ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

DR. ANNE NICHOLS **F**ALL 2013

lecture

structural system

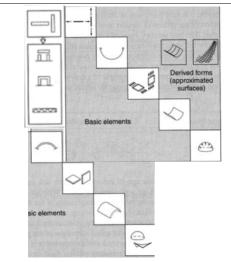
Lecture 2

ARCH 331

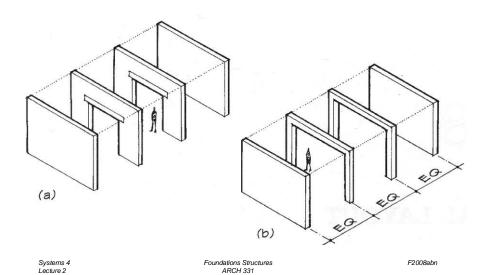
F2009abn

Structural Organization

- classifications
 - geometry
 - · line-forming
 - · surface-forming
 - stiffness
 - rigid
 - flexible
 - one-way or two-way
 - · spatial organization and load transfer
 - materials


Systems 2

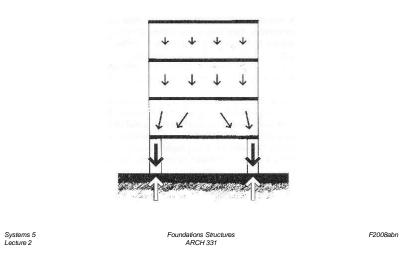
Foundations Structures


F2008abn

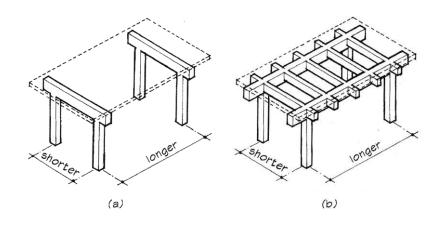
Structural Components

- bearing walls
- columns
- beams
- flat plates
- trusses
- arches
- shells
- · cables

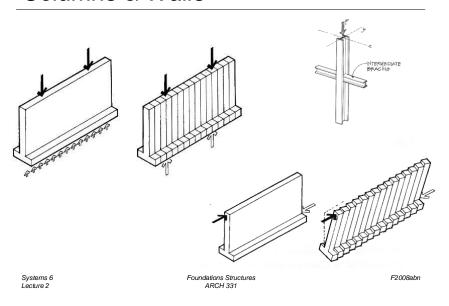
Bearing Walls

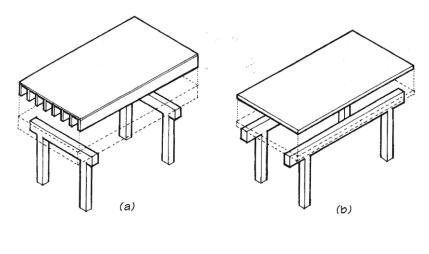

Systems 3 Lecture 2

Foundations Structures ARCH 331


F2008abn

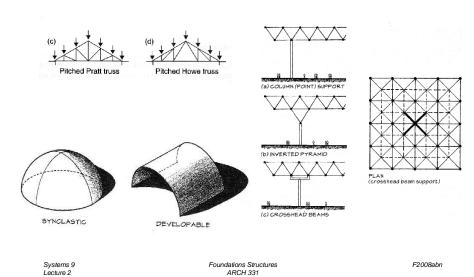
Bearing Walls


• behavior as "deep beams"


Beams & Plates

Columns & Walls

Beams & Plates

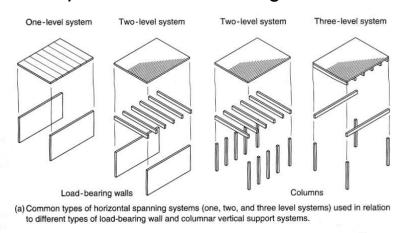

 Systems 7
 Foundations Structures
 F2008abn

 Lecture 2
 ARCH 331

 Systems 8
 Foundations Structures
 F2008abn

 Lecture 2
 ARCH 331

Trusses and Shells

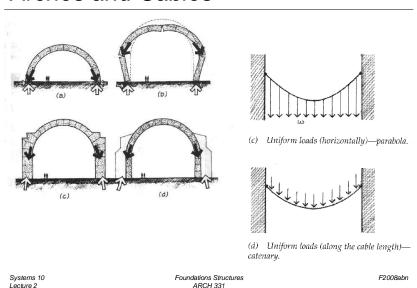


Building Framing

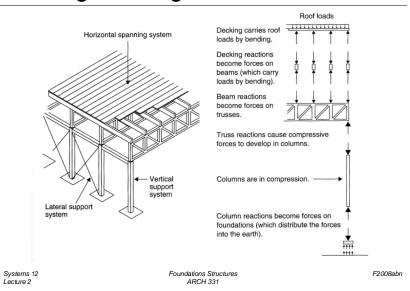
Systems 11

Lecture 2

• Components or Assemblages

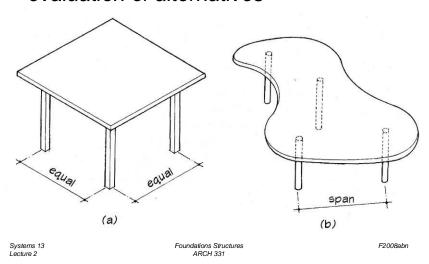


Foundations Structures


ARCH 331

F2008abn

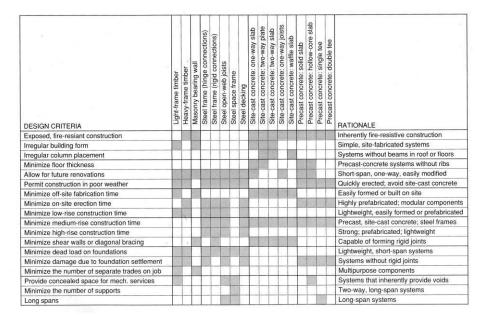
Arches and Cables



Building Framing

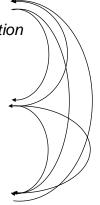
System Selection

evaluation of alternatives


Structural Design Criteria

- components stay together
- · structure acts as whole to be stable
 - resist sliding
 - resist overturning
 - resist twisting and distortion
- internal stability
 - interconnectedness
- strength & stiffness

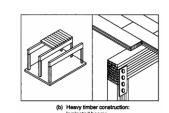
Foundations Structures F2008abn

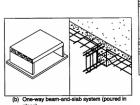


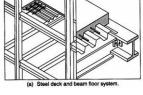
 Systems 14
 Foundations Structures
 F2008abn

 Lecture 2
 ARCH 331

Structural Design Sequences


- first-order design
 - structural type and organization
 - design intent
 - contextual or programmatic
- second-order
 - structural strategies
 - material choice
 - structural systems
- third-order
 - member shaping & sizing

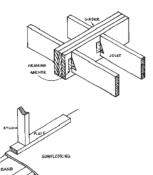



Systems 16 Lecture 2 Foundations Structures ARCH 331 F2008abr

Systems by Materials

- Wood
- Steel
- Concrete
- Masonry
- Composite

Systems 17 Lecture 2


Foundations Structures ARCH 331

F2008abn

Timber Construction

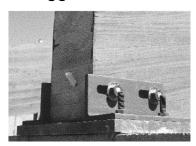
- all-wood framing systems
 - studs, beams, floor diaphragms, shearwalls
 - glulam arches & frames
 - post & beams
 - trusses
- composite construction
 - masonry shear walls
 - concrete
 - steel

Systems 18 Lecture 2 Foundations Structures ARCH 331

F2008abn

Timber Construction

- · studs, beams
- floor diaphragms & shear walls



Systems 19 Foundations Structures
Lecture 2 ARCH 331

F2008abn

Timber Construction

- glulam arches & frames
 - manufactured or custom shapes
 - glue laminated
 - bigger members

Systems 20 Lecture 2 Foundations Structures ARCH 331 F2008abn

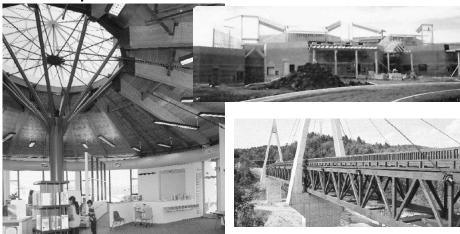
Timber Construction

post & beam

• trusses

Systems 21 Lecture 2 Foundations Structures ARCH 331

Foundations Structures


ARCH 331

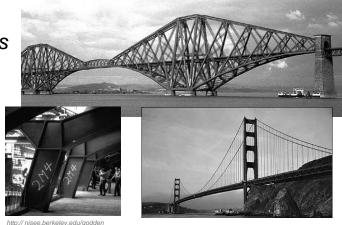
F2008abn

F2008abn

Timber Construction

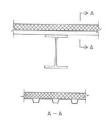
• composite construction

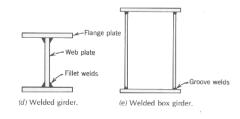
Systems 22


Foundations Structures ARCH 331 F2008abn

Steel

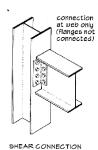
- cast iron wrought iron steel
- cables
- columns
- beams
- trusses
- frames

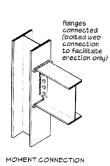

Systems 23

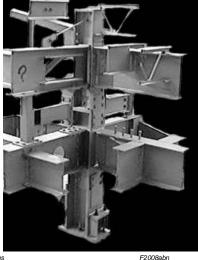

Lecture 2

Steel Construction

- standard rolled shapes
- open web joists
- plate girders
- decking

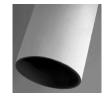



bottom chord

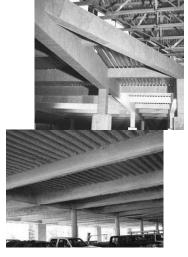

Systems 24 Lecture 2 Foundations Structures ARCH 331 F2008abn

Steel Construction

- welding
- bolts

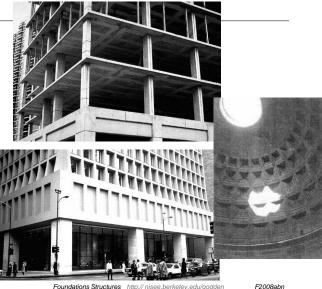

Lecture 2

Systems 25


Foundations Structures

Steel Construction

- fire proofing
 - cementicious spray
 - encasement in gypsum
 - intumescent expands with heat
 - sprinkler system

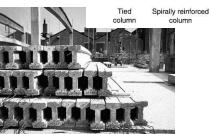


Foundations Structures ARCH 331

F2008abn

Concrete

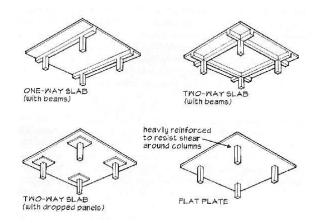
- columns
- beams
- slabs
- domes
- footings


Foundations Structures http://nisee.berkeley.edu/godder. ARCH 331

Concrete Construction

- cast-in-place
- tilt-up
- prestressing
- post-tensioning

Systems 28 Lecture 2

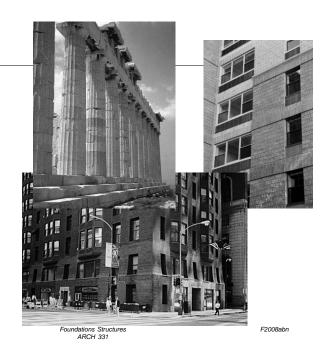

Foundations Structures ARCH 331

http:// nisee.berkeley.edu/godden

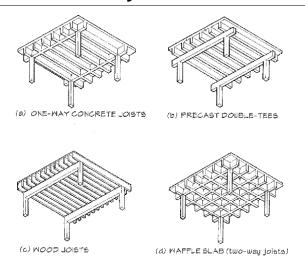
F2008abn

Concrete Floor Systems

• types & spanning direction

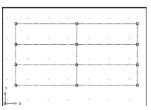


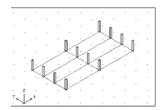
 Systems 29
 Foundations Structures
 F2008abn


 Lecture 2
 ARCH 331

Masonry

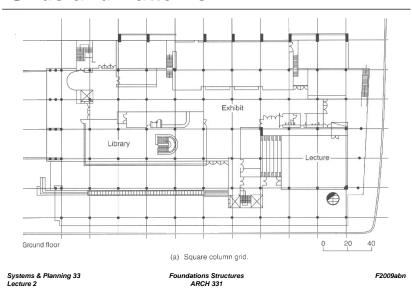
- columns
- walls
- lintels
- beams
- arches
- footings

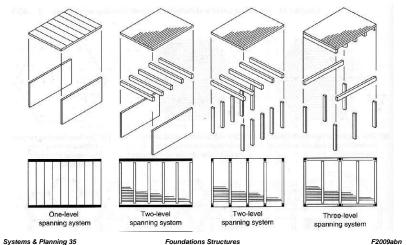

Concrete Floor Systems



Systems 30 Lecture 2 Foundations Structures ARCH 331 F2008abn

Grids and Patterns

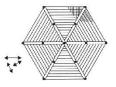

- often adopted early in design
 - give order
 - cellular, ex.
- vertical and horizontal
- square and rectangular
 - single-cell
 - aggregated bays


Systems & Planning 32 Lecture 2 Foundations Structures ARCH 331

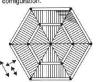
Grids and Patterns

One-Way Systems

· horizontal vs. vertical

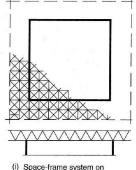

ARCH 331

Systems


- total of components
- · behavior of whole
- classifications
 - one-way
 - two-way
 - tubes
 - braced
 - unbraced

(c) Two-way flat-plate system (without beams) for a hexagonal or circular configuration.

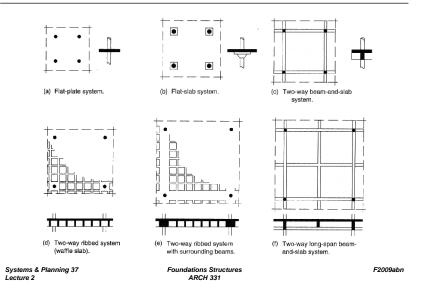
 (a) One-way radial beam-and-column system for a hexagonal or circular configuration.


 (b) One-way circumferential beamand-column system plan for hexagonal or circular configuration.

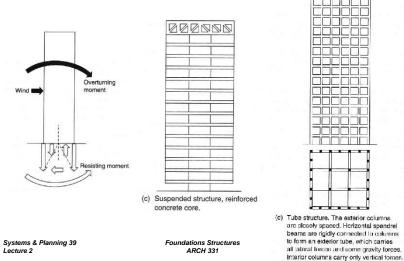
Systems & Planning 34

Foundations Structures ARCH 331 F2009abn

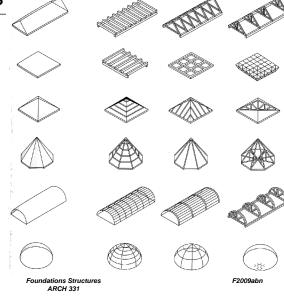
Two-Way Systems


- spanning system less obvious
- horizontal
 - plates
 - slabs
 - space frames
- vertical
 - columns
 - walls

walls with cantilevers.


Systems & Planning 36 Lecture 2 Foundations Structures ARCH 331

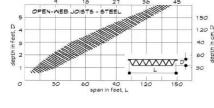
Two-Way Systems


Tubes & Cores

stiffness

Roof Shapes

- coincide
- within

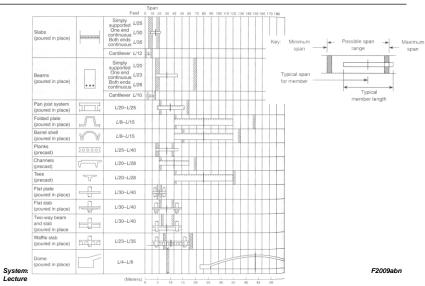


Framing Alternatives

Systems & Planning 38 Lecture 2

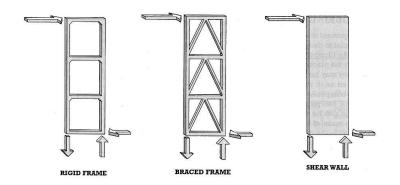
Span Lengths

- crucial in selection of system
- maximum spans
 on charts aren't
 absolute limits,
 but <u>usual</u> maximums



- increase L, increase depth² required (ex. cantilever)
- · deflections depend on L

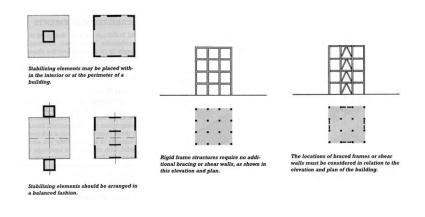
Systems & Planning 40


Foundations Structures ARCH 331

Approximate Depths

Design Issues

• lateral stability – all directions

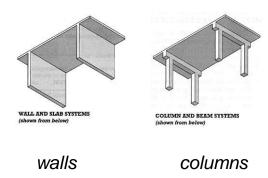

Loading Type and Structure Type

- light uniform loads
 - surface forming elements
 - those that pick up first load dictate spacing of other elements
- heavy concentrated loads
 - member design unique
- distributed vs. concentrated structural strategies
 - large beam vs. many smaller ones

Systems & Planning 42 Lecture 2 Foundations Structures ARCH 331 F2009abn

Design Issues

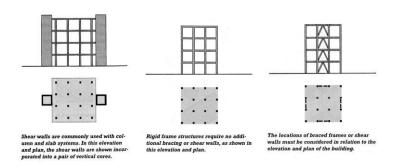
configuration



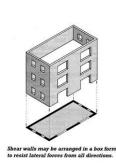
ms & Planning 43 Foundations Structures F2009abn re 2 ARCH 331

Systems & Planning 44 Lecture 2 Foundations Structures ARCH 331

Design Issues


vertical load resistance

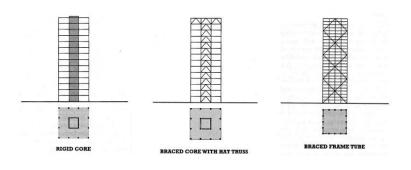
Systems & Planning 45 Foundations Structures
Lecture 2 ARCH 331


Design Issues

· lateral load resistance

Design Issues

· lateral load resistance

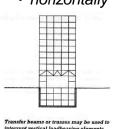


When combined with other stabilizing mechanisms, shear walls may be arranged so as to resist forces in only one direction of a building.

Systems & Planning 46 Lecture 2 Foundations Structures ARCH 331 F2009abn

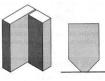
Design Issues

- multi-story
 - cores, tubes, braced frames


Systems & Planning 47 Lecture 2 Foundations Structures ARCH 331 F2009abn

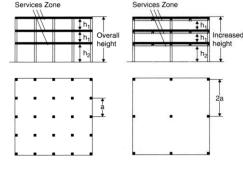
F2009abn

Systems & Planning 48 Lecture 2 Foundations Structures ARCH 331


Design Issues

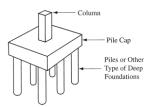
- multi-story
 - avoid discontinuities
 - vertically
 - horizontally

Discrete building masses should be stru turally independent. Inherently unstable building masses should be avoided.


Discontinuities in the stiffness of structures at different levels should be avoided or additional stabilizing elements may be required.

Systems & Planning 49 Lecture 2

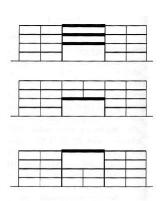
Foundations Structures ARCH 331 F2009abr


Grid Dependency on Floor Height

- wide grid = deep beams
 - increased building height
 - heavier
 - foundation design
- codes and zoning may limit
- utilize depth for mechanical

Foundation Influence

- type may dictate fit
 - piles vs. mats vs. spread
 - capacity of soil to sustain loads
 - high capacity smaller area of bearing needing and can spread out
 - low capacity multiple contacts and big distribution areas



Systems & Planning 50 Lecture 2 Foundations Structures ARCH 331 F2009abn

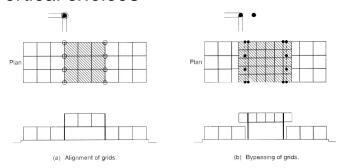
Large Spaces

- ex. auditoriums, gyms, ballrooms
- choices
 - separate two systems completely and connect along edges
 - embed in finer grid
 - staggered truss

Systems & Planning 51

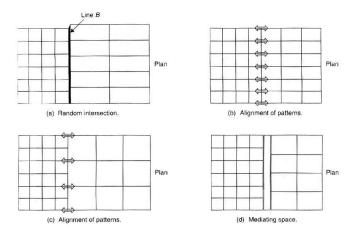
Foundations Structures ARCH 331 F2009abn

Systems & Planning 52 Lecture 2 Foundations Structures ARCH 331


Meeting of Grids

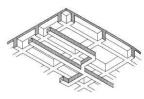
- · common to use more than one grid
- intersection important structurally
- · can use different structural materials
 - need to understand their properties
 - mechanical
 - thermal

Systems & Planning 53 Lecture 2 Foundations Structures ARCH 331 F2009abn


Meeting of Grids

· vertical choices

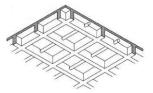
Meeting of Grids


horizontal choices

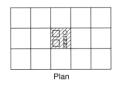
Systems & Planning 54 Lecture 2 Foundations Structures ARCH 331 F2009ahn

Other Conditions

- circulation
- building service systems
 - one-way systems have space for parallel runs
 - trusses allow for transverse penetration
 - pass beneath or interstitial floors
 - for complex or extensive services or flexibility



Systems & Planning 55 Lecture 2 Foundations Structures ARCH 331 F2009abn


Systems & Planning 56 Lecture 2 Foundations Structures ARCH 331

Other Conditions

- poking holes for member services
 - horizontal
 - need to consider area removed, where removed, and importance to shear or bending

- vertical
 - · requires framing at edges
 - can cluster openings to eliminate a bay
- double systems

Systems & Planning 57

Foundations Structures ARCH 331 F2009abn

Fire Safety & Structures

- degree of occupancy hazards
- building heights
- maximum floor areas between fire wall divisions
 - can impact load bearing wall location

Fire Safety & Structures

- fire safety requirements can impact structural selection
- construction types
 - light
 - residential
 - · wood-frame or unprotected metal
 - medium
 - masonry
 - heavy
 - · protected steel or reinforced concrete

Systems & Planning 58 Lecture 2 Foundations Structures ARCH 331 F2009abn

Fire Safety & Structures

- resistance ratings by failure type
 - transmission failure
 - fire or gasses move
 - structural failure
 - · high temperatures reduce strength
 - failure when subjected to water spray
 - necessary strength
- ratings <u>do not pertain</u> to usefulness of structure after a fire

Systems & Planning 59

Foundations Structures ARCH 331 F2009abn

Structural Planning 60

Foundations Structures ARCH 331