ARCH 331. Assignment #12

Date: 11/14/13, due 11/21/13

Pass-fail work

Problems: as stated (none from Onouye)

(22%) 12A) Find the area of steel reinforcement required for a concrete T-beam for the following data: $f'_c = 3 \text{ ksi}$, $f_y = 60 \text{ ksi}$, d = 18 in., t = 4.5 in., $b_w = 10 \text{ in.}$, $b_f = 36 \text{ in.}$, 3/4" aggregate, and the section sustains a total <u>factored</u> bending moment 82 k-ft. *Note: the effective width does not need to be determined because the flange width is provided.*

(reinforced concrete T-beam design)

Partial answers to check with: a > 0.7 in, $A_{s-min} = 0.6$ in.²

(22%) 12B) A one-way solid concrete slab is to be used for a simple span of 16 ft. In addition to its own weight, the slab carries a superimposed dead load of 55 lb/ft² and a live load of 120 lb/ft². Using $f'_c = 4$ ksi, and $f_y = 60$ ksi, design the slab for minimum overall thickness.

(reinforced concrete slab design)

Partial answers to check with: $t \approx 10$ in., $R_n = 179$ psi, so ρ_{min} governs, $A_s \geq 0.35$ in.²/ft, $A_{temp-min} \approx 0.22$ in.²/ft (transverse direction)

(11%) 12C) At a certain location along the span, a reinforce concrete beam section with d = 14 in. and b = 10 in. is subject to a design shear of $V_u = 50$ k. Using No. 4 U stirrups, compute the required stirrup spacing at the given location. Assume $f'_c = 3$ ksi, and $f_y = 40$ ksi. (reinforced concrete beam shear design)

Partial answers to check with: $s_{reg'd} = 4.4$ in., $s_{max} = 3.5$ in.

(30%) 12D) A concrete beam that is simply supported sustains a uniform live load of 1.8 kips/ft and a uniform dead load (not including self weight) of 1 kips/ft on a span of 24 ft. Determine the layout for a set of No. 3 U-stirrups with $f_y = 60$ ksi and $f'_c = 3.5$ ksi. The beam section dimensions are b = 12 in., d = 26 in., and h = 28 in..

(reinforced concrete beam shear analysis and design)

Partial answers to check with: $V_{u@d} = 44.25 \text{ k}$; V_s needed: $s_{req'd} = 15.5 \text{ in.}$, $s_{max} = 13 \text{ in.}$; $s_{req'd} = 22 \text{ in.}$, $s_{max} = 13 \text{ in.}$, stirrups end after 107.2 in.

(15%) 12E) Determine the layout for a set of No. 3 U-stirrups for a beam with the same data as Problem 12D, except the uniform live load is 0.75 kips/ft and the uniform dead load (not including self weight) is 0.5 kips/ft.

(reinforced concrete beam shear analysis and design)

Partial answers to check with: $V_{u-max} < \phi V_c$ so maximum spacing governs with 6 stirrups