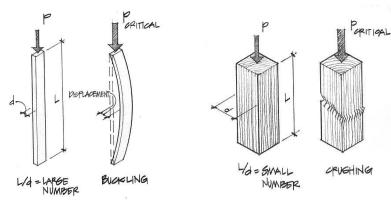
ARCHITECTURAL **S**TRUCTURES: FORM, BEHAVIOR, AND DESIGN ARCH 331 **D**R. ANNE NICHOLS **F**ALL 2013

wood construction: column design


Wood Columns : Lecture 16

Architectural Structures ARCH 331

Effect of Length (revisited)

long & slender

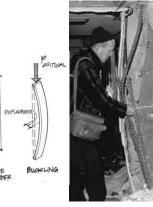
short & stubby

Wood Columns 3 Lecture 16

Foundations Structures ARCH 331

F2008abr

F2009abn

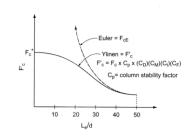


Elements of Architectural Structures ARCH 614

S2009abr

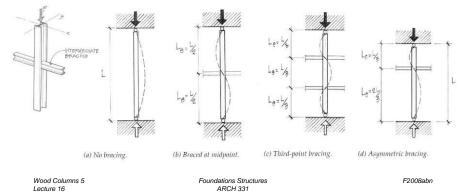
Compression Members (revisited)

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for stability
 - ability to support a specified load without sudden or unacceptable deformations


Wood Columns 2 Lecture 16

Foundations Structures ARCH 331

F2008abr


Critical Stresses (revisited)

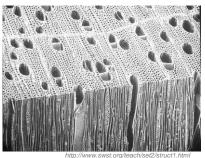
- when a column gets stubby, crushing will limit the load
- real world has loads with eccentricity

Bracing (revisited)

- bracing affects shape of buckle in one direction
- both should be checked!

Allowable Wood Stress

$$F_c' = F_c(C_D)(C_M)(C_t)(C_F)(C_p)$$


where:

$$F_{c} = compressive strength parallel to grain C_{D} = load duration factor (1.0 dry) C_{t} = temperature factor C_{F} = size factor C_{p} = column stability factor (Table 10.3)
$$F_{c} = compressive strength to grain to grain$$$$

• slenderness ratio = L/d_{min} $-d_1 = smallest dimension$ $-l_e/d \leq 50 \text{ (max)}$ $f_c = \frac{1}{A} \le F_c'$ - where F_c' is the allowable compressive strength parallel to the grain - bracing common - posts, round, built-up Wood Columns 6 Elements of Architectural Structure S2009abr Lecture 16 ARCH 614

Strength Factors

- wood properties and load duration, C_D
 - short duration
 - higher loads
 - normal duration
 - > 10 years
- stability, C_p

- combination curve tables
 - $F_c' = F_c^* C_p = (F_c C_D) C_n$

Wood Columns 7 Lecture 16

F2008abn

Wood Columns 8 Lecture 16

Foundations Structures ARCH 331

F2008abn

C_p Charts – Appendix A

Table 14 Column Stability Factor C

Table 1	+ Coun	nn Stabil	iy rucio	т Ср.	\sim						110 P			1
			"C _p	${}^{"}C_{p}{}^{"} = C_{h} \cdot F_{c}^{*} F_{CE} = \frac{.30 E}{(l/d)^{2}} \text{ for sawed posts } F_{CE} = \frac{.418 E}{(l/d)^{2}} \text{ for glu-lam posts}$										
F_{CE} (F_{C}^{*})	Sawed O	Glu-Lam	F _C	Sawed	l Glu-Lam			Sawed	Glu-Lam]	F_{CE}	Sawed	Glu-Lam]
(it)	C_p	C_p		С _р	C_p		(ic)	C_p	C_p		10	C_p	C_p	
0.00	0.000	0.000	0.4	0 0.360	0.377	1	0.80	0.610	0.667	1	1.20	0.750	0.822	1
0.01	0.010	0.010	0.4	1 0.367	0.386		0.81	0.614	0.672		1.22	0.755	0.826	
0.02	0.020	0.020	0.4	2 0.375	0.394		0.82	0.619	0.678		1.24	0.760	0.831	
0.03	0.030	0.030	0.4	3 0.383	0.403		0.83	0.623	0.683		1.26	0.764	0.836	
0.04	0.040	0.040	0.4	4 0.390	0.411		0.84	0.628	0.688		1.28	0.769	0.840	
0.05	0.049	0.050	0.4	5 0.398	0.420		0.85	0.632	0.693		1.30	0.773	0.844	
0.06	0.059	0.060	0.4	6 0.405	0.428		0.86	0.637	0.698		1.32	0.777	0.848	
0.07	0.069	0.069	0.4	7 0.412	0.436		0.87	0.641	0.703		1.34	0.781	0.852	
0.08	0.079	0.079	0.4	8 0.419	0.444		0.88	0.645	0.708		1.36	0.785	0.855	
0.09	0.088	0.089	0.4	9 0.427	0.453		0.89	0.649	0.713		1.38	0.789	0.859	
0.10	0.098	0.099	0.5	0 0.434	0.461		0.90	0.653	0.718		1.40	0.793	0.862	
0.11	0.107	0.109	0.5	1 0.441	0.469		0.91	0.658	0.722		1.42	0.796	0.865	
0.12	0.117	0.118	0.5	2 0.448	0.477		0.92	0.661	0.727		1.44	0.800	0.868	
0.13	0.126	0.128	0.5	3 0.454	0.484		0.93	0.665	0.731		1.46	0.803	0.871	
0.14	0.136	0.138	0.5	4 0.461	0.492		0.94	0.669	0.735		1.48	0.807	0.874	
0.15	0.145	0.147	0.5	5 0.468	0.500		0.95	0.673	0.740		1.50	0.810	0.877	
0.16	0.154	0.157	0.5	6 0.474	0.508		0.96	0.677	0.744		1.52	0.813	0.879	
0.17	0.164	0.167	0.5	7 0.481	0.515		0.97	0.680	0.748		1.54	0.816	0.882	
0.18	0.173	0.176	0.5	8 0.487	0.523		0.98	0.684	0.752		1.56	0.819	0.884	
0.19	0.182	0.186	0.5	9 0.494	0.530		0.99	0.688	0.756		1.58	0.822	0.887	
olumns 9 16					Foundati AF		Structu 331	res						F2008abr

Procedure for Analysis

- 1. calculate L_{a}/d_{min}
 - KL/d each axis, choose largest
- 2. obtain F'_{c} compute $F_{cE} = \frac{K_{cE}E}{\left(\frac{L_{e}}{d}\right)^{2}}$ $K_{cE} = 0.3$ sawn

 - *K*_{cF} = 0.418 glu-lam
- 3. compute $F_c^* \approx F_c C_D$
- 4. calculate F_{cE}/F_c^* and get C_p (Table 14)
- 5. calculate $F_c' = F_c^* C_p$

Wood Columns 11 Lecture 16

F2008abn

Column Charts – Appendix A, 12 & 13

Table 12 Allowable Column Loads—Selected Species/Sizes. (Continued)

Col.	1/d	(1/d)sq	Fce	Fce/Fc		Cp		Fc(psi)		Pa (k)		Pa (k)		Pa	
Len(ft)		annyaq		Norm	Snow	Norm	Snow	Norm	Snow	Norm	Snow	Norm	Snow	Norm	Snow
		200.00	1000.00												
12	19.2	368.64	1302.08	1.30	1.13	.7731	.7315	773	841	43.5	47.3	55.1	59.9	66.7	72.6
13	20.8	432.64	1109.47	1.11	0.96	.7258	.6767	726	778	40.8	43.8	51.7	55.4	62.6	67.1
14	22.4	501.76	956.63	0.96	0.83	.6767	.6235	677	717	38.1	40.3	48.2	51.1	58.4	61.8
15	24.00	576.00	833.33	0.83	0.72	.6235	.5694	624	655	35.1	36.8	44.4	46.7	53.8	56.5
16	25.60	655.36	732.42	0.73	0.64	.5747	.5244	575	603	32.3	33.9	40.9	43.0	49.6	52.0
17	27.20	739.84	648.79	0.65	0.56	.5303	.4744	530	546	29.8	30.7	37.8	38.9	45.7	47.1
18	28.80	829.44	578.70	0.58	0.50	.4873	.4336	487	499	27.4	28.0	34.7	35.5	42.0	43.0
19	30.40	924.16	519.39	0.52	0.45	.4475	.3975	448	457	25.2	25.7	31.9	32.6	38.6	39.4
20	32.00	1024.00	468.75	0.47	0.41	.4122	.3673	412	422	23.2	23.8	29.4	30.1	35.6	36.4
21	33.60	1128.96	425.17	0.43	0.37	.3826	.3360	383	386	21.5	21.7	27.3	27.5	33.0	33.3
22	35.20	1239.04	387.40	0.39	0.34	.3518	.3118	352	359	19.8	20.2	25.1	25.5	30.3	30.9
23	36.80	1354.24	354.44	0.35	0.31	.3199	.2869	320	330	18.0	18.6	22.8	23.5	27.6	28.5
24	38.40	1474.56	325.52	0.33	0.28	.3035	.2615	304	301	17.1	16.9	21.6	21.4	26.2	25.9
25	40.00	1600.00	300.00	0.30	0.26	.2785	.2442	279	281	15.7	15.8	19.8	20.0	24.0	24.2
26	41.60	1730.56	277.37	0.28	0.24	.2615	.2267	262	261	14.7	14.7	18.6	18.6	22.6	22.5
27	43.20	1866.24	257.20	0.26	0.22	.2442	.2090	244	240	13.7	13.5	17.4	17.1	21.1	20.7
28	44.80	2007.04	239.16	0.24	0.21	.2267	.2000	227	230	12.8	12.9	16.2	16.4	19.6	19.8
29	46.40	2152.96	222.95	0.22	0.19	.2090	.1819	209	209	11.8	11.8	14.9	14.9	18.0	18.0
30	48.00	2204.00	208.33	0.21	0.18	.2000	.1728	200	199	11.3	11.2	14.3	14.2	17.3	17.1
1	DF-L No.1		(P&T)	&T) Fc = 1000		0	E = 1.6								
(DF-L No.1 & Bt		Dim.Lum	Fc = 1500		0	E = 1.8								- 01
X	_	11.11													

Procedure for Analysis (cont'd)

- 6. compute $P_{allowable} = F'_c \cdot A$
 - or find $f_{actual} = P/A$ ٠

7. is
$$P \leq P_{allowable}$$
? (or $f_{actual} \leq F'_c$?)

ves: OK

Wood Columns 12

Lecture 16

no: overstressed & no good

Procedure for Design

- 1. guess a size (pick a section)
- 2. calculate L_{a}/d_{min}
 - KL/d each axis, choose largest
- 3. obtain F'_{c}
 - compute $F_{cE} = \frac{K_{cE}E}{(L_e/d)^2}$ $K_{cE} = 0.3$ sawn
 - K_{CE} = 0.418 glu-lam
- 4. compute $F_c^* \approx F_c C_D$
- 5. calculate F_{cE}/F_c^* and get C_p (Table 14)

Wood Columns 13 Lecture 16

Foundations Structures ARCH 331

Timber Construction by Code

- light-frame
 - light loads
 - -2x's
 - floor joists 2x6, 2x8, 2x10, 2x12 typical at spacings of 12", 16", 24"
 - normal spans of 20-25 ft or 6-7.5 m
 - plywood spans between joists
 - stud or load-bearing masonry walls
 - limited to around 3 stories fire safety

F2008abr

- Procedure for Design (cont'd)
- 6. compute $F_c' = F_c^* C_n$
- 7. compute $P_{allowable} = F'_c \cdot A$
 - or find $f_{actual} = P/A$

8. is
$$P \leq P_{allowable}$$
? (or $f_{actual} \leq F'_c$?)

- ves: OK ٠
- no: pick a bigger section and go back to step 2.

Wood Columns 14 Lecture 16

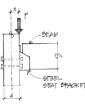
Foundations Structures ARCH 331

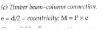
F2008abr

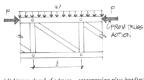
FPENER PLATES IF REPUIRED)

Design of Columns with Bending

- satisfy
 - strength


- section


stability

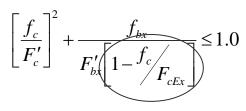

(a) Framed beam (shear) connection. $e = Eccentricity; M = P \times e$

Foundations Structures ARCH 331

(b) Moment connection (rigid frame) M = Moment due to beam bending

(d) Upper chord of a truss-compression plus bending. $M = \frac{\omega \ell^2}{2}$

F2008abr


Wood Columns 15 Lecture 16

F2008abn

pick

Design

• Wood

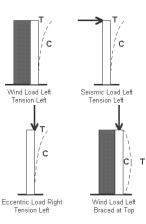
[] term – magnification factor for P- Δ F'_{bx} – allowable bending strength

Wood Columns	1
Lecture 16	

```
Foundations Structures
ARCH 331
```

Laminated Timber Arches

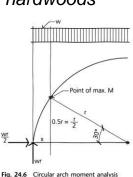
- two & three hinged arches
- bent to wide range of curves
- bending and compression
- residual stress from laminating, C_c



F2008abr

Design Steps Knowing Loads

- 1. assume limiting stress
 - buckling, axial stress, combined stress
- 2. solve for r, A or S
- 3. pick trial section
- 4. analyze stresses
- 5. section ok?
- 6. stop when section is ok


Wood Columns 18 Lecture 16 Foundations Structures ARCH 331 F2008abr

Laminated Arch Design

- radius of curvature, R, limited by lam thickness, t
 - -R = 100t southern pine & hardwoods
 - -R = 125t softwood
- r = radius to inside face of laminations

•
$$C_C = 1 - 2000 \left(\frac{t}{r}\right)$$

• $F_b' = F_b(C_F C_c)$

F2008abr

Wood Columns 19 Lecture 16 Foundations Structures ARCH 331 F2008abr

Wood Columns 20 Lecture 16