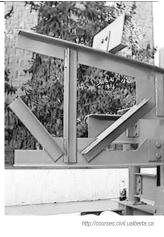
ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

arch 331 Dr. Anne Nichols Fall 2013

lecture NINETEEN

steel construction: trusses, decks & *plate girders*


Steel Trusses 1 Lecture 19 Architectural Structures ARCH 331

Paris 2002/09, Eiffel Tower

Truss Connections

- gusset plates
- bolts
- welds

F2009ahn

Steel Trusses 3 Lecture 19 (AISC - Steel Structures of the Everyday) Foundations Structures ARCH 331

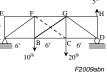
F2009abn

Iron & Steel Trusses

- cast iron
 - 18th century
 - chain links
- wrought-iron
- rivets

Steel Trusses 2 Lecture 19

http:// nisee.berkeley.edu/godden Foundations Structures ARCH 331


F2009abr

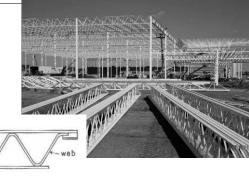
Trusses

- require lateral bracing
- consider buckling
- indeterminate trusses
 - extra members
 - diagonal tension counters
 - solvable with statics
 - cables can't hold compression
 - displacement methods
 - elastic elongation

- too few members, unstable Steel Trusses 4 Lecture 19 ARCH 331

Manufactured Trusses

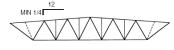
top chord-


- open web joists
- parallel chord

bottom chord

(c) SECTION THRU JOISTS SHOWING FLANGE TYPES

Steel Trusses 5

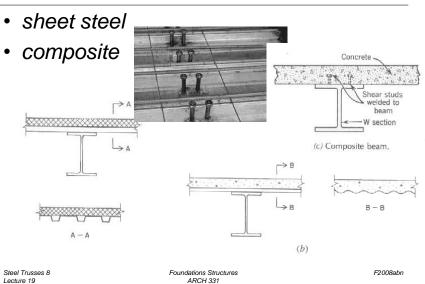

Lecture 19

F2008abn

Open Web Joists

- SJI: www.steeljoist.com
- Vulcraft: www.vulcraft.com
 - K Series (Standard)
 - 8-30" deep, spans 8-50 ft
 - LH Series (Long span)
 - 18-48" deep, spans 25-96 ft
 - DLH (Deep Long Spans)
 - 52-72" deep, spans 89-144 ft
 - SLH (Long spans with high strength steel)
 - pitched top chord
 - 80-120" deep, spans 111-240 ft

Steel Trusses 6 Lecture 19 Foundations Structures ARCH 331 F2008abn


Load Tables - w

	Ba	sed On A							EEL JO wn In Po				(plf)			
Joist Designation	10K1	12K1	12K3	12K5	14K1	14K3	14K4	14K6	16K2	16K3	16K4	16K5	16K6	16K7	16K9	
Depth (in.)	10	12	12	12	14	14	14	14	16	16	16	16	16	16	16	
Approx. Wt (lbs./ft.)	5.0	5.0	5.7	7.1	5.2	6.0	6.7	7.7	5.5	6.3	7.0	7.5	8.1	8.6	10.0	
Span (ft.) ↓																
10	825 550						load for live load deflection									
11	825 542				limit (I /360) in RED											
12	825 455	825 550	825 550	825 550			– limit (L/360) in RED									
13	718 363	825 510	825 510	825 510			total in BLACK									
14	618 289	750 425	825 463	825 463	825 550	825 550										
15	537 234	651 344	814 428	825 434	766 475	825 507	825 507	825 507								
16	469 192	570 282	714	825 396	672 390	825 467	825 467	825 467	825 550	825 550	825 550	825 550	825 550	825 550	825 550	
17	415 159	504 234	630 291	825 366	592 324	742 404	825 443	825 443	768 488	825 526	825 526	825 526	825 526	825 526	825 526	
18	369 134	448 197	561 245	760 317	528 272	661 339	795 397	825 408	684 409	762	825 490	825 490	825 490	825 490	825 490	
19	331 113	402	502 207	681 269	472 230	592 287	712 336	825 383	612 347	682 386	820 452	825 455	825 455	825 455	825 455	
19		361	453	613	426	534	642	787	552	615 330	739	825 426	825 426	825 426	825 426	
20	298 97	142	177	230	197	246	287	347	297							
		142 327	177 409	230 555	385	483	582	712	499	556	670	754	822	825	825	
20		142	177	230												

Foundations Structures

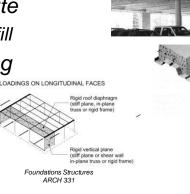
ARCH 331

Decks

TH = SPAN - 0.33 FT.]

Light-gage Steel

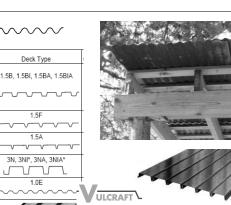
- sheet metal
 - shaped
 - studs, panels, window frames
 - gage
 - · based on weight of 41.82 lb/ft² / inch of thickness
 - 24, 22, 18, 16, i.e.
 - 0.0239, 0.0329, 0.0474, 0.0598 in
 - 0.6, 0.85, 1.0, 1.3, 1.6 mm


Steel Trusses 9 Lecture 19

Foundations Structures ARCH 331

Steel Decks

- common fire proofing
 - cementitious spray
 - composite concrete
- non-composite
 - concrete is fill
- lateral bracing
- diaphragm action



Su2011abr

F2008abn

Steel Decks

- "Texas" style \sim - corrugated Deck Type
- common
 - -1-3 spans
 - can be insulated
 - composite
 - with concrete

Steel Trusses 10 Lecture 19

Foundations Structures ARCH 331

F2008abn

1.5E

1.5A

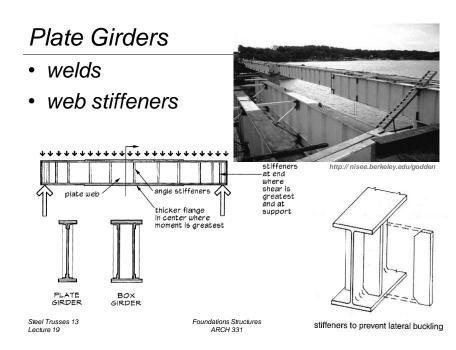
1.0E

1.5BP & 1.5BP 5.71 In.2/Cell

I oad Tables - w

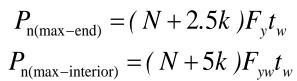
 live load deflection limit L/240

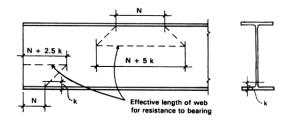
1.5 B, BI, BA, BIA ved (No.3415)


VERTICAL LOADS FOR TYPE 1.5B

	Deck	Max. SDI Const.	Allowable Total (Dead + Live) Uniform Load (PSF)											
No. of			Span (ftin.) C. to C. of Support											
Spans	Туре	Span	5'-0	5'-6	6'-0	6'-6	7'-0	7-6	8'-0	8'-6	9'-0	9'-6	10'-0	
	B 24	4'-8	66	52	42	36	30	27	24	21	20			
	B 22	5'-7	91	71	57	47	40	34	30	27	24	22	20	
1	B 21	6'-0	104	81	64	53	44	38	33	29	26	24	22	
	B 20	6'-5	115	89	71	58	48	41	36	31	28	25	23	
	B 19	7'-1	139	107	85	69	57	48	41	36	32	29	26	
	B 18	7'-8	162	124	98	79	65	55	47	41	36	32	29	
	B 16	8'-8	206	157	123	99	81	68	58	50	44	39	34	
	B 24	5'-10	126	104	87	74	64	55	47	41	36	32	29	
	B 22	6'-11	102	85	71	61	52	46	40	35	32	28	26	
	B 21	7'-4	118	97	82	70	60	52	46	41	36	33	29	
2	B 20	7'-9	132	109	91	78	67	59	51	46	41	36	33	
	B 19	8'-5	154	127	107	91	79	69	60	53	48	43	39	
I F	B 18	9'-1	174	144	121	103	89	78	68	60	54	48	44	
	B 16	10'-3	219	181	152	130	112	97	86	76	68	61	55	
	B 24	5'-10	130	100	79	65	54	45	39	34	31	27	25	
	B 22	6'-11	128	106	89	76	65	57	50	44	39	34	31	
ΙΓ	B 21	7'-4	147	122	102	87	75	65	56	49	42	38	34	
3	B 20	7'-9	165	136	114	97	84	72	61	53	46	41	36	
	B 19	8'-5	193	159	134	114	98	84	71	61	53	47	41	
Ι Γ	B 18	9'-1	218	180	151	129	111	96	81	69	60	52	46	
	B 16	10'-3	274	226	190	162	140	119	100	85	73	64	56	

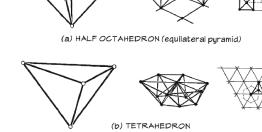
1. Load tables are calculated using sectional properties based on the steel design thickness shown in the Notes:


Steel Deck Institute (SDI) Design Manual.


2. Loads shown in the shaded areas are governed by the live load deflection not in excess of 1/240 of the span A dead load of 10 PSF has been included.

Web Bearing

max loads


Steel Trusses 14 Lecture 19

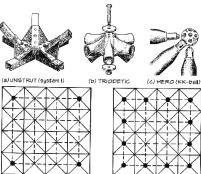
Foundations Structures ARCH 331

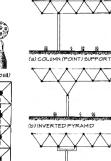
F2008abn

Space Trusses

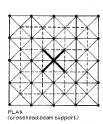
- 3D with 2 force bodies and pins
 - pyramid
 - tetrahedron
- "frames" have fixed joints
- layers
- 40's

F2008abn


Space Trusses


connections

(a) CORNER SUPPORTS

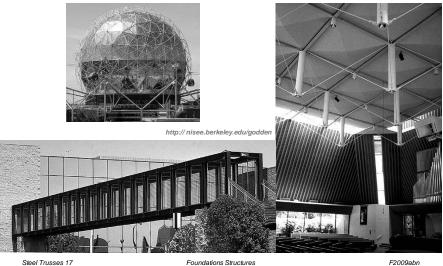

Steel Trusses 16

Lecture 19

supports

(c) CROSSHEAD BEAMS

Foundations Structures ARCH 331

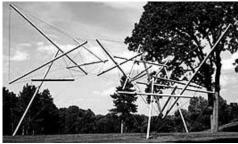

(b) PERIMETER SUPPORTS

F2008abn

Steel Trusses 15 Lecture 19

Foundations Structures ARCH 331

Space Trusses



Steel Trusses 17 Lecture 19

ARCH 331

Tensegrities

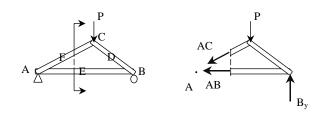
- 3D frame
- discontinuous struts
- continuous cables

Free Ride Home - Kenneth Snelso

Steel Trusses 19 Lecture 19

Foundations Structures ARCH 331

Space Trusses

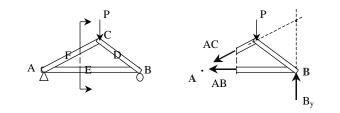

Steel Trusses 18 Lecture 19

Foundations Structures ARCH 331

F2009abn

Method of Sections

- relies on internal forces being in equilibrium on a section
- cut to expose <u>3 or less</u> members
- coplanar forces $\rightarrow \Sigma M = 0$ too


Steel Trusses 20 Lecture 19

Foundations Structures ARCH 331

F2008abn

Method of Sections

- joints on or off the section are good to sum moments
- quick for few members
- not always obvious where to cut or sum

Steel Trusses 21 Lecture 19 Foundations Structures ARCH 331 F2008abn