ARCHITECTURAL STRUCTURES:

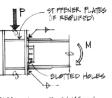
FORM, BEHAVIOR, AND DESIGN

DR. ANNE NICHOLS **F**ALL 2013

twenty one

steel construction bolts, welds & light gages

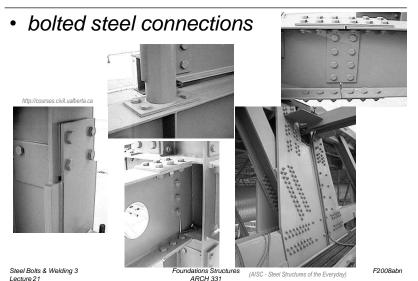
Steel Bolts & Welding 1 Lecture 21


ARCH 331

Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

(a) Framed beam (shear) connection.

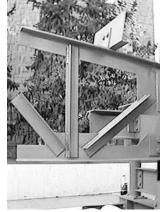

(b) Moment connection (rigid frame).

Steel Bolts & Welding 2 Lecture 21

Foundations Structures ARCH 331

F2008abr

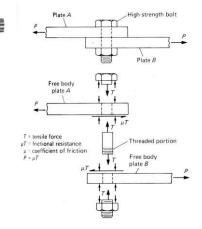
Bolts



Welds

welded steel connections

Foundations Structures ARCH 331



F2008abn

Steel Bolts & Welding 4 Lecture 21

Bolts

- types
 - materials
 - · high strength
 - · A307, A325, A490
 - location of threads
 - included N
 - excluded X
 - friction or bearing (SC)
 - · always tightened

Steel Bolts & Welding 5 Lecture 18 Foundations Structures ARCH 331 Su2011abn

Bolts

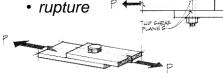
- · rarely fail in bearing
- holes considered 1/8" larger
- shear & tension

$$R_a \le \frac{R_n}{\Omega} \quad R_u \le \phi_v R_n$$
 $p_v = 0.75$

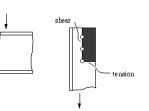
- single shear or tension

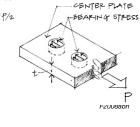
$$R_n = F_n A_h$$

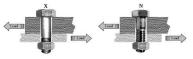

- double shear


$$R_n = F_n 2A_b$$

Steel Bolts & Welding 7 Lecture 18 Foundations Structures ARCH 331 Su2011abn


Bolted Connection Design


- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double


Bolts

Steel Bolts & Welding 6

Lecture 21

Nominal Bolt Diameter, d, in. Nominal Bolt Area, in. ²						5/8 0.307		3/4 0.442		7/a 0.601		0.785	
Desig.	Cond.	ASD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRF			
Group	N	27.0	40.5	S	8.29 16.6	12.4 24.9	11.9 23.9	17.9 35.8	16.2 32.5	24.3 48.7	21.2 42.4	31.8 63.6	
A	x	34.0	51.0	S	10.4	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0 80.1	
Group	N	34.0	51.0	S	10.4	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0 80.1	
В	x	42.0	63.0	S	12.9 25.8	19.3 38.7	18.6 37.1	27.8 55.7	25.2 50.5	37.9 75.7	33.0 65.9	49.5 98.9	
A307	(-)	13.5	20.3	S	4.14 8.29	6.23 12.5	5.97 11.9	8.97 17.9	8.11 16.2	12.2 24.4	10.6	15.9 31.9	
Nominal Bolt Diameter, d, in.						11/6		11/4		13/8		11/2	
	Nominal E	lolt Area	in.2		0.994		1.23		1.48		1.77		
ASTM Desig.	Thread Cond.	$F_{\rm By}/\Omega$ (ksi)	oF _{nv} (ksi)	Load-	t_b/Ω	¢/a	r_0/Ω	ψr _a	r_n/Ω	φr _a	r ₀ /Ω	06	
Desig.	Cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
Group	N	27.0	40.5	S	26.8 53.7	40.3 80.5	33.2 66.4	49.8 99.6	40.0 79.9	59.9 120	47.8 95.6	71.7	
A	x	34.0	51.0	S	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181	
Group	N	34.0	51.0	S	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181	
8	x	42.0	63.0	S	41.7 83.5	62.6 125	51.7 103	77.5 155	62.2 124	93.2 186	74.3 149	112 223	
A307	-	13.5	20.3	S	13.4 26.8	20.2 40.4	16.6 33.2	25.0 49.9	20.0 40.0	30.0 60.1	23.9 47.8	35.9 71.9	
ASD	LRFD	For and	loaded or	onnections	preader to	oan 108 in	see USC	Spanifir	ation Table	13.2 for	drote h	-	
2 = 2.00	φ = 0.75				green, r	ani 20 ni	, and reus	· upecine	areas season				

		more real	Avai engt	lable	-	nsil	7	ı			
Nominal	Bolt Diame	5/8		3/4		7/8		1			
Nominal Bolt Area, in.2			0.307		0.442		0.601		0.785		
ASTM Des	in. (ks		r_0/Ω	ora	r_n/Ω	φ r _a	r_0/Ω	or _a	r_n/Ω	or,	
	AS	0 LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFI	
Group A Group B A307		84.8	13.8 17.3 6.90	20.7 26.0 10.4	19.9 25.0 9.94	29.8 37.4 14.9	27.1 34.0 13.5	40.6 51.0 20.3	35.3 44.4 17.7	53.0 66.6 26.5	
Nominal I	Bolt Diamet	ter, d, in.	1	1/e	1	1/4	1	3/8	1	1/2	
Nomin	Nominal Bolt Area, in.2			0.994		1.23		1.48		1.77	
ASTM Des	ig. Fat/		t_B/Ω	ψ r _n	r_0/Ω	or _e	r_0/Ω	or _n	$r_{\rm e}/\Omega$	or _e	
	ASI	LRFD	ASO	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFE	
Group A Group B A307	45.0 56.5 22.5	84.8	44.7 56.2 22.4	67.1 84.2 33.5	55.2 69.3 27.6	82.8 104 41.4	83.9 33.4	100 126 50.1	79.5 99.8 39.8	119 150 59.6	
ASO	LRFD										
$\Omega = 2.00$	φ = 0.75										

Steel Bolts & Welding 8

Foundations Structures ARCH 331 http://www.fastenal.com

Su2011abn

Bolts

bearing

$$R_a \leq \frac{R_n}{\Omega}$$
 $R_u \leq \phi R_n$ $\phi = 0.75$

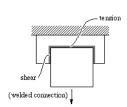
- deformation is concern

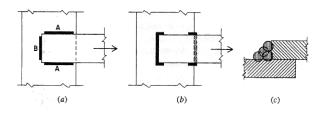
$$R_n = 1.2L_c t F_u \le 2.4 dt F_u$$

- deformation isn't concern

$$R_n = 1.5L_c t F_u \le 3.0 dt F_u$$

long slotted holes


$$R_n = 1.0L_c t F_u \le 2.0 dt F_u$$

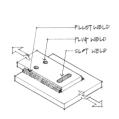

 L_c – clear length to edge or next hole (ex. 11/4", 3")

Steel Bolts & Welding 9 Lecture 18 Foundations Structures ARCH 331 Su2011abn

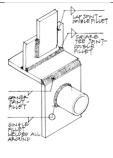
Welded Connection Design

- considerations
 - shear stress
 - yielding
 - rupture

Steel Bolts & Welding 11 Lecture 21 Foundations Structures ARCH 331 F2008abn

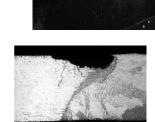

Bolts

		Das		on E ps/in.		Dis	tanc	е					
Hole Type	Edge Distance	F _{in} ksi	Nominal Bolt Diameter, d, in.										
			5/8		3/4		7/a			1			
	Le, in.		$r_{\rm e}/\Omega$	♦fa	r_n/Ω	010	r_0/Ω	¢fe .	r_0/Ω	ψr _a			
E-1/	12 1 50	0.3	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	11/4	58	31.5	47.3	29.4	44.0	27.2	40.8	25.0	37.5			
STD	. /*	65	35.3	53.0	32.9	49.4	30.5	45.7	28.0	42.0			
SSLT	2	58 65	43.5	65.3 73.1	52.2 58.5	78.3 87.8	53.3 59.7	79.9 89.6	51.1 57.3	76.7			
		58	28.3	42.4	26.1	39.2	23.9	35.9	20.7	85.9			
	11/4	65	31.7	47.5	29.3	43.9	26.8	40.2	23.2	31.0			
SSLP	2	58	43.5	65.3	52.2	78.3	50.0	75.0	46.8	70.1			
		65	48.8	73.1	58.5	87.8	56.1	84.1	52.4	78.6			
ovs -		58	29.4	44.0	27.2	40.8	25.0	37.5	21.8	32.6			
	11/4	65	32.9	49.4	30.5	45.7	28.0	42.0	24.4	36.6			
	2	58	43.5	65.3	52.2	78.3	51.1	76.7	47.9	71.8			
		65	48.8	73.1	58.5	87.8	57.3	85.9	53.6	80,4			
LSLP	11/4	58	16.3	24.5	10.9	16.3	5.44	8.16	-	-8			
		65	18.3	27,4	12.2	18.3	6.09	9.14	-	-			
	2	58 65	42.4 47.5	63.6 71.3	37.0 41.4	55.5 62.2	31.5 35.3	47.3 53.0	26.1	39.2			
		58	26.3	39.4	24.5	36.7	22.7	34.0	20.8	313			
	11/4	65	29.5	44.2	27.4	41.1	25.4	38.1	23.4	35.0			
LSLT	2/20	58	36.3	54.4	43.5	65.3	44.4	66.6	42.6	63.9			
	2	65	40.6	60.9	48.8	73.1	49.8	74.6	47.7	71.6			
STD, SSLT,	914*	58	43.5	65.3	52.2	78.3	80.9	91.4	89.6	104			
SSLP, OVS,	Le≥ Le tut	65	48.8	73.1	58.5	87.8	68.3	102	78.0	117			
LSLP			10717				100		10.71	87.0			
LSLT	Le > Le na	58 65	36.3 40.6	54.4 60.9	43.5 48.8	65.3 73.1	50.8 56.9	76.1 85.3	58.0 65.0	97.5			
_		STD.	40.0	00.0	79.0	1.41	30.0	00.0	90.0	-			
Edge distance for full bearing		SSLT.	15	(a	1	15 _{/16}	21		29	W 1			
		LSLT						2					
strer	ngth	OVS	17	1/16	2		25	fie :	25	4			
$L_e \ge L_e$	wa, in.	SSLP	11	1/16	2		-25	fie	21	1/16 ·			
		LSLP	21/ns		27/16		27/8		31/4				


		Ta ip-Cı vailab ass A	ritica le Sh	ear S	onne trengt	ctio	s	Grou Bo				
			Gr	oup B Bo	ilts			0.0	-			
- 110	N T	4147.611	111	Non	ninal Bolt	Diameter,	d, in.		911.5			
- 10		5,	8	1	1/4	1	1113	1				
		Minimum Group B Bolt Pretension, kips										
Hole Type	Loading	24		35		49		64				
		r _a /Ω	φr _a	r_a/Ω	0ra	r_0/Ω	QFa	I_0/Ω	070			
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFI			
STD/SSLT	S	5.42 10.8	8.14 16.3	7.91 15.8	11.9 23.7	11.1	16.6 33.2	14.5 28.9	21.7			
OVS/SSLP	S	4.62 9.25	6.92 13.8	6.74 13.5	10.1	9.44 18.9	14.1 28.2	12.3 24.7	18.4 36.9			
LSL	S	3.80 7.60	5.70 11.4	5.54	8.31 16.6	7.76 15.5	11.6 23.3	10.1	15.2 30.4			
7	Loading	Nominal Bolt Diameter, d, in.										
		11/0		1	1/4	1	1/8	1	1/2			
		Minimum Group B Bott Pretension, kips										
Hole Type		80		102		121		148				
		r_n/Ω	ϕr_{tt}	r_{a}/Ω	♦r _n	$r_n I \Omega$	0fe	r_0/Ω	0/2			
1.11		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFI			
STD/SSLT	S D	18.1 36.2	27.1 54.2	23.1 46.1	34.6 69.2	27.3 54.7	41.0 82.0	33.4 66.9	50.2 100			
OVS/SSLP	S D	15,4 30.8	23.1 46.1	19.6 39.3	29.4 58.8	23.3 46.6	34.9 69.7	28.5 57.0	42.6 85.3			
LSL	S D	12.7 25.3	19.0 38.0	16.2 32.3	24.2 48.4	19.2 38.3	28.7 57.4	23.4 46.9	35,1 70.2			
STD = standar OVS = oversize SSLT = short-si SSLP = short-si LSL = long-ski	ed hole lotted hole tran lotted hole para	sliel to the li	ne of force	,	rce	S = single D = doubl						
Hole Type	ASD	LRFD				ume no mor			n provid			
STD and SSLT	Ω = 1.50	ф = 1.00	See AISC	Specificano		ibute loads 13.8 and J5			ns			
			Toro mesos									

Welded Connection Design

- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat
- field welding
- shop welding



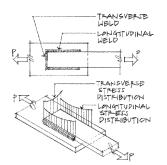
Steel Bolts & Welding 12 Lecture 21 Foundations Structures ARCH 331 F2008abn

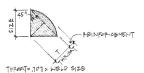
Welded Connection Design

- weld process
 - melting of material
 - melted filler electrode
 - shielding gas / flux
 - potential defects
- weld materials
 - E60XX
 - E70XX

 $F_{FXX} = 70 \text{ ksi}$

Steel Bolts & Welding 13 Lecture 21


Foundations Structures ARCH 331


F2008abn

- CONVEX

Welded Connection Design

- shear failure assumed
- throat
 - -T = 0.707 x weld size
- area
 - -A = Tx length of weld
- · weld metal generally stronger than base $metal (ex. F_v = 50 ksi)$

Steel Bolts & Welding 14 Lecture 18

Foundations Structures ARCH 331

Su2011abn

Welded Connection Design

- minimum
 - table
- maximum
 - material thickness (to 1/4")
 - 1/16" less
- · min. length
 - 4 x size min.
 - -≥11/2"

THRAAT - JOJ X WELD SIZE

Welded Connection Design

shear

$$R_a \leq \frac{R_n}{\Omega}$$
 $R_u \leq \phi R_n$
 $\phi = 0.75$

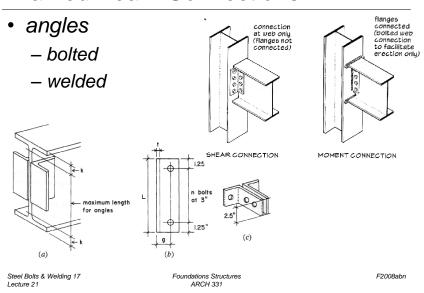
$$R_n = 0.6F_{EXX}Tl = Sl$$
 area

– table for ϕ S

Available	Strength of Fil	llet Welds						
per inch of weld (\$\phi S)								
Weld Size	E60XX	E70XX						
(in.)	(k/in.)	(k/in.)						
¾6	3.58	4.18						
1/4	4.77	5.57						
⁵ ∕16	5.97	6.96						
3/8	7.16	8.35						
1/16	8.35	9.74						
1/2	9.55	11.14						
5∕8	11.93	13.92						
3/4	14.32	16.70						

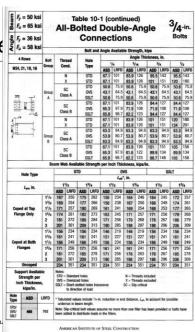
(not considering increase in throat with submerged arc weld process)

Foundations Structures ARCH 331

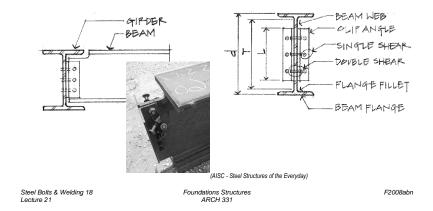

Su2011abn

Steel Bolts & Welding 16 Lecture 18

Foundations Structures ARCH 331


Su2011abn

Framed Beam Connections


Framed Beam Conne

- tables for standard bolt sizes & spacings
- # bolts
- bolt diameter, angle leg thickness
- bearing on beam web

Framed Beam Connections

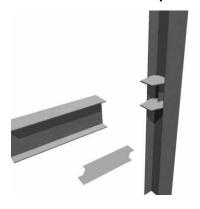
- terms
 - coping

Framed Beam Connections

welded example (shear)

(AISC - Steel Structures of the Everyday)

Steel Bolts & Welding 20


Foundations Structures ARCH 331 F2008abn

Steel Bolts & Welding 19 Lecture 18

Foundations Structu ARCH 331

Framed Beam Connections

welded moment example



(AISC - Steel Structures of the Everyday)

Steel Bolts & Welding 21 Lecture 21 Foundations Structures ARCH 331 F2008abn

Framed Beam Connections

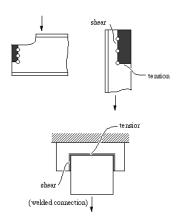
welded/bolted moment example

(AISC - Steel Structures of the Everyday)

Foundations Structures ARCH 331 F2008abn

Framed Beam Connections

• welded/bolted moment example



(AISC - Steel Structures of the Everyday)

Steel Bolts & Welding 22 Lecture 21 Foundations Structures ARCH 331 F2008abn

Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

Steel Bolts & Welding 24 Lecture 21 Foundations Structures ARCH 331 F2008abn

Beam Connections

$$\phi = 0.75$$

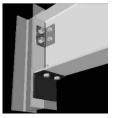
$$R_{n} = 0.6F_{u}A_{nv} + U_{bs}F_{u}A_{nt} \le 0.6F_{y}A_{gv} + U_{bs}F_{u}A_{nt}$$

- where U_{bs} is 1 for uniform tensile stress

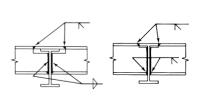
Figure 2-1. Block Shear Rupture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

Figure 2-14. Tension Fracture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

block shear rupture

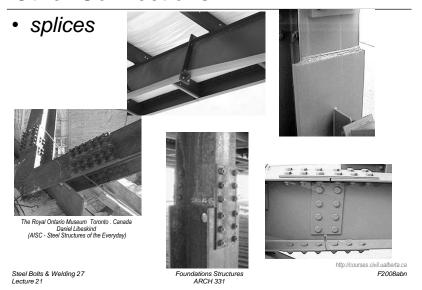

tension rupture

Steel Bolts & Welding 25


Foundations Structures ARCH 331

Other Connections

- seated beam
- continuous
 - beam to column
 - beam to beam



Steel Bolts & Welding 26 Lecture 21

Foundations Structures ARCH 331

F2008abn

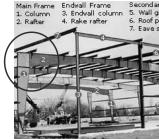
Other Connections

Other Connections

• rigid frame knees

gussets & joints

(AISC - Steel Structures of the Everyday)

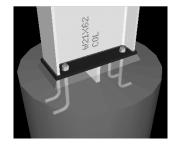


Foundations Structures

ARCH 331

Steel Bolts & Welding 28 Lecture 21

F2008abn


Other Connections

- base plates
 - anchor bolts
 - bearing on steel
 - bending of plate

http://courses.civil.ualberta.ca

Steel Bolts & Welding 29 Lecture 21

Foundations Structures ARCH 331

F2008abn