Center of Gravity

lecture

beam sections
geometric propertles
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Center of Gravity

* location of equivalent weight
 determined with calculus

AW

* sum element weights W = [ dW
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Centroid

« “average”x &y from moment
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“bar” means average
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» “average”x & y of an area

« for a volume of constant thickness
- AW =#tAA  where y is weight/volume
— center of gravity = centroid of area

> (xAA)
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Centroid

« for a line, sum up length

_ Z(xAL)
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_ 2lyAL
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Symmetric Areas

1st Moment Area

* symmetric about
an axis

« symmetric about
a center point

* mirrored symmetry

Sections 7 Foundations Structures F2008abn

Lecture 9 ARCH 331

* math concept
* the moment of an area about an axis
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Composite Areas

* made up of basic shapes
 areas can be negative
* (centroids can be negative for any area)
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Basic Procedure

Draw reference origin (if not given)
Divide into basic shapes (+/-)
Label shapes

Component | Area
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Area Centroids

Draw table

Fill in table z
Sum necessary columns
Calculate x and y
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Moments of Inertia
« 2"d moment area

—math concept
— area x (distance)?

* need for behavior of

— beams Bending | .ipagE  BuakLNG
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Transverse Loadings
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« Table 7.1 — pg. 242

s of Common Shapes of Areas and Lines

riangul. % g
ight triangle only - }
Qi > |
Paraboli 0 ?
Moment of Inertia
» about any reference axis
» can be negative y
1, = [x*dA
dA = y-dx
— >
I X - J‘ yZdA —> X
Xa dx
* resistance to bending and buckling
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Moment of Inertia Polar Moment of Inertia
« same area moved away a distance « for roundish shapes

—larger I * uses polar coordinates (r and 6
* resistance to twisting

O IT r
* - JOZJ'erA 0 0

pole
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Radius of Gyration Parallel Axis Theorem

« measure of inertia with respect to area « can find composite / once composite
| centroid is known (basic shapes)

o=

X CcX y
— 2 B B’ axis through centroid
_ I Ad at a distance d away
— X + y from the other axis
When a figure skater y
changes position, he or she
is redistributing his or her A ,axis to find moment of
mass. Thus, every A inertia about
position has it's own —_ 2
unique rotational inertia I J— Z I + Z Ad
| =1-Ad?
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Basic Procedure

1. Draw reference origin (if not given)

2. Divide into basic shapes (+/-)

3. Label shapes

4. Draw table with A, X,XA,y, VA, I’s, d’s,

and Ad?’s

5. Fill in table and get Xand Yfor composite

6. Sum necessary columns o

7. Sum I's and Ad?’s (d=X-X)
(dy=y-V)

Area Moments of Inertia

* Table 7.2 — pg. 252: (bars refer to centroid)
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