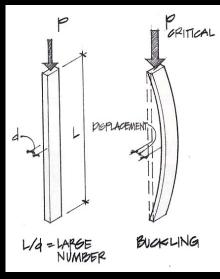
ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 331

DR. ANNE NICHOLS

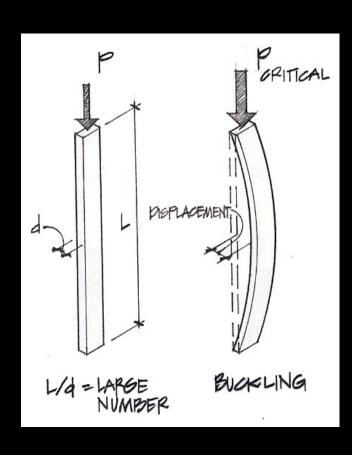
SUMMER 2014

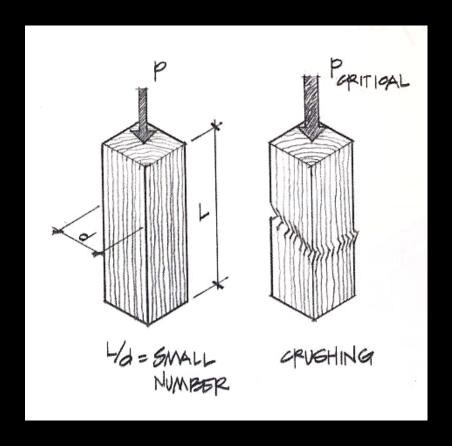

thirteen

wood construction: column design

Compression Members (revisited)

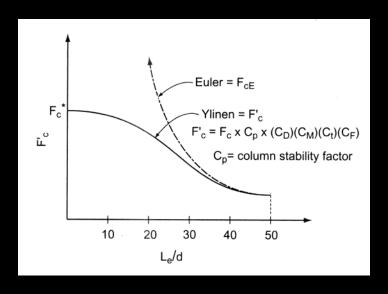
- designed for strength & stresses
- designed for serviceability & deflection
- need to design for <u>stability</u>
 - ability to support a specified load without sudden or unacceptable deformations

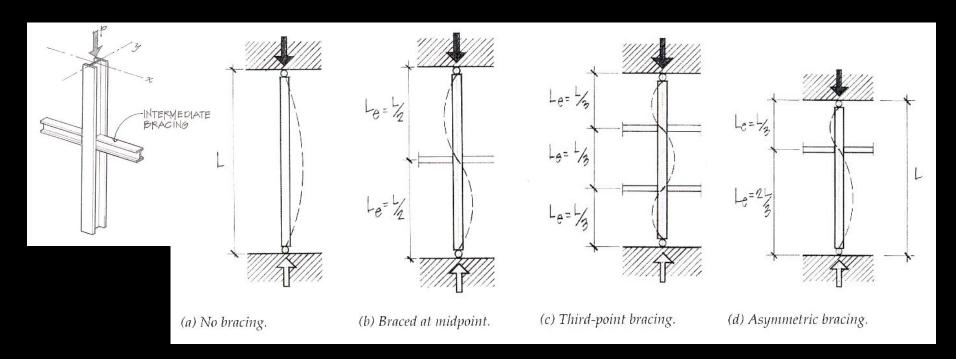




Effect of Length (revisited)

long & slender

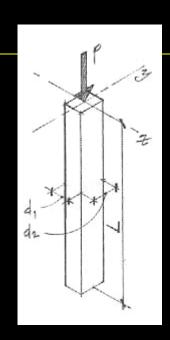



Critical Stresses (revisited)

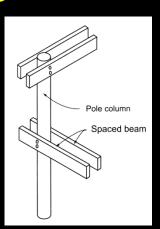
- when a column gets stubby, crushing will limit the load
- real world has loads with eccentricity

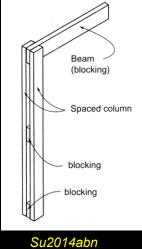
Bracing (revisited)

- bracing affects shape of buckle in one direction
- both should be checked!



Wood Columns


- slenderness ratio = L/d_{min}
 - $-d_1 = smallest dimension$


$$-\ell_e/d \leq 50$$
 (max)

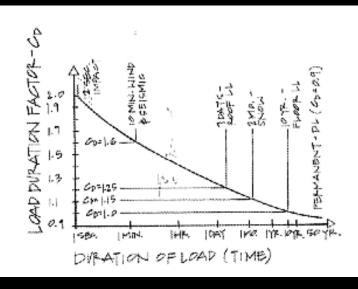
$$f_c = \frac{P}{A} \le F_c'$$

- where F' is the allowable compressive strength parallel to the grain
- bracing common
- posts, round, built-up

Allowable Wood Stress

$$F_c' = F_c(C_D)(C_M)(C_t)(C_F)(C_p)$$
 where:

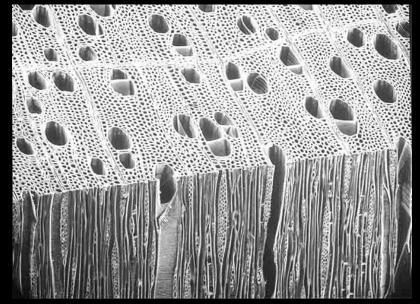
 F_c = compressive strength parallel to grain


 C_D = load duration factor

 C_M = wet service factor (1.0 dry)

 C_t = temperature factor

 C_F = size factor


 C_n = column stability factor

(Table 10.3)

Strength Factors

- wood properties and load duration, C_D
 - short duration
 - higher loads
 - normal duration
 - > 10 years

http://www.swst.org/teach/set2/struct1.html

- stability, C_p
 - combination curve tables

$$F_c' = F_c^* C_p = (F_c C_D) C_p$$

C_p Charts – Appendix A

Table 14 Column Stability Factor C_p.

"C_p"
$$F_{c'} = C_p \cdot F_{cE} = \frac{.30 E}{(l/d)^2} \text{ for sawed posts } F_{CE} = \frac{.418 E}{(l/d)^2} \text{ for glu-lam posts}$$

F_{CE} F_{C}^{*}	Sawed	Glu-Lam	F_{CE}	Sawed	Glu-Lam	F_{CE}	Sawed	Glu-Lam	F _{CE}	Sawed	Glu-Lam
	C_p	C_p		C_p	C_p		C_p	C_p		C_p	C_p
0.00	0.000	0.000	0.40	0.360	0.377	0.80	0.610	0.667	1.20	0.750	0.822
0.01	0.010	0.010	0.41	0.367	0.386	0.81	0.614	0.672	1.22	0.755	0.826
0.02	0.020	0.020	0.42	0.375	0.394	0.82	0.619	0.678	1.24	0.760	0.831
0.03	0.030	0.030	0.43	0.383	0.403	0.83	0.623	0.683	1.26	0.764	0.836
0.04	0.040	0.040	0.44	0.390	0.411	0.84	0.628	0.688	1.28	0.769	0.840
0.05	0.049	0.050	0.45	0.398	0.420	0.85	0.632	0.693	1.30	0.773	0.844
0.06	0.059	0.060	0.46	0.405	0.428	0.86	0.637	0.698	1.32	0.777	0.848
0.07	0.069	0.069	0.47	0.412	0.436	0.87	0.641	0.703	1.34	0.781	0.852
0.08	0.079	0.079	0.48	0.419	0.444	0.88	0.645	0.708	1.36	0.785	0.855
0.09	0.088	0.089	0.49	0.427	0.453	0.89	0.649	0.713	1.38	0.789	0.859
0.10	0.098	0.099	0.50	0.434	0.461	0.90	0.653	0.718	1.40	0.793	0.862
0.11	0.107	0.109	0.51	0.441	0.469	0.91	0.658	0.722	1.42	0.796	0.865
0.12	0.117	0.118	0.52	0.448	0.477	0.92	0.661	0.727	1.44	0.800	0.868
0.13	0.126	0.128	0.53	0.454	0.484	0.93	0.665	0.731	1.46	0.803	0.871
0.14	0.136	0.138	0.54	0.461	0.492	0.94	0.669	0.735	1.48	0.807	0.874
0.15	0.145	0.147	0.55	0.468	0.500	0.95	0.673	0.740	1.50	0.810	0.877
0.16	0.154	0.157	0.56	0.474	0.508	0.96	0.677	0.744	1.52	0.813	0.879
0.17	0.164	0.167	0.57	0.481	0.515	0.97	0.680	0.748	1.54	0.816	0.882
0.18	0.173	0.176	0.58	0.487	0.523	0.98	0.684	0.752	1.56	0.819	0.884
0.19	0.182	0.186	0.59	0.494	0.530	0.99	0.688	0.756	1.58	0.822	0.887

Column Charts - Appendix A, 12 & 13

Table 12 Allowable Column Loads—Selected Species/Sizes. (Continued)

Eff.										8×8	A = 56.25	8×10	A = 71.25	8×12	A = 86.25
Col.	l/d	(l/d)sq	Fce	Fce/Fc'		Ср		Fc(psi)		Pa (k)		Pa (k)		Pa	1 1/3
Len(ft)				Norm	Snow	Norm	Snow	Norm	Snow	Norm	Snow	Norm	Snow	Norm	Snow
12	19.2	368.64	1302.08	1.30	1.13	.7731	.7315	773	841	43.5	47.3	55.1	59.9	66.7	72.6
13	20.8	432.64	1109.47	1.11	0.96	.7258	.6767	726	778	40.8	43.8	51.7	55.4	62.6	67.1
14	22.4	501.76	956.63	0.96	0.83	.6767	.6235	677	717	38.1	40.3	48.2	51.1	58.4	61.8
15	24.00	576.00	833.33	0.83	0.72	.6235	.5694	624	655	35.1	36.8	44.4	46.7	53.8	56.5
16	25.60	655.36	732.42	0.73	0.64	.5747	.5244	575	603	32.3	33.9	40.9	43.0	49.6	52.0
17	27.20	739.84	648.79	0.65	0.56	.5303	.4744	530	546	29.8	30.7	37.8	38.9	45.7	47.1
18	28.80	829.44	578.70	0.58	0.50	.4873	.4336	487	499	27.4	28.0	34.7	35.5	42.0	43.0
19	30.40	924.16	519.39	0.52	0.45	.4475	.3975	448	457	25.2	25.7	31.9	32.6	38.6	39.4
20	32.00	1024.00	468.75	0.47	0.41	.4122	.3673	412	422	23.2	23.8	29.4	30.1	35.6	36.4
21	33.60	1128.96	425.17	0.43	0.37	.3826	.3360	383	386	21.5	21.7	27.3	27.5	33.0	33.3
22	35.20	1239.04	387.40	0.39	0.34	.3518	.3118	352	359	19.8	20.2	25.1	25.5	30.3	30.9
23	36.80	1354.24	354.44	0.35	0.31	.3199	.2869	320	330	18.0	18.6	22.8	23.5	27.6	28.5
24	38.40	1474.56	325.52	0.33	0.28	.3035	.2615	304	301	17.1	16.9	21.6	21.4	26.2	25.9
25	40.00	1600.00	300.00	0.30	0.26	.2785	.2442	279	281	15.7	15.8	19.8	20.0	24.0	24.2
26	41.60	1730.56	277.37	0.28	0.24	.2615	.2267	262	261	14.7	14.7	18.6	18.6	22.6	22.5
27	43.20	1866.24	257.20	0.26	0.22	.2442	.2090	244	240	13.7	13.5	17.4	17.1	21.1	20.7
28	44.80	2007.04	239.16	0.24	0.21	.2267	.2000	227	230	12.8	12.9	16.2	16.4	19.6	19.8
29	46.40	2152.96	222.95	0.22	0.19	.2090	.1819	209	209	11.8	11.8	14.9	14.9	18.0	18.0
30	48.00	2304.00	208.33	0.21	0.18	.2000	.1728	200	199	11.3	11.2	14.3	14.2	17.3	17.1
	DF-L No.1		(P&T)	&T) $Fc = 1000$)	E = 1.6								
	DF-L No.1 & Btr Dim.Lu			F	c = 1500)	E = 1.8								- 01.9

Procedure for Analysis

- 1. calculate L_e/d_{min}
 - KL/d each axis, choose largest
- 2. obtain F'_{c} compute $F_{cE} = \frac{K_{cE}E}{\binom{L_e}{d}^2}$ $K_{cE} = 0.3 \text{ sawn}$
 - $K_{cF} = 0.418 \text{ glu-lam}$
- 3. compute $F_c^* \approx F_c C_D$
- 4. calculate F_{cE}/F_c^* and get C_p (Table 14)
- 5. calculate $F'_c = F_c^* C_p$

Procedure for Analysis (cont'd)

- 6. compute $P_{allowable} = F'_c A$
 - or find $f_{actual} = P/A$
- 7. is $P \leq P_{allowable}$? (or $f_{actual} \leq F'_{c}$?)
 - yes: OK
 - no: overstressed & no good

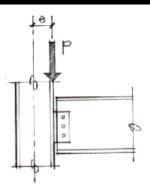
Procedure for Design

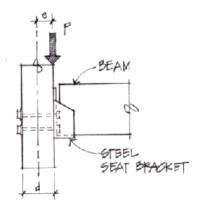
- 1. guess a size (pick a section)
- 2. calculate L_e/d_{min}
 - KL/d each axis, choose largest
- 3. obtain F'_{c} compute $F_{cE} = \frac{K_{cE}E}{\binom{L_e}{d}^2}$ K_{cE} = 0.3 sawn
 - $K_{cE} = 0.418 \text{ glu-lam}$
- 4. compute $F_c^* \approx F_c C_D$
- 5. calculate F_{cE}/F_c^* and get C_p (Table 14)

Procedure for Design (cont'd)

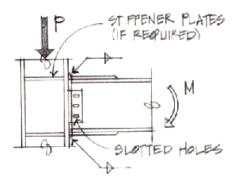
- 6. compute $F'_c = F_c^* C_p$
- 7. compute $P_{allowable} = F'_c A$
 - or find $f_{actual} = P/A$
- 8. is $P \le P_{allowable}$? (or $f_{actual} \le F'_{c}$?)
 - yes: OK
 - no: pick a bigger section and go back to step 2.

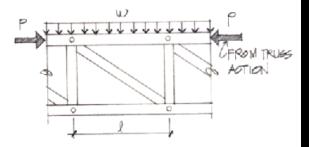
Timber Construction by Code


- light-frame
 - light loads
 - -2x's
 - floor joists 2x6, 2x8,
 2x10, 2x12 typical at
 spacings of 12", 16", 24"


- normal spans of 20-25 ft or 6-7.5 m
- plywood spans between joists
- <u>stud</u> or load-bearing masonry walls
- limited to around 3 stories fire safety

Design of Columns with Bending


- satisfy
 - strength
 - stability
- pick
 - section

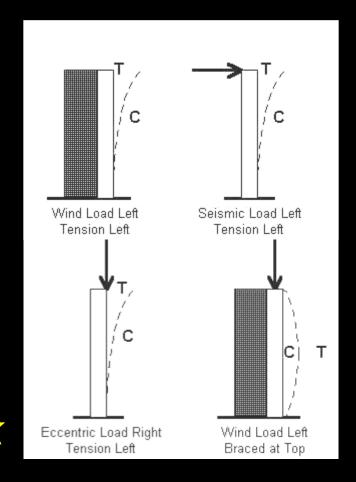

(a) Framed beam (shear) connection. e = Eccentricity; $M = P \times e$

(c) Timber beam-column connection. $e = d/2 = eccentricity; M = P \times e$

(b) Moment connection (rigid frame). M = Moment due to beam bending

(d) Upper chord of a truss—compression plus bending. $M = \frac{\omega \ell^2}{2}$

Design


Wood

$$\left[\frac{f_c}{F_c'}\right]^2 + \frac{f_{bx}}{F_{bx}'} \le 1.0$$

[] $term - magnification factor for P-\Delta$ $F'_{bx} - allowable bending strength$

Design Steps Knowing Loads

- 1. assume limiting stress
 - buckling, axial stress, combined stress
- 2. solve for r, A or S
- 3. pick trial section
- 4. analyze stresses
- 5. section ok?
- 6. stop when section is ok

Laminated Timber Arches

- two & three hinged arches
- bent to wide range of curves
- bending and compression
- residual stress from laminating, C_c

Laminated Arch Design

- radius of curvature, R, limited by lam thickness, t
 - -R = 100t southern pine & hardwoods
 - -R = 125t softwood
- r = radius to inside face of laminations

•
$$C_C = 1 - 2000 \left(\frac{t}{r}\right)^2$$

• $F_b' = F_b(C_FC_c)$

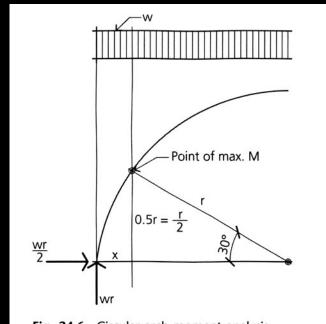


Fig. 24.6 Circular arch moment analysis