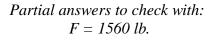
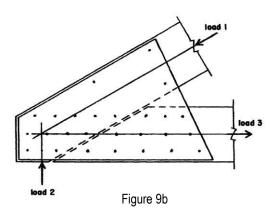

ARCH 331. Assignment #9


Date: 10/24/13, due 10/31/13


Problems: supplemental problems (9A, etc.) **and** from Onouye Chapter 9 Notes: Problems marked with a * have been altered with respect to the problem stated in the text. Multiframe or other methods may be used for V & M diagrams and maximums.

1 array answers to check with: 1 = 1000 to

(9%) 9B) A truss heel joint similar to that in Figure 9b is made with gusset plates of ½-in. plywood and 8d nails. Find the tension force limit for the bottom chord having 12 nails each plywood side. (wood connection analysis)

TABLE 7.1	Lateral Load Capacity of Common Wire Nails (Ib/nail)							
Side MemberNailChickness,Length, t_s (in.)L (in.)		Nail Diameter, D (in.)	Pennyweight	Load per Nail for Douglas Fir-Larch G = 0.50, Z (lb)				
Structural Ply	wood Side Memb	ers						
	2	0.113	6d	48				
3/8	21/2	0.131	8d	63				
	3	0.148	10d	76				
	2	0.113	6d	50				
1/2	21/2	0.131	8d	65				
72	3	0.148	10d	78				
	31/2	0.162	16d	92				
	2	0.113	6d	58				
3/4	21/2	0.131	8d	73				
-74	3	0.148	10d	86				
	31⁄2	0.162	16d	100				
Solid-Sawn Lu	mber Side Memb	ers						
	21/2	0.131	8d	90				
3/4	3	0.148	10d	105				
74	31/2	0.162	16d	121				
	4	0.192	20d	138				
	3	0.148	10d	118				
	31/2	0.162	16d	141				
11/2	4	0.192	20d	170				
172	41⁄2	0.207	30d	186				
	5	0.225	40d	205				
	5½	0.244	50d	211				

Source: Adapted from National Design Specification for Wood Construction, 2001 edition (Ref. 3), with permission of the publisher, American Forest & Paper Association.

Pass-fail work

A nominal 3 x 8 in redwood beam is to be (10%) 9C) supported by two 2 x 8 in. members acting as a spaced column. The minimum spacing and edge distances for the 5/8 inch bolts are shown. How many 5/8 in. bolts will be required to safely carry a load of 3200 lb? Use the chart provided. (wood connection design)

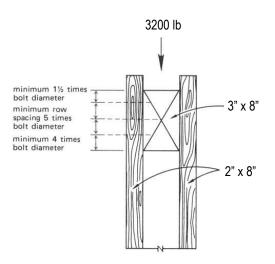
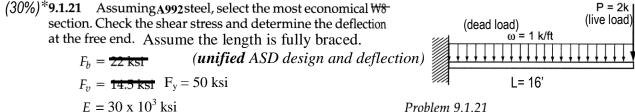



Table 7.1 Holding Power of Bolts

Length of Bolt in Main Wood Member ³		DIAMETER OF BOLT (IN INCHES)										
	n Inches)	3/8	1/2	5/8	3/4	7/8	1	11/8	11/4	11/2		
11/2	Single <i>p</i> Shear <i>q</i>	325 185	470 215	590 245	710 270	830 300	945 325					
172	Double <i>p</i> Shear <i>q</i>	650 370	940 430	1180 490	1420 540	1660 600	1890 650					
21⁄2	Single p Shear q		630 360	910 405	1155 450	1370 495	1575 540					
	Double <i>p</i> Shear <i>q</i>	710 620	1260 720	1820 810	2310 900	2740 990	3150 1080					
31⁄2	Single p Shear q			990 565	1400 630	1790 695	2135 760	2455 825	2740 895	330 102		
	Double <i>p</i> Shear <i>q</i>	710 640	1270 980	1980 1130	2800 1260	3580 1390	4270 1520	4910 1650	5480 1780	661 204		
	Single p					1950	2535	3190	3820	497		

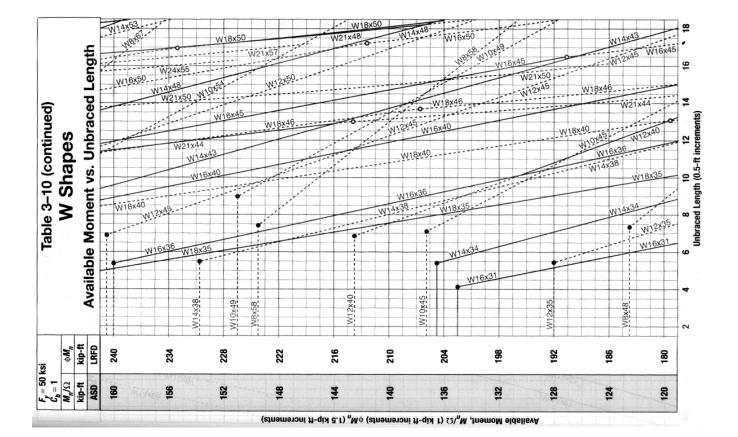
 $\Delta_{LL} = L/260$ and $\Delta_{LL+DL} = L/200$

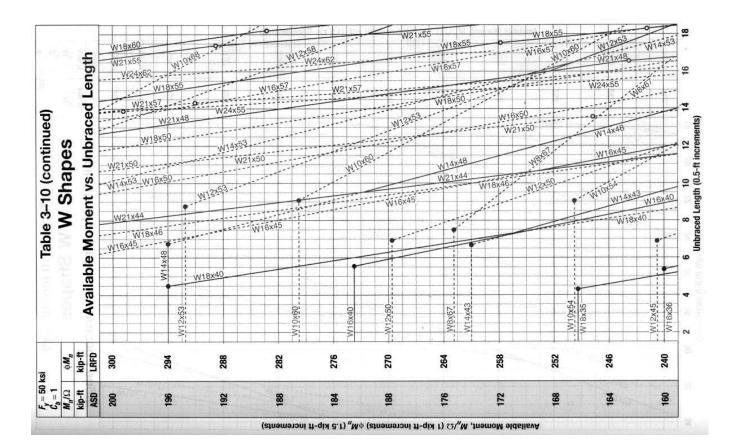
Problem 9.1.21

Partial answers to check with: (for final section) $Z \ge 66.4 \text{ in}^3$, $A_{web} \ge 0.928 \text{ in}^2$, $I \ge 674.7 \text{ in}^3$

For the beam of problem 9.1.21, design the most economical beam for plastic flexure (12%) 9D) only (Z_x) for the dead and live load shown. Make certain to include self weight. The material has the following properties: $F_v = 50$ ksi, E = 30,000 ksi, $\phi_b = 0.9$. (LRFD stress design)

Partial answer to check with: $Z_x \ge 54.6$ in.³


MORE NEXT PAGE


(30%) 9E) For the beam of problem 9.1.21, use the LRFD design method and the following available moment diagram to select the most economical beam with an unbraced length of 7.75 ft and the dead and live load shown. Assume $F_{yw} = 50$ ksi, and $\phi_b = 0.9$. The (unfactored) live load deflection and total load deflections are identical to those in the allowable stress design of problem 9.1.21.

(LRFD stress design)

Partial answer to check with: $M_u = 204.8 \text{ k-ft}$, $V_u = 22.4 \text{ k}$, (when the final section has been chosen, it must have: $I_{req'd} \ge 675.8 \text{ in}^4$, $\phi M_n \ge 211.7 \text{ k-ft}$. $\phi V_n \ge 23.9 \text{ k.}$)

MORE NEXT PAGE (Available Moment Diagrams)

