ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

DR. ANNE NICHOLS FALL 2013

lecture

forces and moments

Forces & Moments 1 Lecture 3

Architectural Structures

F2009abn

F2008abn

Structural Math

- physics takes observable phenomena and relates the measurement with rules: mathematical relationships
- need

Structural Planning 33

Lecture 3

- reference frame
- measure of length, mass, time, direction, velocity, acceleration, work, heat, electricity, light
- calculations & geometry

Structural Math

- quantify environmental loads
 - how big is it?
- evaluate geometry and angles
 - where is it?
 - what is the scale?
 - what is the size in a particular direction?
- quantify what happens in the structure
 - how big are the internal forces?
 - how big should the beam be?

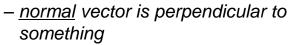
Structural Planning 32 Lecture 3

Foundations Structures

F2008abn

Physics for Structures

- measures
 - US customary & SI

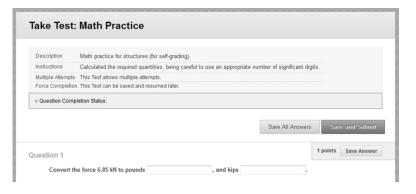

Units	US	SI
Length	in, ft, mi	mm, cm, m
Volume	gallon	liter
Mass	lb mass	g, kg
Force	Ib force	N, kN
Temperature	F	С

Structural Planning 34 Lecture 3

Foundations Structures ARCH 331

Physics for Structures

- scalars any quantity
- vectors quantities with direction
 - like displacements
 - summation results in the "straight line path" from start to end



F2008abn

On-line Practice

Lecture 3

eCampus / Study Aids

Structural Planning 37 Architectural Structures F2008abn ARCH 331

Language

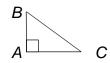
- symbols for operations: +,-, /, x
- symbols for relationships: (), =, <, >
- algorithms
 - cancellation
 - factors
 - signs
 - ratios and proportions
 - power of a number
 - conversions, ex. 1X = 10 Y
 - operations on both sides of equality

$$\frac{2}{5} \times \frac{5}{6} = \frac{2}{6} = \frac{2}{2 \times 3} = \frac{2}{5}$$

- $10^3 = 1000$

Foundations Structures

F2008abn


Geometry

angles

Structural Planning 36

Lecture 3

- right $= 90^{\circ}$
- acute < 90°
- > 90° obtuse
- $= 180^{\circ}$ $-\pi$
- triangles
 - area
- $b \times h$
- hypotenuse
- total of angles = 180°

 $AB^2 + AC^2 = BC^2$

Structural Planning 38 Lecture 3

Foundations Structures ARCH 331

F2008abr

Geometry

- lines and relation to angles
 - parallel lines can't intersect

- perpendicular lines cross at 90°
- intersection of two lines is a point

 opposite angles are equal when two lines cross

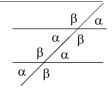
Structural Planning 39

Foundations Structures ARCH 331 F2008abn

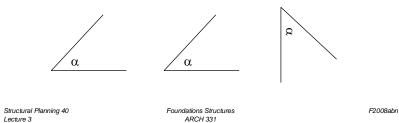
Geometry

 sides of two angles are parallel and intersect opposite way, the angles are supplementary - the sum is 180°

 two angles that sum to 90° are said to be complimentary


$$\beta + \gamma = 90^{\circ}$$

. .


F2008abn

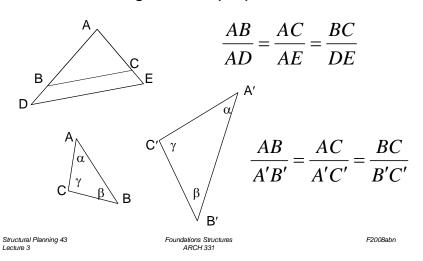
Geometry

 intersection of a line with parallel lines results in identical angles

 two lines intersect in the same way, the angles are identical

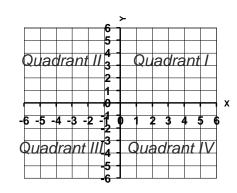
Geometry

 sides of two angles bisect a right angle (90°), the angles are <u>complimentary</u>

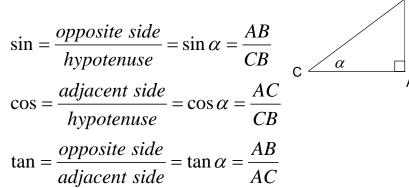

right angle bisects a straight line,
 remaining angles
 are <u>complimentary</u>

Forces & Moments 12 Lecture 3

Foundations Structures ARCH 331 F2009abn


Geometry

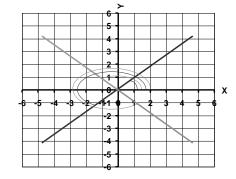
- similar triangles have proportional sides


Trigonometry

- · cartesian coordinate system
 - origin at 0,0
 - coordinates in (x,y) pairs
 - x & y have signs

Trigonometry

• for right triangles

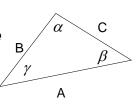

SOHCAHTOA

Structural Planning 44 Lecture 3 Foundations Structures ARCH 331 F2008abn

Trigonometry

- for angles starting at positive x
 - sin is y side
 - cos is x side

sin<0 for 180-360° cos<0 for 90-270° tan<0 for 90-180° tan<0 for 270-360°



Foundations Structures ARCH 331 Structural Planning 46

Foundations Structures ARCH 331 F2008abn

Trigonometry

- for all triangles
 - sides A, B & C are opposite angles α , β & γ

LAW of SINES

$$\frac{\sin \alpha}{A} = \frac{\sin \beta}{B} = \frac{\sin \gamma}{C}$$

- LAW of COSINES

$$A^2 = B^2 + C^2 - 2BC\cos\alpha$$

Structural Planning 47 Lecture 3

Foundations Structures ARCH 331

F2008abn

F2008abn

Algebra

- solving one equation
 - only works with one variable

$$2x-1=0$$

$$2x - 1 + 1 = 0 + 1$$
$$2x = 1$$

$$\frac{2x}{2} = \frac{1}{2}$$

$$\bar{x} = \frac{1}{2}$$

Algebra

- equations (something = something)
- constants
 - real numbers or shown with a, b, c...
- unknown terms, variables
 - names like R, F, x, y
- linear equations
 - unknown terms have no exponents
- simultaneous equations
 - variable set satisfies all equations

Structural Planning 48 Lecture 3

Foundations Structures ARCH 331

F2008abn

Algebra

- solving one equations
 - only works with one variable

$$2x-1 = 4x + 5$$

subtract from both sides

$$2x-1-2x = 4x+5-2x$$

· subtract from both sides

$$-1-5=2x+5-5$$

divide both sides

$$\frac{-6}{2} = \frac{-3 \cdot 2}{2} = \frac{2x}{2}$$

get x by itself on a side

$$x = -3$$

Structural Planning 50 Lecture 3

Foundations Structures ARCH 331

Algebra

- solving two equation
 - only works with two variables

– ex:

$$2x + 3y = 8$$

· look for term similarity

$$12x - 3y = 6$$

can we add or subtract to eliminate one term?

add

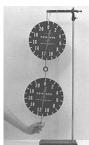
$$2x + 3y + 12x - 3y = 8 + 6$$

$$14x = 14$$

• get x by itself on a side

$$\frac{14x}{14} = \frac{14}{14} = x = 1$$

Structural Planning 51 Lecture 3

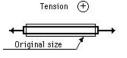

Foundations Structures ARCH 331

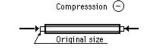
F2008abr

Force

- "action of one body on another that affects the state of motion or rest of the body"
- Newton's 3rd law:
 - for every force of action there is an equal and opposite reaction along the same line

http://www.physics.umd.edu


F2008abn


Forces

- statics
 - physics of forces and reactions on bodies and systems
 - equilibrium (bodies at rest)
- forces
 - something that exerts on an object:

 motion tension

compression

Point Equilibrium 2

Lecture 4

Foundations Structures ARCH 331

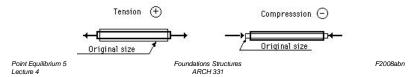
F2008abn

Force Characteristics

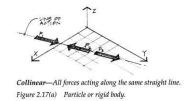
- applied at a point
- magnitude
 - Imperial units: Ib, k (kips)
 - SI units: N (newtons), kN
- direction

Point Equilibrium 4

Foundations Structures ARCH 331


Forces on Rigid Bodies

- · for statics, the bodies are ideally rigid
- can translate and rotate


- · internal forces are
- are translate
- rotate

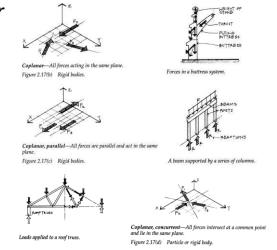
- in bodies
- between bodies (connections)
- external forces act on bodies

Force System Types

collinear

Transmissibility

- the force stays on the same line of action
- truck can't tell the difference

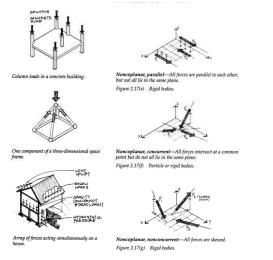


only valid for EXTERNAL forces

Point Equilibrium 6 Lecture 4 Foundations Structures ARCH 331 F2008abn

Force System Types

coplanar



Point Equilibrium 7 Lecture 4 Foundations Structures ARCH 331 F2008abn

Point Equilibrium 8 Lecture 4 Foundations Structures ARCH 331

Force System Types

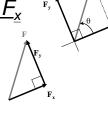
space

Point Equilibrium 9 Lecture 4 Foundations Structures ARCH 331 F2008abn

Force Components

- convenient to resolve into 2 vectors
- · at right angles
- in a "nice" coordinate system
- θ is between F_x and F from F_x

$$F_{x} = F \cos \theta$$

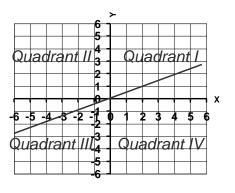

$$F_{y} = F \sin \theta$$

$$F = \sqrt{F_{x}^{2} + F_{y}^{2}}$$

F2008abn

Adding Vectors

- graphically
 - parallelogram law
 - diagonal
 - long for 3 or more vectors


- tip-to-tail
 - more convenient with lots of vectors

Point Equilibrium 10 Lecture 4 Foundations Structures ARCH 331 F2008abn

Trigonometry

- F_x is negative
 - 90° to 270°
- F_y is negative
 - 180° to 360°
- tan is positive
 - quads I & III
- tan is negative
 - quads II & IV

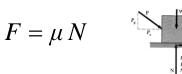
Point Equilibrium 12 Lecture 4 Foundations Structures ARCH 331

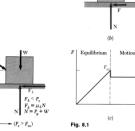
Component Addition

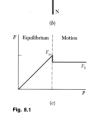
- find all x components
- find all y components
- find sum of x components, R_x (resultant)
- find sum of y components, R_v

$$R = \sqrt{R_x^2 + R_y^2}$$

$$\tan\theta = \frac{R_y}{R_x}$$

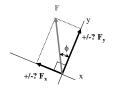

Point Equilibrium 13 Lecture 4


Foundations Structures ARCH 331


F2008abr

Friction

- resistance to movement
- contact surfaces determine μ
- proportion of normal force (∠)
 - opposite to slide direction
 - static > kinetic



Alternative Trig for Components

- doesn't relate angle to axis direction
- ϕ is "small" angle between F and EITHER F_x or F_v
- no sign out of calculator!
- have to choose RIGHT trig function, resulting direction (sign) and component axis

Point Fauilibrium 14 Lecture 4

Foundations Structures ARCH 331

F2008abn

Cables

- simple
- uses
 - suspension bridges
 - roof structures
 - transmission lines
 - guy wires, etc.

http:// nisee.berkeley.edu/godden

- have same tension all along
- can't stand compression

Point Equilibrium 23 Lecture 4

Foundations Structures ARCH 331

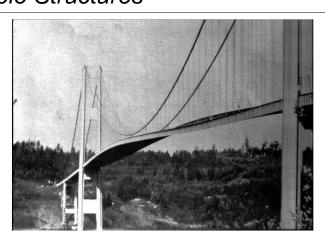
F2008abn

Point Equilibrium 24 Lecture 4

Foundations Structures ARCH 331

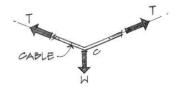
F2008abr

Cables Structures

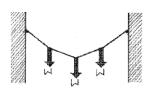

- use high-strength steel
- need
 - towers
 - anchors
- don't want movement

http://nisee.berkeley.edu/godden

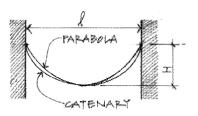
Point Equilibrium 25 Lecture 4 Foundations Structures ARCH 331 F2008abn

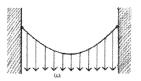

Cable Structures

Point Equilibrium 26 Lecture 4 Foundations Structures ARCH 331 F2008abn


Cable Loads

- straight line between forces
- with one force
 - concurrent
 - symmetric


(a) Simple concentrated load—triangle.


(b) Several concentrated loads—polygon.

Cable Loads

 shape directly related to the distributed load

(e) Comparison of a parabolic and a catenary curve.

(c) Uniform loads (horizontally)-parabola.

(d) Uniform loads (along the cable length)—catenary.

Point Equilibrium 27 Lecture 4 Foundations Structures ARCH 331 F2008abn

Point Equilibrium 28 Lecture 4 Foundations Structures ARCH 331

Cable-Stayed Structures

- diagonal cables support horizontal spans
- typically symmetrical
- Patcenter. Rogers 1986

Point Equilibrium 30 Lecture 4

www.columbia.edu ARCH 331

Point Fauilibrium 31 Lecture 4

Foundations Structures ARCH 331

primary rod staus

laboratoru

secondary rod stays

F2008abn

Patcenter, Rogers 1986

dashes – cables pulling

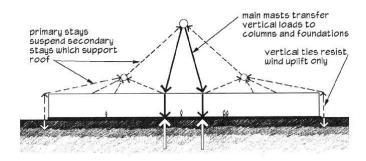


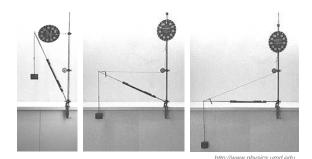
Figure 3.5: Patcenter, load path diagram.

Moments

· forces have the tendency to make a body rotate about an axis

Patcenter, Rogers 1986

steel frame supports masts


tubular steel bipod masts

eaulpment

· column free space

roof suspended

solid steel ties

- same translation but different rotation

Forces & Moments 44 Lecture 3

Foundations Structures ARCH 331

F2009abr

Moments

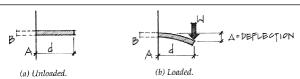
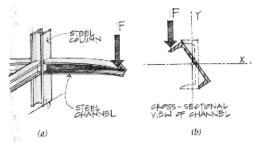
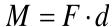
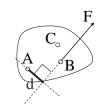


Figure 2.33 Moment on a cantilever beam.



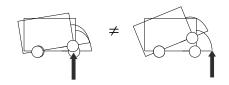

Figure 2.34 An example of torsion on a cantilever beam.

Forces & Moments 45 Lecture 3 Foundations Structures ARCH 331 F2009abn


F2011abn

Moments

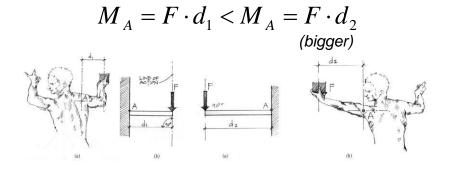
- defined by magnitude and direction
- units: N·m, k·ft
- direction:
 - + ccw (right hand rule)
 - CW
- value found from F and ⊥ distance



d also called "lever" or "moment" arm

Moments

 a force acting at a different point causes a different moment:



Rigid Body Equilibrium 4

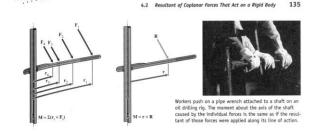
Foundations Structures ARCH 331 F2008abn

Moments

with same F:

Rigid Body Equilibrium 6

Foundations Structures ARCH 331


Moments

- additive with sign convention
- can still move the force along the line of action

Rigid Body Equilibrium 7 Lecture 6 Foundations Structures ARCH 331 F2008abn

Moments of a Force

- moments of a force
 - introduced in Physics as "Torque Acting on a Particle"
 - and used to satisfy rotational equilibrium

Forces & Moments 51

Foundations Structures ARCH 331 F2009abn

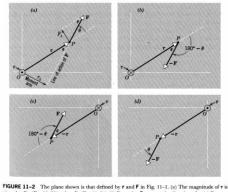
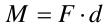
Moments

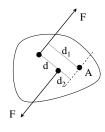
- Varignon's Theorem
 - resolve a force into components at a point and finding perpendicular distances
 - calculate sum of moments
 - equivalent to original moment
- makes life easier!
 - geometry
 - when component runs through point, d=0

Forces & Moments 50 Lecture 3 Foundations Structures ARCH 331 F2009abn

Physics and Moments of a Force

• my Physics book:


FIGURE 11-2 The plane shown is that defined by \mathbf{r} and \mathbf{r} in Fig. 11-1. (e) The magnitude of \mathbf{r} is given by F_L (Eq. 11-20) by F_L (Eq. 11-20). (e) Reversing \mathbf{r} reverses the direction of \mathbf{r} . (c) Reversing \mathbf{r} reverses the direction of \mathbf{r} . (d) Reversing \mathbf{r} and \mathbf{r} leaves the direction of \mathbf{r} unchanged. The direction of \mathbf{r} are represented by \bigcirc (perpendicularly out of the figure, the symbol representing the tip of an arrow) and by \bigcirc (perpendicularly into the figure, the symbol representing the tail of an arrow).

Forces & Moments 52 Lecture 3 Foundations Structures ARCH 331 F2009abn

Moment Couples

- 2 forces
 - same size
 - opposite direction
 - distance d apart
 - cw or ccw

- not dependant on point of application

$$M = F \cdot d_1 - F \cdot d_2$$
Rigid Body Equilibrium 11 Foundations Structure 4 ARCH 331

F2008abn

F2009ahn

Moment Couples

- added just like moments caused by one force
- can <u>replace</u> two couples with a single couple

Moment Couples

- equivalent couples
 - same magnitude and direction
 - F & d may be different

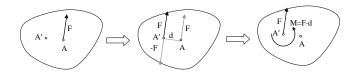
Forces & Moments 54 Lecture 3 Foundations Structures ARCH 331 F2009abn

Moment Couples

• moment couples in structures

Forces & Moments 56

Foundations Structures ARCH 331 F2009abn


Equivalent Force Systems

- two forces at a point is equivalent to the resultant at a point
- resultant is equivalent to two components at a point
- resultant of equal & opposite forces at a point is zero
- put equal & opposite forces at a point (sum to 0)
- transmission of a force along action line

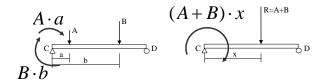
Forces & Moments 57 Lecture 3 Foundations Structures ARCH 331 F2009abn

Force-Moment Systems

 a force-moment pair can be replaced by a force at another point causing the original moment

Force-Moment Systems

 single force causing a moment can be replaced by the same force at a different point by providing the moment that force caused


· moments are shown as arched arrows

Rigid Body Equilibrium 16

Foundations Structures ARCH 331 F2008abr

Parallel Force Systems

- forces are in the same direction
- can find resultant force
- need to find <u>location</u> for equivalent moments

Rigid Body Equilibrium 17 Lecture 6 Foundations Structures ARCH 331 F2008abn

Rigid Body Equilibrium 18 Lecture 6 Foundations Structures ARCH 331