ARCH 331. Assignment \#2

Date: 9/3/13, due 9/12/13
Problems: supplemental problems (2A, etc.) and from Onouye, Chapters $2,3 \& 4$
Notes: Problems marked with a * have been altered with respect to the problem stated in the text. The "Find, Given, Solution" format is required unless noted.
(5\%) 2A) In the right triangle $A B C$ shown, $c=25 \mathrm{ft}$ and angle $A=48^{\circ}$. Determine a) side $a, \mathrm{~b}$) side b, and c) height h. (math)

Partial answer to check with: $h=12.43 \mathrm{ft}$
Problem 2A)
the resultant
$(12 \%) *_{2.3 .5}$ Determine using the sequence \boldsymbol{F}_{1} to \boldsymbol{F}_{2} to \boldsymbol{F}_{3}. Seate-$-10 \mathrm{~mm}=1 \mathrm{kN}$ (force component method)

Partial answers to check with: $R=3.4 \mathrm{kN}$,

$$
\theta=-40.6^{\circ}(\text { below }+x)
$$

Problem 2.3.5

[^0]$$
M_{B}=+4.4^{k-f t}
$$
2.4.2 A $1000-\mathrm{lb}$. crate is subjected to two applied forces at C. Determine the moment about points \boldsymbol{A} and \boldsymbol{B} due to forces F_{1}, F_{2}, and the weight W. (moment of a force and of force components)
Partial answers to check with: $M_{A}=-1.0^{k-f t}$

Prom
(26\%) 3.1.8 A 200-lb. weight is supported by cables $D C, A C$, and $D E$ and by the vertical pole $B C$. Determine all cable forces and the force in the pole BC. (equilibrium of a particle)

Partial answers to check with: $D E=203 \mathrm{lb}$,

$$
D C=246 \mathrm{lb}, A C=393 \mathrm{lb}, B C=488 \mathrm{lb}(C)
$$

Problem 3.1.8
(35\%) *4.1.15 A bowstring or crescent truss is loaded as shown. Determine all member forces in $D E, E G$, and $G H$. using the method of joints, and knowing there is a vertical support force of 6.5 k up at A, and 5.5 k up at B.
(method of joints)
Partial answers to check with: $A C=-9.2 k$, $C F=4 k, C G=0.4 k, H G=5.5 k$, $E D=-7.12 k, E G=1.77 k, E B=-7.78 k$.

Problem 4.1.15
(9\%) 2B) For the truss of problem $* 4.1 .15$, use Multiframe software to find all member forces to verify your work from method of joints. You will be assigned a standard wide-flange (W) steel section to use posted in My Grades on eCampus. Model the force at A using a pin support (triangle) and the force at B using a roller support (triangle with wheels) as shown in the figure. Submit the data file (.mfd) on eCampus (under Assignments: Assignment 2) and provide a print of the axial forces diagram (P).

Note: The "Find, Given, Solution" format is not required, but the data file submitted to e-Learning and the print-out attached to the submission are.

[^0]: ## Problem 2.4.2

