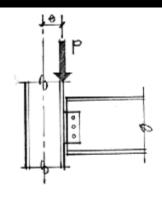
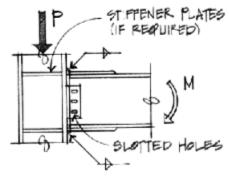
Architectural Structures: Form, Behavior, and Design arch 331 Dr. Anne Nichols Fall 2013

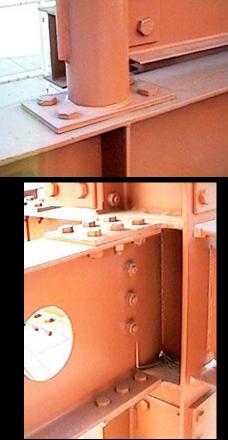

twenty one

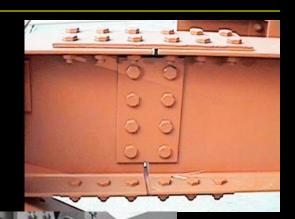

steel construction

Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

(a) Framed beam (shear) connection. $e = Eccentricity; M = P \times e$




(b) Moment connection (rigid frame). M = Moment due to beam bending

bolted steel connections

http://courses.civil.ualberta.ca

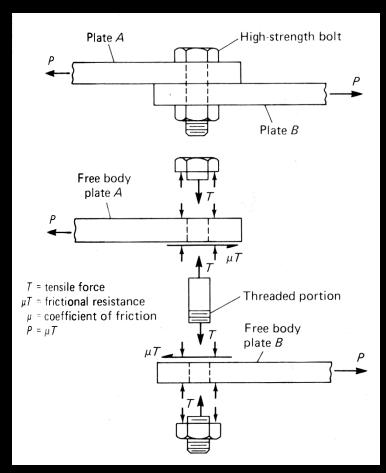
Steel Bolts & Welding 3 Lecture 21

Architectural Structures ARCH 331

(AISC - Steel Structures of the Everyday)

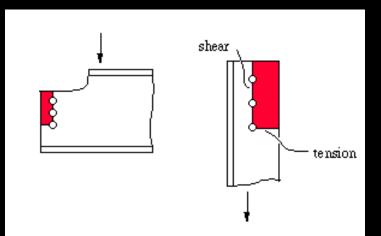
Welds

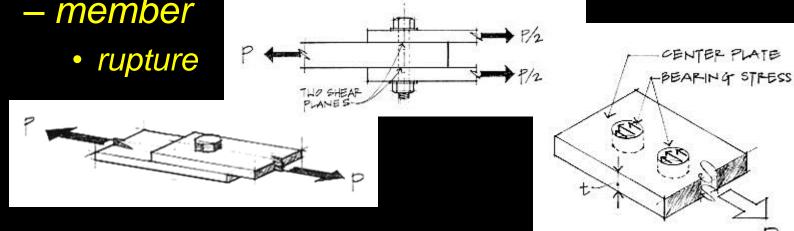
welded steel connections


http://courses.civil.ualberta.ca

Steel Bolts & Welding 4 Lecture 21 Architectural Structures ARCH 331

- types
 - materials




- high strength
- A307, A325, A490
- location of threads
 - included N
 - excluded X
- friction or bearing (SC)
 always tightened

Bolted Connection Design

considerations
bearing stress
yielding
shear stress
single & double
member

Steel Bolts & Welding 6 Lecture 21 Architectural Structures ARCH 331

- rarely fail in bearing
- holes considered 1/8" larger
- shear & tension

- single shear or tension

- double shear

$$R_{n} = F_{n}A_{b}$$
$$R_{n} = F_{n}2A_{b}$$

Steel Bolts & Welding 7 Lecture 21 Architectural Structures ARCH 331

R

 $\phi_{n} R_{n}$

 $\phi_{v} = 0.75$

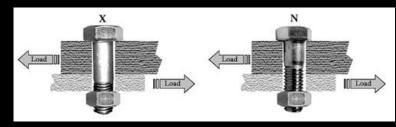

 R_{u}

Table 7-1 Available Shear Strength of Bolts, kips

N	ominal Bolt	Diamete	er, d, in.		5	/8	3/4		7	/8	Conhection		
	Nominal E	Bolt Area	in.2	oM Los	0.307		0.442		0.601		0.785		
ASTM	Thread	F _{nv} /Ω (ksi) ASD	¢ <i>F_{nv}</i> (ksi)	Load-	r _n /Ω	φ r n	r _n /Ω	φ r n	r _n /Ω	φ r n	r _n /Ω	¢r _n	
Desig.	Cond.		LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
Group A	one N 10	27.0	40.5	S D	8.29 16.6	12.4 24.9	11.9 23.9	17.9 35.8	16.2 32.5	24.3 48.7	21.2 42.4	31.8	
) - X od	34.0	51.0	S D	10.4 20.9	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0	
Group B	N	34.0	51.0	S D	10.4 20.9	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0 80.1	
	X	42.0	63.0	S D	12.9 25.8	19.3 38.7	18.6 37.1	27.8 55.7	25.2 50.5	37.9 75.7	33.0 65.9	49.5 98.9	
A307	ek <u>"is</u> uit	13.5	20.3	S D	4.14 8.29	6.23 12.5	5.97 11.9	8.97 17.9	8.11 16.2	12.2 24.4	10.6 21.2	15.9 31.9	
No	ominal Bolt	Diamete	r, <i>d</i> , in.	of 200	200 All	/8	กละเรีย	1/4	1	3/8	. D.,	1/2	
	Nominal B	olt Area,	in. ²	1.51.52	0.994 1.23		23	1.48			1.77		
ASTM	Thread Cond.	(nai) (nai)		Load-	r η/Ω	φ r n	r _n /Ω	ф г п	r _n /Ω	φ r n	r _n /Ω	φ r _n	
Desig.		ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
Group	N	27.0	40.5	S D	26.8 53.7	40.3 80.5	33.2 66.4	49.8 99.6	40.0 79.9	59.9 120	47.8 95.6	71.7 143	
A	x	34.0	51.0	S D	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181	
Group	N	34.0	51.0	S D	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181	
В	x	42.0	63.0	S D	41.7 83.5	62.6 125	51.7 103	77.5 155	62.2 124	93.2 186	74.3 149	112 223	
A307	-	13.5	20.3	S D	13.4 26.8	20.2 40.4	16.6 33.2	25.0 49.9	20.0 40.0	30.0 60.1	23.9 47.8	35.9 71.9	
ASD	LRFD	For end I	oaded co	nnections	greater th	an 38 in.	, see AISC	Specifica	ation Table	J3.2 foo	tnote b.		

Table 7-2 Available Tensile Strength of Bolts, kips

Nominal Bo	olt Diameter,	<i>d</i> , in.	5	/8	numi	3/4		7/8	1 0.785		
Nominal	Bolt Area, ir	n. ²	0.:	307	0.	442	0.	601			
ASTM Desig	F _{nt} /Ω (ksi)	(kei)	¢ <i>F_{nt}</i> (ksi)	r _n /Ω	ф г п	r _n /Ω	ф г л	$r_n/\Omega \qquad \phi r_n$	r n/Ω	¢ r n	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
Group A	45.0	67.5	13.8	20.7	19.9	29.8	27.1	40.6	35.3	53.0	
Group B A307	56.5 22.5	84.8 33.8	17.3 6.90	26.0 10.4	25.0 9.94	37.4 14.9	34.0 13.5	51.0 20.3	44.4 17.7	66.6 26.5	
Nominal Bo	lt Diameter,	11/8		11/4		1 ³ /8		11/2			
Nominal	Bolt Area, in	n. ²	0.994		1.23		1.48		1.77		
ASTM Desig	F _{nt} /Ω (ksi)	¢ <i>F_{nt}</i> (ksi)	r _n /Ω	φ r n	r _n /Ω	ф г п	r _n /Ω	ф г п	r _n /Ω	ф г п	
18	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
Group A	45.0	67.5	44.7	67.1	55.2	82.8	66.8	100	79.5	119	
Group B A307	56.5 22.5	84.8 33.8	56.2 22.4	84.2 33.5	69.3 27.6	104	83.9 33.4	126 50.1	99.8 39.8	150 59.6	
ASD	LRFD					-					
$\Omega = 2.00$	$\phi = 0.75$										

Steel Bolts & Welding 8 Lecture 21 Architectural Structures ARCH 331 http://www.fastenal.com

•

bearing

- $R_{a} \leq \frac{R_{n}}{\Omega} \qquad R_{u} \leq \phi R_{n}$ $\phi = 0.75$
- deformation is concern

$$R_n = 1.2 L_c t F_u \leq 2.4 d t F_u$$

deformation isn't concern

$$R_n = 1.5 L_c t F_u \leq 3.0 d t F_u$$

– long slotted holes

 $R_n = 1.0 L_c t F_u \leq 2.0 d t F_u$

 L_c – clear length to edge or next hole (ex. 1¹/₄", 3")

Available Bearing Strength at Bolt Holes Based on Edge Distance

kips/in. thickness

Hole Type	Edge Distance	neter, d, H	Nominal Bolt Diameter, d, in.											
		F _u , ksi		5/8		3/4		7/8	8 1					
	L_{e} , in.	FUR KOI	r_n/Ω	φ r n	r_n/Ω	φ r n	r_n/Ω	φ r n	r_n/Ω	¢r _n				
	AFD AS	1 08	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRF				
STD	11/4	58 65	31.5 35.3	47.3 53.0	29.4 32.9	44.0 49.4	27.2 30.5	40.8 45.7	25.0 28.0	37.5				
SSLT	2	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	53.3 59.7	79.9 89.6	51.1 57.3	76.7				
SSLP	1 ¹ /4	58 65	28.3 31.7	42.4 47.5	26.1 29.3	39.2 43.9	23.9 26.8	35.9 40.2	20.7 23.2	31.0 34.7				
JOLF	2	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	50.0 56.1	75.0 84.1	46.8 52.4	70.1 78.6				
OVS	11/4	58 65	29.4 32.9	44.0 49.4	27.2 30.5	40.8 45.7	25.0 28.0	37.5 42.0	21.8 24.4	32.6 36.6				
	2	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	51.1 57.3	76.7 85.9	47.9 53.6	71.8 80.4				
LSLP	1 ¹ /4	58 65	16.3 18.3	24.5 27.4	10.9 12.2	16.3 18.3	5.44 6.09	8.16 9.14	()+ +					
	2	58 65	42.4 47.5	63.6 71.3	37.0 41.4	55.5 62.2	31.5 35.3	47.3 53.0	26.1 29.3	39.2 43.9				
LSLT	11/4	58 65	26.3 29.5	39.4 44.2	24.5 27.4	36.7 41.1	22.7 25.4	34.0 38.1	20.8 23.4	31.3 35.0				
LOLI	2	58 65	36.3 40.6	54.4 60.9	43.5 48.8	65.3 73.1	44.4 49.8	66.6 74.6	42.6 47.7	63.9 71.6				
STD, SSLT, SSLP, OVS, LSLP	$L_{\theta} \ge L_{\theta}$ full	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	60.9 68.3	91.4 102	69.6 78.0	104 117				
LSLT	$L_{\theta} \geq L_{\theta}$ full	58 65	36.3 40.6	54.4 60.9	43.5 48.8	65.3 73.1	50.8 56.9	76.1 85.3	58.0 65.0	87.0 97.5				
Edge di for full t		STD, SSLT, LSLT	15,	/8	1 ¹⁵ /16		21/4		2 ⁹ /16					
strength		OVS		1/16	2		25	and the second se	25/8					
$L_e \ge L_e$	_{full} a, in.	SSLP		1/16	2		25			1/16				
STD = stan	Normal 1 [[[]]	LSLP	21/	16	2	7/16	27/	8	31	/4				

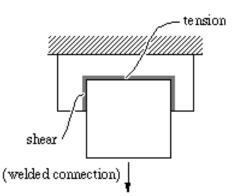
Table 7-3 (continued)Slip-Critical ConnectionsAvailable Shear Strength, kips(Class A Faying Surface, $\mu = 0.30$)

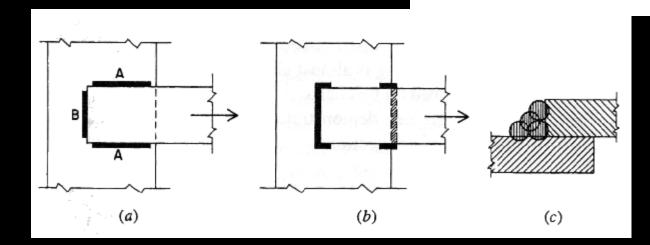
Group B

Bolts

	1.1	and the second second	Gr	oup B Bo	lte									
UNE of		Q. S. J.	G		ninal Bolt	Diameter	d in	lace2	Section 1					
191 084		-	/8				/8	A 11 2 11	1 0					
8.1		6 Block	0.55		Group B I									
Hole Type	Loading	2	4	1	35	49		41.8	64					
		r_n/Ω	\$ r n	r_n/Ω	¢r _n	r_n/Ω	φ r _n	r _n /Ω	¢r _n					
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD					
STD/SSLT	S D	5.42 10.8	8.14 16.3	7.91 15.8	11.9 23.7	11.1 22.1	16.6 33.2	14.5 28.9	21.7 43.4					
OVS/SSLP	S D	4.62 9.25	6.92 13.8	6.74 13.5	10.1 20.2	9.44 18.9	14.1 28.2	12.3 24.7	18.4 36.9					
LSL	S D	3.80 7.60	5.70 11.4	5.54 11.1	8.31 16.6	7.76 15.5	11.6 23.3	10.1 20.3	15.2 30.4					
43.1	Leading	Nominal Bolt Diameter, d, in.												
		11	1/8	11/4			³ /8	si 8 1	11/2					
Hele Tone		Minimum Group B Bolt Pretension, kips												
Hole Type	Loading	8	0	1	02	1	21	1	148					
0.12		r_n/Ω	ф г п	r_n/Ω	¢r _n	r_n/Ω	¢ <i>r</i> _n	r _n /Ω	φ r _n					
1 8.06		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD					
STD/SSLT	S D	18.1 36.2	27.1 54.2	23.1 46.1	34.6 69.2	27.3 54.7	41.0 82.0	33.4 66.9	50.2 100					
OVS/SSLP	S D	15.4 30.8	23.1 46.1	19.6 39.3	29.4 58.8	23.3 46.6	34.9 69.7	28.5 57.0	42.6 85.3					
LSL	S D	12.7 25.3	19.0 38.0	16.2 32.3	24.2 48.4	19.2 38.3	28.7 57.4	23.4 46.9	35.1 70.2					
STD = standard DVS = oversize	d hole	Q. 	200 A (1		216-21	S = single D = doubl		, in., *,						
SSLT = short-sid SSLP = short-sid .SL = long-sid	otted hole para	allel to the li	ine of force	e	rce									
lole Type	ASD	LRFD						ller has bee	en provided					
or bolts have been added to distribute loads in the fillers.														
STD and SSLT	$\Omega = 1.50$	φ = 1.00	See AISC	Specificatio	n Sections .	3.8 and J5	for provision	s when fille	ers					

SSLT = short-slotted hole oriented transverse to the line of force

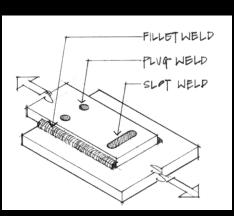

SSLP = short-slotted hole oriented parallel to the line of force


OVS = oversized hole

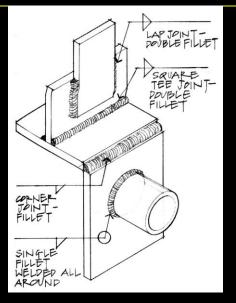
LSLP = long-slotted hole oriented parallel to the line of force

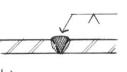
Drce service to be and service

- considerations
 - shear stress
 - yielding
 - rupture

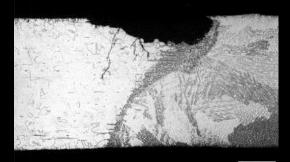


Steel Bolts & Welding 11 Lecture 21



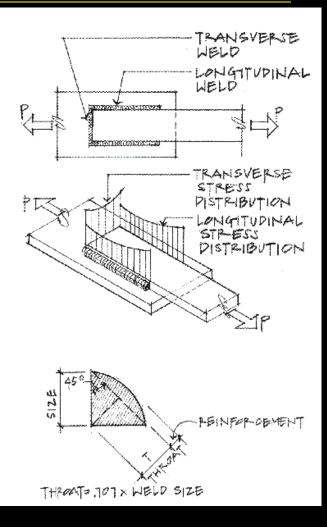

- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat
- field welding
- shop welding

(AISC - Steel Structures of the Everyday)



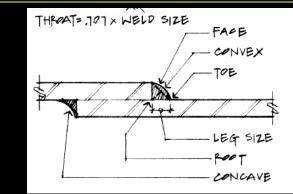
D.) SINGLE VEE GROOVE JOINT

- weld process
 melting of material
 melted filler electrode
 shielding gas / flux
 potential defects
- weld materials
 - *E60XX*
 - E70XX $F_{EXX} = 70 \text{ ksi}$


- shear failure assumed
- throat

- *T* = 0.707 *x* weld size

• area


-A = T x length of weld

• weld metal generally stronger than base metal (ex. $F_v = 50$ ksi)

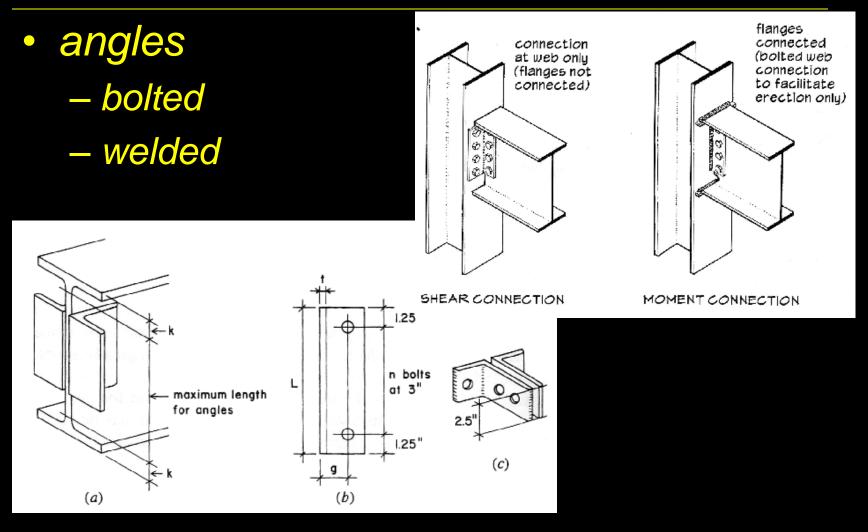
- minimum
 - table
- maximum
 - material thickness (to 1/4")
 - 1/16" less
- min. length $-4 \times \text{size min.}$ $- \ge 1 \frac{1}{2}$

2.4 Fillet Welds
Minimum Size of Fillet Weld[a] in. (mm)
$\frac{1}{8}$ (3) $\frac{3}{16}$ (5) $\frac{1}{4}$ (6) $\frac{5}{16}$ (8)

R

shear

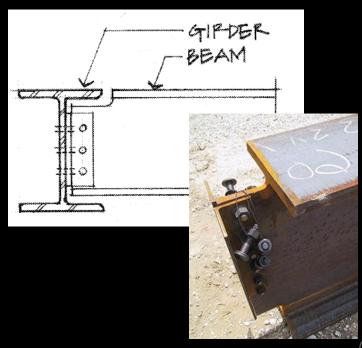
$$\sum_{d} \frac{R_{u}}{\phi} \leq \frac{\phi R}{5}$$

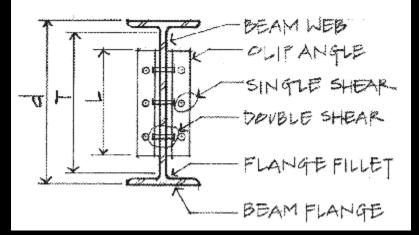

Available	Strength of Fil	let Welds
	inch of weld (
Weld Size	E60XX	E70XX
(in.)	(k/in.)	(k/in.)
3/16	3.58	4.18
1/4	4.77	5.57
3/16	5.97	6.96
3/8	7.16	8.35
7/16	8.35	9.74
1/2	9.55	11.14
3	11.93	13.92
3⁄4	14.32	16.70
(in a in an a c a i	

(not considering increase in throat with submerged arc weld process)

$$R_{n} = 0.6 F_{EXX} \underbrace{Tl}_{area} = Sl$$

– table for ϕS


R



Steel Bolts & Welding 17 Lecture 21

- terms
 - coping

(AISC - Steel Structures of the Everyday)

Framed Beam Conne

- tables for standard bolt sizes & spacings
- # bolts
- bolt diameter, angle leg thickness
- bearing on beam web

Beam	F _y = 50 ksi F _u = 65 ksi	All-Dolled Double-Allyle /4											-in.			
Angle	$F_y = 36$ ksi	Connections Bolts														
₹	<i>F_u</i> = 58 ksi	Bolt and Angle Available Strength, kips														
	4 Rows	Bolt	The	read		ole	Angle Thickness, in.									
	*	Group	14323	nd.	253	/pe	1	/4	5	/16	3	/8	1	12		
W	24, 21, 18, 16	aroup	oonu.		ASD CAL		ASD LRFD		ASD LRFD		ASD LRFD		ASD LRF			
	ALC: NOT	9.12.1		N	S	TD	67.1	101	83.9	126	95.5	143	95.5	143		
				X	STD		67.1	101	83.9	126	101	151	120	180		
		14	SC Class A		STD		50.6	75.9	50.6	75.9	50.6	75.9	50.6	75.9		
	이 문 너 지 :	Group			OVS		43.1	64.5	43.1	64.5	43.1	64.5	43.1	64.5		
	·····	A			SSLT		50.6	75.9	50.6	75.9	50.6	75.9	50.6	75.9		
1			SC Class B		STD		67.1	101	83.9	126	84.4	127	84.4	127		
					OVS		65.3 65.8	97.9	71.9	108	71.9	108	71.9	108		
	La	1.1		2124		SSLT		98.7	82.2	123	84.4	127	84.4	127		
		Group B	N		8.3	TD	67.1	101	83.9	126	101	151	120	180		
	÷		1.1	X		TD	67.1	101	83.9	126	101	151	134	201		
8	+ }		Clace A			TD	63.3	94.9	63.3	94.9	63.3	94.9	63.3	94.9		
5						VS	53.9	80.7	53.9	80.7	53.9	80.7	53.9	80.7		
					SSLT		63.3	94.9	63.3	94.9	63.3	94.9	63.3	94.9		
			SC		SC	STD		67.1	101	83.9	126	101	151	105	158	
		8. II. (Class B		OVS		65.3	97.9	81.6	122	89.9	134	89.9	134		
_					SSLT		65.8	98.7	82.2	123	98.7	148	105	158		
		Be	am We	eb Avail	able S	trength	per In	ch Thio	kness	, kips/i	n.			2		
	Hole Type			S	TD			0	1971) - H			SS	ILT			
				1	1.51			L _{eh} '	', in.							
	Lov. in.	1	1	1/2		3/4	1	1/2	-	3/4	11/2		13	3/4		
	CAP CAL	0.3A	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	una de tras.	11/4	167	250	175	262	156	234	164	246	164	245	172	257		
	1351	13/8	169	254	177	266	158	238	167	250	166	249	174	261		
C	oped at Top	11/2	171	257	180	269	161	241	169	254	168	253	177	265		
- 1	Flange Only	15/8	174	261	182	273	163	245	171	257	171	256	179	268		
	at an i	2	181	272	189	284	171	256	179	268	178	267	186	279		
	- SA - MS -	3	201	301	209	313	190	285	198	297	198	296	206	309		
	1.5 101.1	11/4	156	234	156	234	146	219	146	219	156	234	156	234		
	1014 - Qžin (13/8	161	241	161	241	151	227	151	227	161	241	161	241		
Co	oped at Both	11/2	166	249	166	249	156	234	156	234	166	249	166	249		
	Flanges	15/8	171	256	171	256	161	241	161	241	171	256	171	256		
			and the second second		and the second second	Come I	Color of		all this is a		10000		TO SUSAN			

468 702 underrun in beam length. Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads in the fillers.

Architectural Struct ARCH 331 278

313

171 256 176 263 178 267 185 278

190 285 198 297 198

234

351

Tabulated values include 1/4-in. reduction in end distance, Leh, to account for possible

234

351 234

N = Threads included

X = Threads excluded

SC = Slip critical

296

351 234 351

206 309

185

209

SSLT = Short-slotted holes transverse

to direction of load

272

OVS = Oversized holes

181

201 301

234 351 234 351

Notes: STD = Standard holes

2

3

LRFD

Uncoped

Support Available

Strength per

Inch Thickness.

kips/in.

ASD

Hole

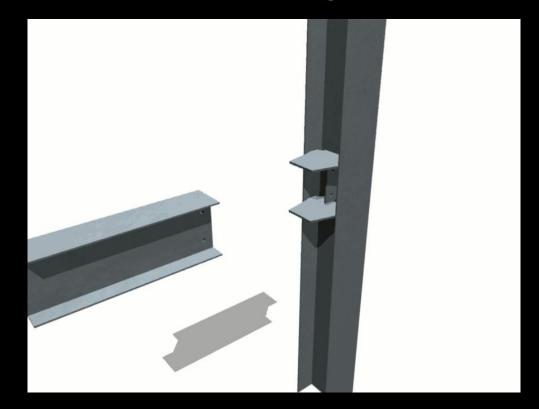
Type

STD/

OVS/

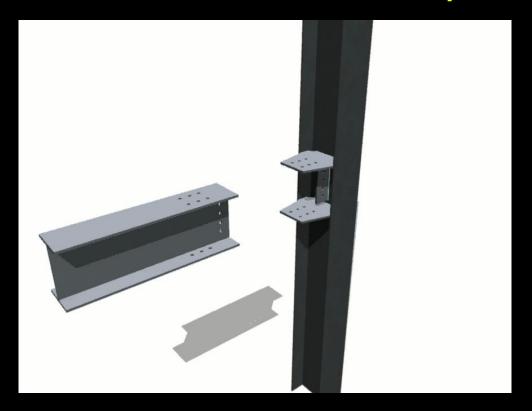
SSLT

• welded example (shear)

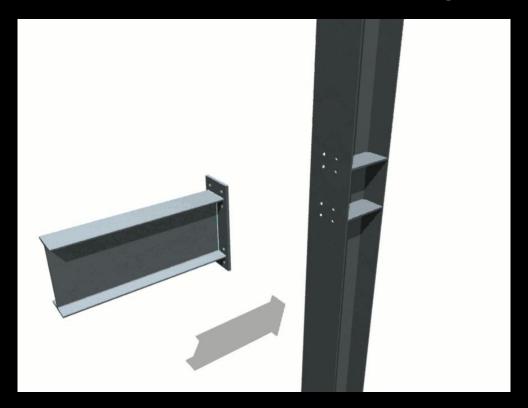


(AISC - Steel Structures of the Everyday)

Steel Bolts & Welding 20 Lecture 21

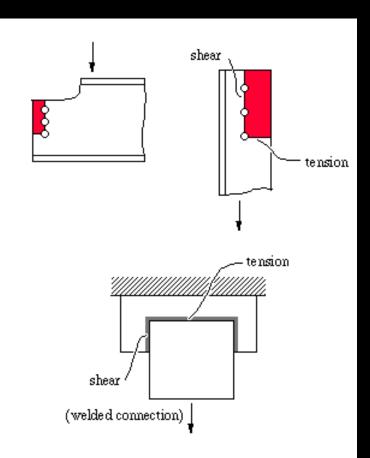

• welded moment example

(AISC - Steel Structures of the Everyday)



welded/bolted moment example

(AISC - Steel Structures of the Everyday)


welded/bolted moment example

(AISC - Steel Structures of the Everyday)

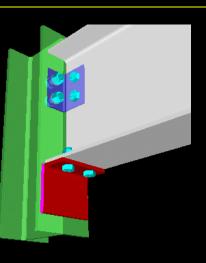
Beam Connections

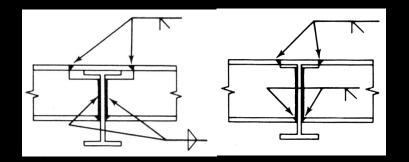
- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

$\begin{array}{ll} \textbf{Beam Connections} & \phi = 0.75 \\ R_n = 0.6 F_u A_{nv} + U_{bs} F_u A_{nt} \leq 0.6 F_y A_{gv} + U_{bs} F_u A_{nt} \\ - \text{ where } U_{bs} \text{ is 1 for uniform tensile stress} \end{array}$

Figure 2-1. Block Shear Rupture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

Figure 2-14. Tension Fracture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)


block shear rupture


Ard

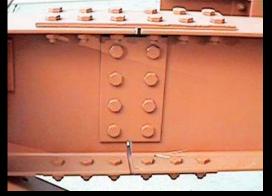
tension rupture

Steel Bolts & Welding 25 Lecture 21 Architectural Structures ARCH 331

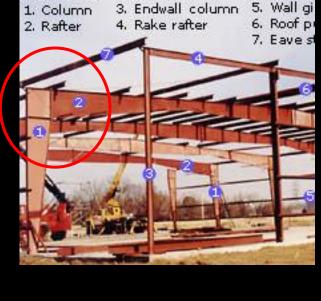
- seated beam
- continuous
 - beam to column
 - beam to beam

Steel Bolts & Welding 26 Lecture 21 Architectural Structures ARCH 331

• splices



The Royal Ontario Museum Toronto . Canada Daniel Libeskind (AISC - Steel Structures of the Everyday)


http://courses.civil.ualberta.ca F2013abn

Steel Bolts & Welding 27 Lecture 21

- rigid frame knees
- gussets & joints

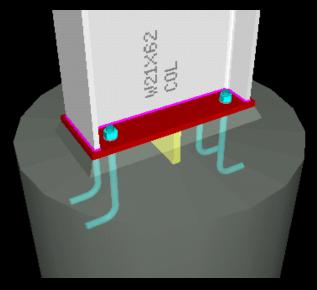
Endwall Frame

Main Frame

Secondar

(AISC - Steel Structures of the Everyday)

Steel Bolts & Welding 28 Lecture 21 Architectural Structures ARCH 331


base plates

 anchor bolts
 bearing on steel
 bending of plate

http://courses.civil.ualberta.ca

