ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

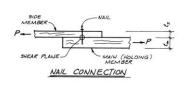
DR. ANNE NICHOLS

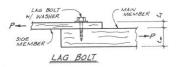
FALL 2013

lecture seventeen

wood construction: connections

Wood Connections 1 Lecture 17

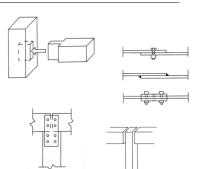

Architectural Structures ARCH 331


F2009ahn

Wood Connectors

- adhesives
 - used in a controlled environment
 - can be used with nails
- mechanical
 - bolts
 - lag bolts or lag screws
 - nails
 - split ring and shear plate connectors

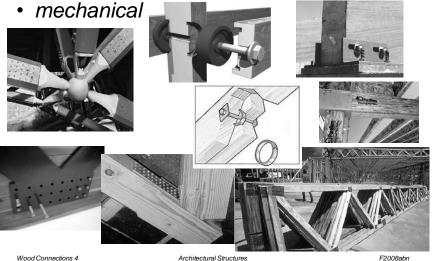
wood Connections 3 ber rivets



F2008abn

Connectors

- joining
 - lapping
 - interlocking
 - butting
- mechanical
 - "third-elements"

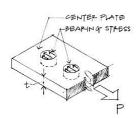


 transfer load at a point, line or surface - generally more than a point due to stresses

Wood Connections 2 Lecture 17

Foundations Structures

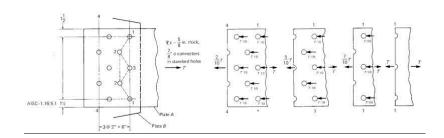
Wood Connections


F2008abn

Bolted Joints

 connected members in tension cause shear stress

 connected members in compression cause bearing stress

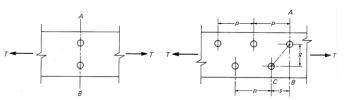

Bearing stress on plate.

Wood Connections 5

Foundations Structures ARCH 331 F2008abn

Effective Net Area

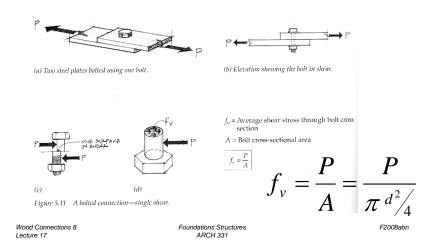
- likely path to "rip" across
- bolts divide transferred force too


Wood Connections 7 Lecture 17 Foundations Structures ARCH 331 F2008abn

Tension Members

· members with holes have reduced area

• increased tension stress


• A_e is effective net area $f_t = \frac{P}{A_e} \left(or \frac{T}{A_e} \right)$

Wood Connections 6 Lecture 17 Foundations Structures ARCH 331 F2008abn

Single Shear

seen when 2 members are connected

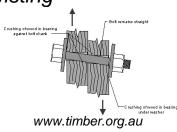
Double Shear

seen when 3 members are connected

$$\Sigma F = 0 = -P + 2(\frac{P}{2})$$

$$f_v = \frac{P}{2A} = \frac{P/2}{A} = \frac{P/2}{\pi^{d^2/4}}$$

Free-body diagram of middle section of the bolt in shear. Figure 5.12 A bolted connection in double shear.


Wood Connections 9 Lecture 17

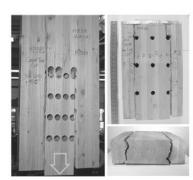
Foundations Structures ARCH 331

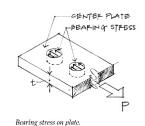
F2008abn

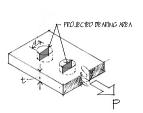
Bolted Joints

twisting

- shear strength
- end distance & spacing



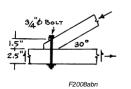

Figure 1.—Higher connection capacities can be achieved with increased fastener spacings.


F2008abn

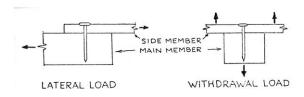
Taylor & Line 2002

Bearing Stress

- compression & contact
- stress limited by species & grain direction to load



projected area


Wood Connections 10 Lecture 17

Foundations Structures ARCH 331

Nailed Joints

- tension stress (pullout)
- shear stress nails presumed to share load by distance from centroid of nail pattern

Wood Connections 12

Foundations Structures ARCH 331

F2008abn

Nailed Joints

- sized by pennyweight units / length
- embedment length
- dense wood, more capacity

TABLE 7.1 Lateral Load Capacity of Common Wire Nails (lb/nail)

OS

Side Member Thickness, t_s (in.)	Nail Length, L (in.)	Nail Diameter, D (in.)	Pennyweight	Load per Nail for Douglas Fir-Larch G = 0.50, Z (lb)
Structural Plywo	od Side Memb	ers		
3/8	2	0.113	6d	48
	21/2	0.131	8d	63
	3	0.148	10d	76
1/2	2	0.113	6d	50
	21/2	0.131	8d	65
	3	0.148	10d	78
	31/2	0.162	16d	92

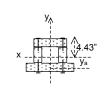
Wood Connections 13 Lecture 17

ARCH 331

F2008abn

Vertical Connectors

· isolate an area with vertical interfaces


$$nF_{connector} \ge \frac{VQ_{connected\ area}}{I} \cdot p$$

Wood Connections 15 Lecture 17 Foundations Structures ARCH 331 F2008abn

Connectors Resisting Beam Shear

- nails
- rivets
- bolts

 V from beam load related to V_{longitudinal}

$$\frac{V_{longitudinal}}{p} = \frac{VQ}{I}$$

$$\geq \frac{VQ_{connected area}}{I} \cdot p$$

Wood Connections 14 Lecture 17 Foundations Structures ARCH 331 F2008abn