Architectural Structures: Form, Behavior, and Design

ARCH 331 DR. ANNE NICHOLS FALL 2013

concrete construction: flat spanning systems

Concrete Spans 1 Lecture 25 Architectural Structures ARCH 331 F2009abn

Reinforced Concrete Design

- flat plate
 - 5"-10" thick
 - simple formwork
 - lower story heights
- flat slab
 - same as plate
 - 2 ¼"-8" drop panels

PP

Reinforced Concrete Design

- economical & common
- resist lateral loads

Reinforced Concrete Design

- · beam supported
 - slab depth ~ L/20
 - 8"–60" deep
- one-way joists
 - 3"–5" slab
 - 8"–20" stems
 - 5"-7" webs

The Architect's Studio Companion

Concrete Spans 3 Lecture 25 Foundations Structures ARCH 331 F2008abn

Foundations Structures ARCH 331 F2008abn

1

Reinforced Concrete Design

- two-way joist
 - "waffle slab"
 - 3"-5" slab
 - 8"-24" stems
 - 6"-8" webs
- beam supported slab
 - 5"-10" slabs

Concrete Spans 5

Lecture 25

- taller story heights

d Load (L/D \leq 3)

Two or More Spans

Figure 2-2 Conditions for Analysis by Coefficients (ACI 8.3.3)

F2008abn

Reinforced Concrete Design

- simplified frame analysis
 - strips, like continuous beams
- moments require flexural reinforcement
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous

Concrete Spans 6 Lecture 25 Foundations Structures ARCH 331 F2008abn

Reinforced Concrete Design

- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients

≤ 1.2 ln

Foundations Structures

ARCH 331

- two or more spans
- ~ same lengths
- $-w_u$ from combos
- uniform loads with $L/D \le 3$
- l_n is clear span (+M) or average of adjacent clear spans (-M)

Reinforced Concrete Design

Concrete Spans 7 Lecture 25 F2008abn

Concrete Spans 8 Lecture 25 Foundations Structures ARCH 331 F2008abn

Reinforced Concrete Design

- two-way slabs Direct Design Method
 - 3 or more spans each way
 - uniform loads with L/D \leq 2
 - rectangular panels with long/short span ≤ 2
 - successive spans
 can't differ > longer/3
 - column offset no more than 10% span

Concrete Spans 9 Lecture 25 Architectural Structures ARCH 331

Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads

Concrete Spans 11 Lecture 25

Foundations Structures ARCH 331

F2008abn

F2008abn

Reinforced Concrete Design

	End Span		Interior Span				
	ф Ф 2	3		4	6		
			End Span			Interior Span	
Span ratio	Slab Moments	1 Exterior Negative	2 Positive	3 First Interior Negative	4 Positive	5 Interior Negative	
શ્વ/ધ	Total Moment	0.16 Mo	0.57 Mo	0.70 Mo	0.35 M _o	0.65 Mo	
0.5	Column Strip Beam Slab	0.12 Mo 0.02 Mo	0.43 Mo 0.08 Mo	0.54 M _o 0.09 Mo	0.27 M _o 0.05 M _o	0.50 M ₀ 0.09 M ₀	
	Middle Strip	0.02 M _o	0.06 M _o	0.07 M _o	0.03 M _o	0.06 M _C	
1.0	Column Strip Beam Slab	0.10 M ₀ 0.02 M ₀	0.37 M ₀ 0.06 M ₀	0.45 M ₀ 0.08 M ₀	0.22 M ₀ 0.04 M ₀	0.42 M ₀ 0.07 M ₀	
	Middle Strip	0.04 Mo	0.14 Mo	0.17 Mo	0.09 M ₀	0.16 M _C	
2.0	Column Strip Beam Slab	0.06 M _o 0.01 M _o	0.22 M _o 0.04 M _o	0.27 M _o 0.05 M _o	0.14 M _o 0.02 M _o	0.25 M _C 0.04 M _C	
	Middle Strip	0.09 Mo	0.31 Mo	0.38 Mo	0.19 M ₀	0.36 M _C	
(1) Bear (2) Inter (3) All n	ns and slab satisfy stiffness o polate between values showr	riteria: $\alpha_1 k_2 / k_1 \ge$ tor different $k_2 /$ of support.	2 1.0 and β _t %1 ratios.	≥ 2.5.			

Table 4-6 Two-Way Beam-Supported Slab

Concrete Spans 10 Lecture 25

Note

Foundations Structures ARCH 331

Shear in Concrete

- critical section at d/2 from
 - column face, column capital or drop panel

Slab Column capital (C) (c, + d)-Critical section for punching shear $b_0 = 2(c_1 + d) + 2(c_2 + d)$ Slab d/2 Critica section Column capital Colum Column Section A-A Section through column and slab F2008abn Concrete Spans 12 Foundations Structures Lecture 25 ARCH 331

3

F2008abn

Shear in Concrete

• at columns with waffle slabs

Concrete Spans 13 Lecture 25 Foundations Structures http:// nisee.berkeley.edu/godden F2008abn ARCH 331

General Beam Design

- $f'_c \& f_y$ needed
- usually size just b & h
 - even inches typical (forms)
 - similar joist to beam depth
 - b:h of 1:1.5-1:2.5
 - $-b_w \& b_f$ for T
 - to fit reinforcement + stirrups
- slab design, t
 - deflection control & shear

Concrete Spans 15 Lecture 25 Foundations Structures ARCH 331

F2008abr

Openings in Slabs

- · careful placement of holes
- shear strength reduced
- bending & deflection can increase

Concrete Spans 14 Lecture 25

General Beam Design (cont'd)

- custom design:
 - longitudinal steel
 - shear reinforcement
 - detailing

Concrete Spans 16 Lecture 25 Foundations Structures ARCH 331 F2008abn

Δ

Space "Frame" Behavior

- handle uniformly distributed loads well
- bending moment

Concrete Spans 17 Lecture 25

Foundations Structures ARCH 331 F2008abn

Space "Frame" Behavior

- shear at columns
- support conditions still important
 point supports not optimal
- fabrication/construction can dominate design

Folded Plates

- increased bending stiffness with folding
- lateral buckling avoided

roof plan

Concrete Spans 19 Lecture 25 Foundations Structures ARCH 331 F2008abn

Folded Plates

- common for roofs
- edges need stiffening

Concrete Spans 20 Lecture 25

http:// nisee.berkeley.edu/godden Foundations Structures ARCH 331

F2008abn

Folded Plates

 Edge-supported dome spanning 400 feet wound with 614 miles of one-fifth inch steel wire

Concrete Spans21 Lecture 25 Foundations Structures ARCH 331 F2008abn