FOUNDATIONS STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

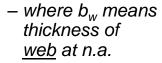
ARCH 331 Dr. Anne Nichols Fall 2013

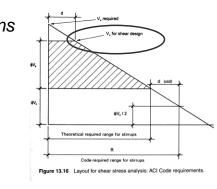
twenty four

Copyright © Kirk Martini

concrete construction: shear & deflection

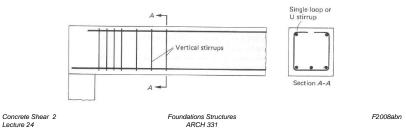
Concrete Shear 1 Lecture 24


```
Foundations Structures
ARCH 331
```


F2009abn

F2008abn

ACI Shear Values


- V_u is at distance d from face of support
- shear capacity: $V_c = \upsilon_c \times b_w d$

Concrete Shear 3 Lecture 24 Foundations Structures ARCH 331 Shear in Concrete Beams

- flexure combines with shear to form diagonal cracks
- horizontal reinforcement doesn't help
- stirrups = vertical reinforcement

ACI Shear Values

• shear stress (beams)

 $- \upsilon_c = 2\sqrt{f'_c} \qquad \phi = 0.75 \text{ for shear}$ $\phi V_c = \phi 2\sqrt{f'_c} b_w d \qquad f'_c \text{ is in } \underline{psi}$

• shear strength:

$$V_{u} \leq \phi V_{c} + \phi V_{c}$$

 V_s is strength from stirrup reinforcement

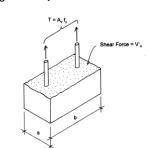


Figure 13.17 Consideration for spacing of a single stirrup.

Concrete Shear 4 Lecture 24 Foundations Structures ARCH 331

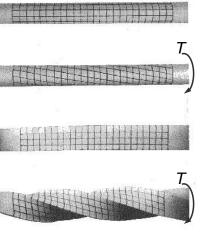
Stirrup Reinforcement

• shear capacity:

$$V_s = \frac{A_v f_y d}{s}$$

 $-A_{v}$ = area in all legs of stirrups

-s = spacing of stirrup


• may need stirrups when concrete has enough strength!

Concrete Shear 5
Lecture 24

Foundations Structures ARCH 331

Torsional Stress & Strain

- can see torsional stresses & twisting of axi-symmetrical cross sections - torque - remain plane - undistorted - rotates • not true for square
- sections....

Required Stirrup Reinforcement

spacing limits

		$V_u \leq \frac{\phi V_c}{2}$	$\phi V_c \ge V_u > \frac{\phi V_c}{2}$	$V_{II} > \phi V_{C}$
Required area of stirrups, Av **		none	50b _w s fy	$\frac{(V_u - \phi V_c)s}{\phi f_y d}$
Stirrup spacing, s	Required		Avfy 50bw	$\frac{\phi A_v f_y d}{V_u - \phi V_c}$
	Recommended Minimum [†]	_		4 in.
	Maximum ^{††} (ACI 11.5.4)		d 2 or 24 in.	$\frac{d}{2}$ or 24 in. for $\left(V_u - \phi V_c\right) \le \phi 4 \sqrt{t'_c} b_w d$
				$\frac{d}{4}$ or 12 in. for $\left(V_u - \phi V_c\right) > \phi 4 \sqrt{f'_c} \ b_w d$

Table 3-8 ACI Provisions for Shear Design*

**Members subjected to shear and flexure only; $\phi V_c = \phi 2 \sqrt{V_c} b_w d, \phi = \frac{0.05}{0.75}$ (ACI 11.3.1.1)

** $A_v = 2 \times A_b$ for U stirrups; $f_y \le 60$ ksi (ACI 11.5.2)

†A practical limit for minimum spacing is d/4

t+Maximum spacing based on minimum shear reinforcement (= Avfy/50bw) must also be considered (ACI 11.5.5.3).

Concrete Shear 6 Lecture 24

Concrete Shear 8

Lecture 24

Foundations Structures ARCH 331

r=RAPIUS

8 = ANGLE

T= TORQUE

FY= SHEAR

F2008abn

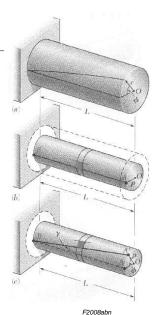
Shear Stress Distribution

- depend on the deformation
- ϕ = angle of twist
 - measure
- can prove planar section doesn't distort

F2008abn

Concrete Shear 7 Lecture 24

Foundations Structures ARCH 331


F2008abn

Shearing Strain

- related to ϕ
- *ρ* is the radial distance from the centroid to the point under strain

 $\gamma = \frac{\rho\phi}{I}$

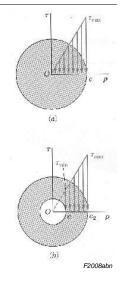
 shear strain varies linearly along the radius: γ_{max} is at outer diameter

Concrete Shear 9 Lecture 24

Foundations Structures ARCH 331

Torsional Stress - Strain

- from
- can derive
 - where J is the polar moment of inertia $\tau = \frac{T\rho}{T}$
 - elastic range



Foundations Structures ARCH 331

 $T = \Sigma \tau(\rho) \Delta A$

 $T = \frac{\tau J}{T}$

D

Torsional Stress - Strain

- know $f_v = \tau = G \cdot \gamma$ and $\gamma = \frac{\rho \phi}{I}$
- $\tau = \mathbf{G} \cdot \frac{\rho \phi}{\prime}$ • SO
- where G is the Shear Modulus

Concrete Shear 10 Lecture 24

Foundations Structures ARCH 331

F2008abn

Shear Stress

- *τ_{max}* happens at <u>outer diameter</u>
- combined shear and axial stresses
 - maximum shear stress at 45° "twisted" plane

Concrete Shear 12 Lecture 24

Foundations Structures ARCH 331

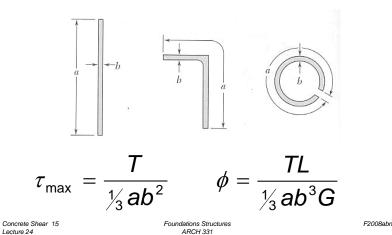
F2008abn

3

Shear Strain

- knowing $\tau = \mathbf{G} \cdot \frac{\rho \phi}{I}$ and $\tau = \frac{T\rho}{I}$
- solve: $\phi = \frac{TL}{JG}$

• composite shafts:
$$\phi = \sum_{i} \frac{T_{i}L_{i}}{J_{i}G_{i}}$$


Concrete Shear 13 Lecture 24

Foundations Structures ARCH 331

F2008abn

Open Thin-Walled Sections

• with very large a/b ratios:

Noncircular Shapes

- torsion depends on J
- plane sections don't remain plane
- τ_{max} is still at outer diameter

$$\tau_{\max} = \frac{T}{c_1 a b^2} \quad \phi = \frac{TL}{c_2 a b^3 G}$$

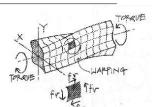
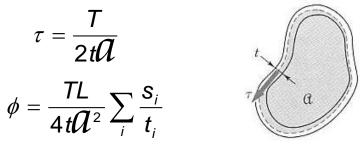


TABLE 3.1. Coefficients for Rectangular Bars in Torsion

a/b	c ₁	<i>C</i> ₂
1.0	* 0.208	0.1406
1.2	0.219	0.1661
1.5	0.231	0.1958
2.0	0.246	0.229
2.5	0.258	0.249
3.0	0.267	0.263
4.0	0.282	0.281
5.0	0.291	0.291
10.0	0.312	0.312
∞	0.333	0.333

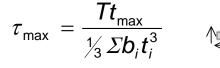

Concrete Shear 14 Lecture 24

Foundations Structures ARCH 331

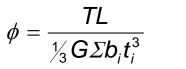
F2008abn

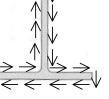
Shear Flow in Closed Sections

• q is the internal shear force/unit length


- $\mathcal A$ is the area bounded by the centerline
- *s_i* is the length segment, *t_i* is the thickness

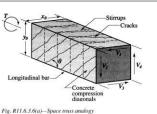
Concrete Shear 16 Lecture 24


Foundations Structures ARCH 331

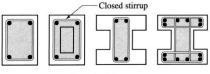

Shear Flow in Open Sections

• each segment has proportion of T with respect to torsional rigidity,

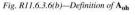
• total angle of twist:



• I beams - web is thicker, so τ_{max} is in <u>web</u> Concrete Shear 17 Foundations Structures Lecture 24 ARCH 331


Torsional Shear Reinforcement

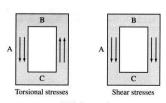
- closed stirrups
- more longitudinal reinforcement



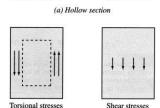
F2008abn

area enclosed by shear flow

 $A_{oh} =$ shaded area



Concrete Shear 19 Lecture 24


Foundations Structures ARCH 331

Torsional Shear Stress

- twisting moment
- and beam shear

(b) Solid section Fig. R11.6.3.1-Addition of torsional and shear stresses

Concrete Shear 18 Lecture 24

Foundations Structures ARCH 331

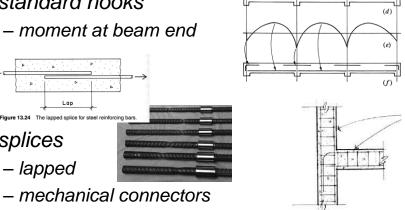
F2008abn

Development Lengths

- required to allow steel to yield (f_v)
- standard hooks

Lap

Figure 13.24 The lapped splice for steel reinforcing ba


splices

Concrete Shear 20

Lecture 24

- lapped

- moment at beam end

Foundations Structures ARCH 331

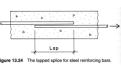
Development Lengths

- l_d , embedment required <u>both</u> sides
- proper cover, spacing:
 - No. 6 or smaller

$$l_{d} = \frac{d_{b}F_{y}}{25\sqrt{f_{c}'}} \quad \text{or 12 in. minimum}$$

– No. 7 or larger

$$_{d} = rac{d_{b}F_{y}}{20\sqrt{f_{c}'}}$$
 or 12 in. minimum


Concrete Shear 21 Lecture 24 Foundations Structures ARCH 331

Development Lengths

bars in compression

$$d_{d} = \frac{0.02 d_{b} F_{y}}{\sqrt{f_{c}'}} \le 0.0003 d_{b} F_{y}$$

- splices
 - tension minimum is function of l_d and splice classification
 - compression minimum
 - is function of d_b and F_y

Concrete Shear 23 Lecture 24 F2008abr

Development Lengths

- hooks
 - bend and extension

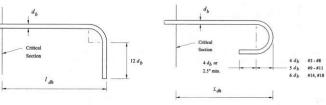
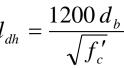
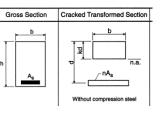



Figure 9-17: Minimum requirements for 90° bar hooks.

r hooks. Figure 9-18: Minimum requirements for 180° bar hooks.

• minimum




```
Concrete Shear 22
Lecture 24
```

Foundations Structures ARCH 331 F2008abr

Concrete Deflections

- elastic range
 - I transformed
 - $-E_c$ (with f'_c in <u>psi</u>)
 - normal weight concrete (~ 145 lb/ft³) $E_c = 57,000\sqrt{f_c'}$

• concrete between 90 and 160 lb/ft³

$$E_c = w_c^{1.5} 33 \sqrt{f_c}$$

- cracked
 - I cracked
 - E adjusted

Concrete Shear 24 Lecture 24 Foundations Structures ARCH 331

Deflection Limits

- relate to whether or not beam supports or is attached to a damageable nonstructural element
- need to check <u>service</u> live load and long term deflection against these

L/180	roof systems (typical) – live
L/240	floor systems (typical) – live + long term
L/360	supporting plaster – live
L/480	supporting masonry – live + long term

Concrete Shear 25 Lecture 24 Foundations Structures ARCH 331