Architectural Structures ARCH 331


base plates

 anchor bolts
 bearing on steel
 bending of plate

http://courses.civil.ualberta.ca

