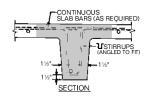
ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

DR. ANNE NICHOLS

FALL 2013

concrete construction: T-beams & slabs

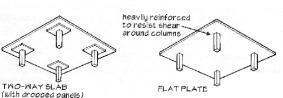

Concrete Slahs 1 Lecture 23

Architectural Structures ARCH 331

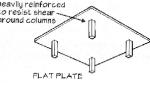
F2009ahn

T sections

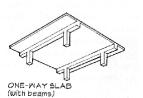
- two areas of compression in moment possible
- one-way joists
- effective flange width

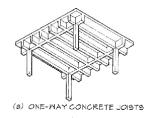


Concrete Slahs 3 Foundations Structures Lecture 23 ARCH 331


F2008abn

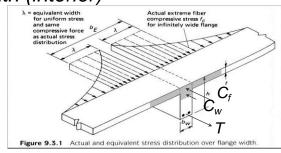
Systems


- beams separate from slab
- beams integral with slab
 - close spaced
- continuous beams
- no beams



Concrete Slabs 2 Lecture 23

Foundations Structures ARCH 331

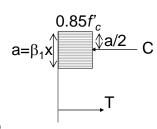

F2008abn

T sections


• negative bending: min A_s, large<u>r</u> of:

$$A_s = \frac{6\sqrt{f_c'}}{f_y}(b_w d) \qquad A_s = \frac{3\sqrt{f_c'}}{f_y}(b_f d)$$

- effective width (interior)
 - -1/4
 - $-b_{w} + 16t$
 - center-tocenter of beams



Concrete Slabs 4 Lecture 23

T sections

- usual analysis steps
- assume no compression in web
- 2. design like a rectangular beam
- 3. needs reinforcement in slab too
- 4. also analyze for negative moment, if any

Concrete Slahs 5 Lecture 23

Foundations Structures ARCH 331

F2008abn

One-Way

- Joists
 - wide pans
 - -5', 6' up
 - light loads & long spans
 - one-leg stirrups

Concrete Slabs 7 Lecture 23

WIDE FLANGEforms

WIDE FLANGEforms are available in standard 53 and 66-inch widths. When used with 7 and 6-inch joists they pro-duce 5 and 6-foot modules respecduce 5 and 6-foot modules respec-tively. ACI 318 requires the "joist" to be designed as a beam with minimum shear reinforcement. Any joist width can be used in combination with stanard width pans to address span and ad requirements. This system is ver fficient for projects where the struc-ural floor must provide a two-hour fin

Using hard rock concrete, a 4 1/2-inch Using hard rock concrete, a 4 1/2-inch slab and minimum slab reinforcement will result in sufficient capacity for a variety of superimposed loads while reducing structure dead load. Shal-lower depth forms are appropriate for spans in the 25- to 35-foot range. Deeper deoths are appropriate, under spans in the 25- to 35-foot range. Deeper depths are appropriate, under moderate loads, for spans in the 35- t 45-foot range using mild steel, while spans up to 60 feet can be achieved with post-tensioning.

	reated with sign Module
Depth of Kid	Cubic Shet of rold created per linear S
14"	Not Available
16"	5.76
30"	7.00
245	6.500

	reated with sign Module
Depth of Visid	Cubic Next of sold created per linear for
14"	4.363
16"	2,86
20"	8.995
24"	10.667

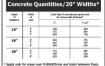
One-Way

- Joists
 - standard stems
 - 2.5" to 4.5" slab
 - ~30" widths
 - reusable forms

Concrete Slabs 6

Lecture 23

U	

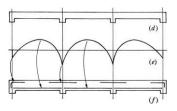

FLANGEforms

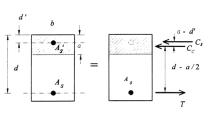
FLANGEforms are available in stan forms are among the most popular because of their flexibility to accom because of their feetbility to accommodate various synuta and jost modate various synuta and jost widths where required. They are efficient for projects with heavy superimposed loads and provide a ven hour fire rating by using a real projects with irregular isyouts or unusual building shapes. They are also efficient for projects where we will be a solid to the projects with the pro

ity to meet a wide range of spans and loads. Further, they will accom modate in-the-floor raceway electrimodate in-the-floor raceway electri-cal and communication distribution systems. Ceco FLANGEforms are capable of producing sound struc-tural concrete, but are incapable of producing tight tolerances and smooth finishes. This form is a seg-mented steelform and the concrete will have irregular joists, a rough finish, and offsets at both the laps and flances.

If a higher quality finish is required, you may wish to consider Ceco LONGforms (please see page 6.) The additional cost of higher quality forms are often offset by finishing costs. Contact your Ceco representative for assistance.

Depth of Deathurn	Width of lose	Calife feet of concrete per square flot by slab thickness*			
certon	1082	r	41/2"		
14"	44.4	ASA AB3 SSB	.58L .688 .633		
16"	47.5	512 550 567	60 65 70		
20"	9.19	ACS AHD AD14	.730 .765 .799		
24"	6. 7.	7094 7736 7779	.639 .565 .565		
Sping Joi and 12	its, special h	er FLANGEforms and j eaders, beam toes, e also available. Conta	tc., not included.		




,	
	Dimensions
	SLOPE 1' IN 12'
	25°
	-1 - 3v 3v 1v -1 -
-	
	T STEEDWEN T N N N N N N N N N N N N N N N N N N

Depth	Cubic Re	et of void cre by width of F	sited per lin LANGERorn	sar fluit	*Mided Cu. Rt. of Concrete per Topere		
Steelform	ar avail	31° N-35	13" 84.05	LIT MADE	End Co	edition acres	
10"	2.823	L329	.962	HZ2.	.621	.420	
12"	2.414	1.551	1.985	.748	.425	.500	
14"	2.801	L429	L343	.857	.730	SA.	
16"	3.163	2,472	1.516	.964	.434	84	
20"	3.993	2,546	1.890	1.195	1.00	NA.	
24"	4.667 3.900 Sot Available				Not Available		

Compression Reinforcement

- · doubly reinforced
- negative bending
- two compression forces
- bigger M_n
- control deflection
- increase ductility
- needs ties because of buckling

Concrete Slabs 8 Lecture 23

Foundations Structures ARCH 331

F2008abn

Compression Reinforcement

analysis

$$-A_s & A_s$$

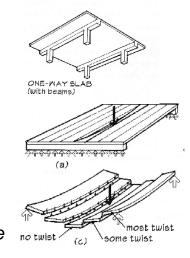
$$-T = C_c + C_s$$

 $-T = A_s f_v$

$$- C_s = A_s'(f'_s - 0.85f'_c)$$

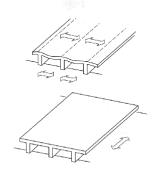
$$-C_c = 0.85 f'_c$$
ba with $a = \beta_1 x$

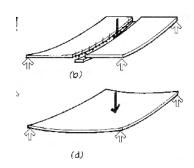
 $-f_s$ not known, so solve for x (n.a.)


$$-f_s$$
'< f_y ?

$$-M_n = T(d-a/2) + C_s(d-d')$$

Concrete Slabs 9 Lecture 23 Foundations Structures ARCH 331 F2008abn


Slab Design


- one unit wide "strip"
- with uniform loads
 - like "wide" beams
 - moment / unit width
 - uniform curvature
- · with point loads
 - resisted by stiffness of adjacent strips
 - more curvature in middle

Slabs

- one way behavior like beams
- two way behavior more complex

Concrete Slabs 10 Lecture 23 Foundations Structures ARCH 331 F2008abn

Slab Design

- · min thickness by code
- · reinforcement
 - bars, welded wire mesh
 - cover
 - minimum by steel grade

• 40-50: $\rho = \frac{A_s}{bt} = 0.002$ • 60: $\rho = \frac{A_s}{bt} = 0.0018$

Concrete Slabs 12 Lecture 23 Foundations Structures ARCH 331

TABLE 9.5(a)—MINIMUM THICKNESS OF NONPRESTRESSED BEAMS OR ONE-WAY SLABS UNLESS DEFLECTIONS ARE COMPUTED

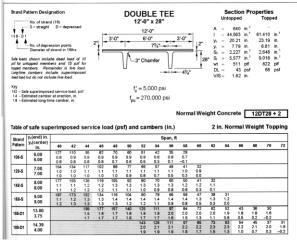
EIIIII.		Minimum th						
11111	Simply sup- ported	One end continuous	Both ends continuous	Cantilever				
Member	Members not supporting or attached to partitions or other construction likely to be damaged by large deflections.							
Solid one- way slabs	€/20	€/24	€/28	€/10				
Beams or ribbed one- way slabs	bbed one-		€/21	ℓ/8				

F2008abr

Concrete Slabs 11 Lecture 23 Foundations Structures ARCH 331 F2008abn

One-Way Slabs

- A_s tables
- max spacing
 - $\le 3(t)$ and 18"
 - $\le 5(t)$ and 18" temp & shrinkage steel
- no room for stirrups


Table 3-7 Areas of Bars per Foot Width of Slab-A_s (in. 2/ft)

Bar	Bar spacing (in.)												
size	6	7	- 8	9	10	11	12	13	14	15	16	17	18
#3	0.22	0.19	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09	0.08	0.08	0.07
#4	0.40	0.34	0.30	0.27	0.24	0.22	0.20	0.18	0.17	0.16	0.15	0.14	0.13
#5	0.62	0.53	0.46	0.41	0.37	0.34	0.31	0.29	0.27	0.25	0.23	0.22	0.21
#6	0.88	0.75	0.66	0.59	0.53	0.48	0.44	0.41	0.38	0.35	0.33	0.31	0.29
#7	1.20	1.03	0.90	0.80	0.72	0.65	0.60	0.55	0.51	0.48	0.45	0.42	0.40
#8	1.58	1.35	1.18	1.05	0.95	0.86	0.79	0.73	0.68	0.63	0.59	0.56	0.53
#9	2.00	1.71	1.50	1.33	1.20	1.09	1.00	0.92	0.86	0.80	0.75	0.71	0.67
#10	2.54	2.18	1.91	1.69	1.52	1.39	1.27	1.17	1.09	1.02	0.95	0.90	0.85
#11	3.12	2.67	2.34	2.08	1.87	1.70	1.56	1.44	1.34	1.25	1.17	1.10	1.04

Concrete Slabs 13 Foundations Structures F2008abn
Lecture 23 ARCH 331

Precast

- prestressed
 - PCI Design Handbook
 - double T's
 - hollow core
 - -L's
- topping
- load tables

Concrete Slabs 14 Foundations Structures
Lecture 23 ARCH 331

F2008abn