Reinforced Concrete Design

Notation:

a	$=$ depth of the effective compression block in a concrete beam
A	= name for area
A_{g}	$\begin{aligned} & =\text { gross area, equal to the total area } \\ & \text { ignoring any reinforcement } \end{aligned}$
A_{s}	$=$ area of steel reinforcement in concrete beam design
A_{s}^{\prime}	$\begin{aligned} &= \text { area of steel compression } \\ & \text { reinforcement in concrete beam } \\ & \text { design } \end{aligned}$
$A_{s t}$	= area of steel reinforcement in concrete column design
A_{v}	$=$ area of concrete shear stirrup reinforcement
A	$=$ American Concrete Institute
b	= width, often cross-sectional
b_{E}	$=$ effective width of the flange of a concrete T beam cross section
b_{f}	$=$ width of the flange
b_{w}	$=$ width of the stem (web) of a concrete T beam cross section
$c c$	$=$ shorthand for clear cove
C	= name for centroid
	= name for a compression force
C_{c}	$=$ compressive force in the compression steel in a doubly reinforced concrete beam
C_{s}	$=$ compressive force in the concrete of a doubly reinforced concrete beam
d	$=$ effective depth from the top of a reinforced concrete beam to the centroid of the tensile steel
d	$=$ effective depth from the top of a reinforced concrete beam to the centroid of the compression steel
d_{b}	$=$ bar diameter of a reinforcing bar
D	= shorthand for dead load
DL	= shorthand for dead load
E	$=$ modulus of elasticity or Young's modulus
	= shorthand for earthquake load
E_{c}	$=$ modulus of elasticity of concrete
E_{s}	$=$ modulus of elasticity of steel
f	= symbol for stress

$f_{c} \quad=$ compressive stress
$f_{c}^{\prime}=$ concrete design compressive stress
$f_{p u} \quad=$ tensile strength of the prestressing reinforcement
$f_{s} \quad=$ stress in the steel reinforcement for concrete design
$f_{s}^{\prime}=$ compressive stress in the compression reinforcement for concrete beam design
$f_{y} \quad=$ yield stress or strength
$F \quad=$ shorthand for fluid load
$F_{y} \quad=$ yield strength
$G \quad=$ relative stiffness of columns to beams in a rigid connection, as is Ψ
$h \quad=$ cross-section depth
$H \quad=$ shorthand for lateral pressure load
$h_{f} \quad=$ depth of a flange in a T section
$I_{\text {transformed }}=$ moment of inertia of a multimaterial section transformed to one material
$k \quad=$ effective length factor for columns
$\ell_{b} \quad=$ length of beam in rigid joint
$\ell_{c} \quad=$ length of column in rigid joint
$l_{d} \quad=$ development length for reinforcing steel
$l_{d h}=$ development length for hooks
$l_{n} \quad=$ clear span from face of support to face of support in concrete design
$L \quad=$ name for length or span length, as is l
$=$ shorthand for live load
$L_{r} \quad=$ shorthand for live roof load
$L L \quad=$ shorthand for live load
$M_{n} \quad=$ nominal flexure strength with the steel reinforcement at the yield stress and concrete at the concrete design strength for reinforced concrete beam design
$M_{u}=$ maximum moment from factored loads for LRFD beam design
$n \quad=$ modulus of elasticity transformation coefficient for steel to concrete
n.a. = shorthand for neutral axis (N.A.)

pH	= chemical alkalinity	$\begin{aligned} w_{L L}= & \text { load per unit length on a beam from } \\ & \text { live load } \end{aligned}$
P	= name for load or axial force vector	
P_{o}	$=$ maximum axial force with no concurrent bending moment in a reinforced concrete column	$w_{\text {self } w t}=$ name for distributed load from self weight of member
P_{n}	$=$ nominal column load capacity in concrete design	$W \quad=\begin{aligned} & \text { load factors } \\ & \text { shorthand for wind load } \end{aligned}$
P_{u}	$=$ factored column load calculated from load factors in concrete design	= horizontal distance = distance from the top to the neutral
R	= shorthand for rain or ice load	xis of a concrete beam
R_{n}	$\begin{aligned} & =\text { concrete beam design ratio }= \\ & M_{u} / b d^{2} \end{aligned}$	$\begin{array}{ll} y & =\text { vertical distance } \\ \beta_{1} & =\text { coefficient for determining stress } \end{array}$
s	$=$ spacing of stirrups in reinforced concrete beams	block height, a, based on concrete strength, f_{c}^{\prime}
S	$=$ shorthand for snow load	$\Delta \quad=$ elastic beam deflection
t	me for thickn	
T	$=$ name for a tension force = shorthand for thermal load	$\begin{array}{ll} \varepsilon & =\text { strain } \\ \phi & =\text { resistance factor } \end{array}$
U	$=$ factored design value	$\phi_{c}=$ resistance factor for compression
V_{c}	= shear force capacity in concrete	$=$ density or unit weight
V_{s}	$=$ shear force capacity in steel shear stirrups	$\rho \quad=$ radius of curvature in beam
V_{u}	$=$ shear at a distance of d away from the face of support for reinforced concrete beam design	$\begin{aligned} & =\text { reinforcement ratio in concrete } \\ & \text { beam design }=A_{s} / b d \end{aligned}$
w_{c}	$=$ unit weight of concrete	$\rho_{\text {balanced }}=$ balanced reinforcement ratio in
	$=$ load per unit length on a beam from	concrete beam design $v_{c}=\text { shear strength in concrete design }$

Reinforced Concrete Design

Structural design standards for reinforced concrete are established by the Building Code and Commentary (ACI 318-11) published by the American Concrete Institute International, and uses ultimate strength design (also known as limit state design).
$f^{\prime}{ }_{c}=$ concrete compressive design strength at 28 days (units of psi when used in equations)

Materials

Concrete is a mixture of cement, coarse aggregate, fine aggregate, and water. The cement hydrates with the water to form a binder. The result is a hardened mass with "filler" and pores. There are various types of cement for low heat, rapid set, and other properties. Other minerals or cementitious materials (like fly ash) may be added.

ASTM designations are
Type I: Ordinary portland cement (OPC)
Type II: Low temperature
Type III: High early strength
Type IV: Low-heat of hydration
Type V: Sulfate resistant
The proper proportions, by volume, of the mix constituents determine strength, which is related to the water to cement ratio (w/c). It also determines other properties, such as workability of fresh concrete. Admixtures, such as retardants, accelerators, or
 superplasticizers, which aid flow without adding more water, may be added. Vibration may also be used to get the mix to flow into forms and fill completely.

Slump is the measurement of the height loss from a compacted cone of fresh concrete. It can be an indicator of the workability.

Proper mix design is necessary for durability. The pH of fresh cement is enough to prevent reinforcing steel from oxidizing (rusting). If, however, cracks allow corrosive elements in water to penetrate to the steel, a corrosion cell will be created, the steel will rust, expand and cause further cracking. Adequate cover of the steel by the concrete is important.

Deformed reinforcing bars come in grades $40,60 \& 75$ (for $40 \mathrm{ksi}, 60 \mathrm{ksi}$ and 75 ksi yield strengths). Sizes are given as \# of $1 / 8$ " up to \#8 bars. For \#9 and larger, the number is a nominal size (while the actual size is larger).

Reinforced concrete is a composite material, and the average density is considered to be $150 \mathrm{lb} / \mathrm{ft}^{3}$. It has the properties that it will creep (deformation with long term load) and shrink (a result of hydration) that must be considered.

Construction

Because fresh concrete is a viscous suspension, it is cast or placed and not poured. Formwork must be able to withstand the hydraulic pressure. Vibration may be used to get the mix to flow around reinforcing bars or into tight locations, but excess vibration will cause segregation, honeycombing, and excessive bleed water which will reduce the water available for hydration and the strength, subsequently.

After casting, the surface must be worked. Screeding removes the excess from the top of the forms and gets a rough level. Floating is the process of working the aggregate under the surface and to "float" some paste to the surface. Troweling takes place when the mix has hydrated to the point of supporting weight and the surface is smoothed further and consolidated. Curing is allowing the hydration process to proceed with adequate moisture. Black tarps and curing compounds are commonly used. Finishing is the process of adding a texture, commonly by using a broom, after the concrete has begun to set.

Behavior

Plane sections of composite materials can still be assumed to be plane (strain is linear), but the stress distribution is not the same in both materials because the modulus of elasticity is different. ($f=\mathrm{E} \cdot \varepsilon$)

$$
f_{1}=E_{1} \varepsilon=-\frac{E_{1} y}{\rho} \quad f_{2}=E_{2} \varepsilon=-\frac{E_{2} y}{\rho}
$$

In order to determine the stress, we can define n as the ratio of the elastic moduli:

$$
n=\frac{E_{2}}{E_{1}}
$$

n is used to transform the width of the second material such that it sees the equivalent element stress.

Transformed Section y and I

In order to determine stresses in all types of material in the beam, we transform the materials into a single material, and calculate the location of the neutral axis and modulus of inertia for that material.

ex: When material 1 above is concrete and material 2 is steel
to transform steel into concrete $n=\frac{E_{2}}{E_{1}}=\frac{E_{\text {steel }}}{E_{\text {concrete }}}$
to find the neutral axis of the equivalent concrete member we transform the width of the steel by multiplying by n
to find the moment of inertia of the equivalent concrete member, $\mathrm{I}_{\text {transformed }}$, use the new geometry resulting from transforming the width of the steel
concrete stress: $f_{\text {concrete }}=-\frac{M y}{I_{\text {transformel }}}$
steel stress: $\quad f_{\text {steel }}=-\frac{M y n}{I_{\text {transformel }}}$

Reinforced Concrete Beam Members

Stresses in the concrete above the neutral axis are compressive and nonlinearly distributed. In the tension zone below the neutral axis, the concrete is assumed to be cracked and the tensile force present to be taken up by reinforcing steel.

Working stress analysis. (Concrete stress distribution is assumed to be linear. Service loads are used in calculations.)

Actual stress distribution near ultimate strength (nonlinear).

Typical stress-strain curve for concrete.

Ultimate strength analysis. (A rectangular stress block is used to idealize the actual stress distribution. Calculations are based on ultimate loads and failure stresses.)

Ultimate Strength Design for Beams

The ultimate strength design method is similar to LRFD. There is a nominal strength that is reduced by a factor ϕ which must exceed the factored design stress. For beams, the concrete only works in compression over a rectangular "stress" block above the n.a. from elastic calculation, and the steel is exposed and reaches the yield stress, F_{y}

For stress analysis in reinforced concrete beams

- the steel is transformed to concrete
- any concrete in tension is assumed to be cracked and to have no strength
- the steel can be in tension, and is placed in the bottom of a beam that has positive bending moment

Figure 8.5: Bending in a concrete beam without and with steel reinforcing.

The neutral axis is where there is no stress and no strain. The concrete above the n.a. is in compression. The concrete below the n.a. is considered ineffective. The steel below the n.a. is in tension.

Because the n.a. is defined by the moment areas, we can solve for x knowing that d is the distance from the top of the concrete section to the centroid of the steel:

$$
b x \cdot \frac{x}{2}-n A_{s}(d-x)=0
$$

x can be solved for when the equation is rearranged into the generic format with $\mathrm{a}, \mathrm{b} \& \mathrm{c}$ in the binomial equation: $\quad a x^{2}+b x+c=0 \quad$ by $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

T-sections

If the n.a. is above the bottom of a flange in a T section, x is found as for a rectangular section.

If the n.a. is below the bottom of a flange in a T section, x is found by including the flange and the stem of the web (b_{w}) in the moment area calculation:

$$
b_{f} h_{f}\left(x-h_{f} / 2\right)+\left(x-h_{f}\right) b_{w} \frac{\left(x-h_{f}\right)}{2}-n A_{s}(d-x)=0
$$

Load Combinations (Alternative values are allowed)

$1.4 D$
$1.2 D+1.6 L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$
$1.2 D+1.6\left(L_{r}\right.$ or S or $\left.R\right)+(1.0 L$ or $0.5 W)$
$1.2 D+1.0 W+1.0 L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$
$1.2 D+1.0 E+1.0 L+0.2 S$
$0.9 D+1.0 W$
$0.9 D+1.0 E$

ASTM STANDARD REINFORCING BARS

Bar size, no.	Nominal diameter, in.	Nominal area, in.	Nominal weight, lbfft
3	0.375	0.11	0.376
4	0.500	0.20	0.668
5	0.625	0.31	1.043
6	0.750	0.44	1.502
7	0.875	0.60	2.044
8	1.000	0.79	2.670
9	1.128	1.00	3.400
10	1.270	1.27	4.303
11	1.410	1.56	5.313
14	1.693	2.25	7.650
18	2.257	4.00	13.600

Internal Equilibrium

$\mathrm{C}=$ compression in concrete $=$ stress x area $=0.85 f^{\prime} c^{\prime} b a$
$\mathrm{T}=$ tension in steel $=$ stress x area $=A_{s} f_{y}$
$C=T$ and $M_{n}=T(d-a / 2)$
where $\quad \mathrm{f}^{\prime}{ }_{\mathrm{c}}=$ concrete compression strength
$\mathrm{a}=$ height of stress block
$\beta_{1}=$ factor based on $f^{\prime}{ }_{c}$
$\mathrm{x}=$ location to the neutral axis
$\mathrm{b}=$ width of stress block
$f_{y}=$ steel yield strength
$\mathrm{A}_{\mathrm{s}}=$ area of steel reinforcement
d = effective depth of section
$=$ depth to n.a. of reinforcement

$$
\text { With } \mathrm{C}=\mathrm{T}, A_{S} f y=0.85 f^{\prime} b a \quad \text { so } a \text { can be determined with } a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}
$$

Criteria for Beam Design

For flexure design:
$M_{u} \leq \phi M_{n} \quad \phi=0.9$ for flexure (when the section is tension controlled)
so for design, M_{u} can be set to $\phi M_{n}=\phi T(d-a / 2)=\phi A_{S} f y(d-a / 2)$

Reinforcement Ratio

The amount of steel reinforcement is limited. Too much reinforcement, or over-reinforcing will not allow the steel to yield before the concrete crushes and there is a sudden failure. A beam with the proper amount of steel to allow it to yield at failure is said to be under reinforced. The reinforcement ratio is just a fraction: $\rho=\frac{A_{s}}{b d}$ (or p) and must be less than a value determined with a concrete strain of 0.003 and tensile strain of 0.004 (minimum). When the strain in the reinforcement is 0.005 or greater, the section is tension controlled. (For smaller strains the resistance factor reduces to 0.65 - see tied columns - because the stress is less than the yield stress in the steel.) Previous codes limited the amount to $0.75 \rho_{\text {balanced }}$ where $\rho_{\text {balanced }}$ was determined from the amount of steel that would make the concrete start to crush at the exact same time that the steel would yield based on strain.

Flexure Design of Reinforcement

One method is to "wisely" estimate a height of the stress block, a, and solve for A_{s}, and calculate a new value for a using M_{u}.

1. guess a (less than n.a.)
2. $A_{s}=\frac{0.85 f_{c}^{\prime} b a}{f_{y}}$
3. solve for a from

$$
\begin{aligned}
& \text { setting } M_{u}=\phi A_{S} f y(d-a / 2) \\
& \qquad a=2\left(d-\frac{M_{u}}{\phi A_{s} f_{y}}\right)
\end{aligned}
$$

Maximum Reinforcement Ratio ρ for Singly Reinforced Rectangular Beams	(tensile strain $=0.005$) for which ϕ is permitted to be 0.9		
$f_{c}^{\prime}=3000$ psi	$f_{c}^{\prime}=3500$ psi	$f_{c}^{\prime}=4000$ psi $\quad f_{c}^{\prime}=5000$ psi $\quad f_{c}^{\prime}=6000 \mathrm{psi}$	

f_{y}	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.80$	$\beta_{1}=0.75$
$40,000 \mathrm{psi}$	0.0203	0.0237	0.0271	0.0319	0.0359
50,000	pi	0.0163	0.0190	0.0217	0.0255
$60,000 \mathrm{psi}$	0.0135	0.0158	0.0181	0.0213	0.0237
	$f_{c}^{\prime}=20 \mathrm{MPa}$	$f_{c}^{\prime}=25 \mathrm{MPa}$	$f_{c}^{\prime}=30 \mathrm{MPa}$	$f_{c}^{\prime}=35 \mathrm{MPa}$	$f_{c}^{\prime}=40 \mathrm{MPa}$

f_{y}	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.81$	$\beta_{1}=0.77$
300 MPa	0.0081	0.0226	0.0271	0.0301	0.0327
350 MPa	0.0155	0.0194	0.0232	0.0258	0.0281
400 MPa	0.0135	0.0169	0.0203	0.0226	0.0245
500 MPa	0.0108	0.0135	0.0163	0.0181	0.0496

4. repeat from 2. until a found from step 3 matches a used in step 2 .

Design Chart Method:

1. calculate $R_{n}=\frac{M_{n}}{b d^{2}}$
2. find curve for $f^{\prime}{ }_{c}$ and f_{y} to get ρ
3. calculate A_{s} and a, where:

$$
A_{s}=\rho b d \text { and } a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}
$$

Any method can simplify the size of d using $\mathrm{h}=1.1 \mathrm{~d}$

Maximum Reinforcement

Based on the limiting strain of
0.005 in the steel, $x($ or $c)=0.375 d$ so

$$
a=\beta_{1}(0.375 d) \text { to find } \mathrm{A}_{s-\max }
$$

($\underline{\beta}_{1}$ is shown in the table above)

Minimum Reinforcement

Minimum reinforcement is provided even if the concrete can resist the tension. This is a means to control cracking.
Minimum required: $A_{s}=\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}}\left(b_{w} d\right)$

Figure 3.8.1 Strength curves (R_{n} vs ρ) for singly reinforced rectangular sections. Upper limit of curves is at $\rho_{\text {max }}$. (tensile strain of 0.004)
but not less than: $A_{s}=\frac{200}{f_{y}}\left(b_{w} d\right)$
where f_{c}^{\prime} is in psi. \quad This can be translated to $\rho_{\min }=\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}}$ but not less than $\frac{200}{f_{y}}$

Cover for Reinforcement

Cover of concrete over/under the reinforcement must be provided to protect the steel from corrosion. For indoor exposure, 1.5 inch is typical for beams and columns, 0.75 inch is typical for slabs, and for concrete cast against soil, 3 inch minimum is required.

Bar Spacing

Minimum bar spacings are specified to allow proper consolidation of concrete around the reinforcement. The minimum spacing is the
 maximum of 1 in , a bar diameter, or 1.33 times the maximum aggregate size.

T-beams and T-sections (pan joists)

Beams cast with slabs have an effective width, b_{E}, that sees compression stress in a wide flange beam or joist in a slab system with positive bending.

For interior T-sections, b_{E} is the smallest of $L / 4, b_{w}+16 t$, or center to center of beams

For exterior T-sections, b_{E} is the smallest of

Figure 9.3.1 Actual and equivalent stress distribution over flange width. $b_{w}+L / 12, b_{w}+6$, or $b_{w}+1 / 2$ (clear distance to next beam)

When the web is in tension the minimum reinforcement required is the same as for rectangular sections with the web width $\left(b_{w}\right)$ in place of b.

When the flange is in tension (negative bending), the minimum reinforcement required is the greater value of

$$
A_{s}=\frac{6 \sqrt{f_{c}^{\prime}}}{f_{y}}\left(b_{w} d\right) \quad \text { or } \quad A_{s}=\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}}\left(b_{f} d\right)
$$

where f_{c}^{\prime} is in psi, b_{w} is the beam width, and b_{f} is the effective flange width

Compression Reinforcement

(negative moment).
If a section is doubly reinforced, it means there is steel in the beam seeing compression. The force in the compression steel that may not be yielding is

$$
C_{s}=A_{s}^{\prime}\left(f_{s}^{\prime}-0.85 f_{c}^{\prime}\right)
$$

The total compression that balances the tension is now: $T=C_{c}+C_{s}$. And the moment taken about the centroid of
 the compression stress is $M_{n}=T(d-a / 2)+C_{s}\left(a-d^{\prime}\right)$
where $A_{s}{ }^{\text {' }}$ is the area of compression reinforcement, and d^{\prime} is the effective depth to the centroid of the compression reinforcement

Because the compression steel may not be yielding, the neutral axis x must be found from the force equilibrium relationships, and the stress can be found based on strain to see if it has yielded.

Slabs

One way slabs can be designed as "one unit"wide beams. Because they are thin, control of deflections is important, and minimum depths are specified, as is minimum reinforcement for shrinkage and crack control when not in flexure. Reinforcement is commonly small diameter bars and welded wire fabric. Maximum spacing between bars is also specified for shrinkage and crack control as five times the slab thickness not exceeding $18 "$. For required flexure reinforcement the spacing limit is three times the slab thickness not exceeding $18 "$.

TABLE 9.5(a)-MINIMUM THICKNESS OF NONPRESTRESSED BEAMS OR ONE-WAY SLABS UNLESS DEFLECTIONS ARE COMPUTED

Minimum thickness, \boldsymbol{h} Simply sup- ported				One end continuous
Members not supporting or attached to partitions or other construction likely to be damaged by large deflections.				
Member				

Notes:
Values given shall be used directly for members with normalweight concrete
and Grade 60 reinforcement. For other conditions, the values shall be modified as follows:
a) For lightweight concrete having equilibrium density, w_{c}, in the range of 90
to $115 \mathrm{lb} / \mathrm{ft}^{3}$, the values shall be multiplied by ($1.65-0.005 w_{c}$) but not less
than 1.09 .
b) For f_{y} other than $\mathbf{6 0 , 0 0 0} \mathrm{psi}$, the values shall be multiplied by $\left(\mathbf{0 . 4}+\mathrm{f}_{\boldsymbol{y}} f \mathbf{1 0 0 , 0 0 0}\right)$.

Shrinkage and temperature reinforcement (and minimum for flexure reinforcement):
Minimum for slabs with grade 40 or 50 bars: $\quad \rho=\frac{A_{s}}{b t}=0.002$ or $A_{s-m i n}=0.002 b t$
Minimum for slabs with grade 60 bars:

$$
\rho=\frac{A_{s}}{b t}=0.0018 \text { or } A_{s-\min }=0.0018 b t
$$

Shear Behavior

Horizontal shear stresses occur along with bending stresses to cause tensile stresses where the concrete cracks. Vertical reinforcement is required to bridge the cracks which are called shear stirrups (or stirrups).

The maximum shear for design, V_{u} is the value at a distance of d from the face of the support.

Nominal Shear Strength

The shear force that can be resisted is the shear stress \times cross section area: $V_{c}=v_{c} \times b_{w} d$
The shear stress for beams (one way) $v_{c}=2 \sqrt{f_{c}^{\prime}} \quad$ so $\phi V_{c}=\phi 2 \sqrt{f_{c}^{\prime}} b_{w} d$

$$
\begin{array}{ll}
\text { where } & b_{w}=\text { the beam width or the minimum width of the stem. } \\
\phi=0.75 \text { for shear }
\end{array}
$$

One-way joists are allowed an increase of $10 \% \mathrm{~V}_{\mathrm{c}}$ if the joists are closely spaced.
Stirrups are necessary for strength (as well as crack control): $V_{s}=\frac{A_{v} f_{y} d}{s} \leq 8 \sqrt{f_{c}^{\prime}} b_{w} d$ (max)
where $\quad A_{v}=$ area of all vertical legs of stirrup
$\mathrm{s}=$ spacing of stirrups

$$
\mathrm{d}=\text { effective depth }
$$

For shear design:

$$
V_{U} \leq \phi V_{C}+\phi V_{S} \quad \phi=0.75 \text { for shear }
$$

Spacing Requirements

Stirrups are required when V_{u} is greater than $\frac{\phi V_{c}}{2}$
Table 3-8 ACI Provisions for Shear Design*

		$\mathrm{V}_{\mathrm{u}} \leq \frac{\phi \mathrm{V}_{\mathrm{c}}}{2}$	$\phi V_{c} \geq \mathrm{V}_{u}>\frac{\phi V_{c}}{2}$	$\mathrm{V}_{u}>\phi \mathrm{V}_{\mathrm{c}}$
Required area of stirrups, $\mathrm{A}_{\mathbf{V}}{ }^{* *}$		none	$\frac{50 b_{w} s}{f_{y}}$	$\frac{\left(V_{u}-\phi V_{c}\right) \mathbf{s}}{\phi f_{y} d}$
Stirrup spacing, s	Required	-	$\frac{A_{v} f_{y}}{50 b_{w}}$	$\frac{\phi A_{v} f_{y} d}{V_{u}-\phi V_{c}}$
	Recommended Minimum ${ }^{\dagger}$	-	-	4 in.
	Maximum ${ }^{\dagger} \dagger$ (ACl 11.5.4)	-	$\frac{d}{2} \text { or } 24 \mathrm{in} .$	$\frac{d}{2}$ or 24 in. for $\left(V_{u}-\phi V_{c}\right) \leq \phi 4 \sqrt{f_{c}^{\prime}} \mathrm{b}_{\mathrm{w}} \mathrm{d}$
				$\frac{d}{4}$ or 12 in. for $\left(V_{u}-\phi V_{c}\right)>\phi 4 \sqrt{f_{c}^{\prime}} \mathrm{b}_{w} \mathrm{~d}$

*Members subjected to shear and flexure only; $\phi \mathrm{V}_{\mathrm{c}}=\phi 2 \sqrt{\mathrm{f}_{c}^{\prime}} \mathrm{b}_{\mathrm{w}} \mathrm{d}, \phi=0.75$ (ACl 11.3.1.1)
${ }^{* *} A_{v}=2 \times A_{b}$ for U stirrups; $f_{y} \leq 60 \mathrm{ksi}(A C l ~ 11.5 .2)$
\dagger A practical limit for minimum spacing is $d / 4$
$\dagger \dagger$ Maximum spacing based on minimum shear reinforcement ($=\mathrm{A}_{\mathrm{v}} \mathrm{f}_{\mathrm{y}} / 50 \mathrm{~b}_{\mathrm{w}}$) must also be considered
(ACl 11.5.5.3).

Economical spacing of stirrups is considered to be greater than $\mathrm{d} / 4$. Common spacings of $\mathrm{d} / 4, \mathrm{~d} / 3$ and $\mathrm{d} / 2$ are used to determine the values of $\phi \mathrm{V}_{\mathrm{s}}$ at which

$$
\phi V_{s}=\frac{\phi A_{v} f_{y} d}{s}
$$ the spacings can be increased.

This figure shows the size of V_{n} provided by $V_{c}+V_{s}$ (long dashes) exceeds V_{u} / ϕ in a step-wise function, while the spacing provided (short dashes) is at or less than the required s (limited by the maximum allowed). (Note that the maximum shear permitted from the stirrups is $8 \sqrt{f_{c}^{\prime}} b_{w} d$)

The minimum recommended spacing for the first stirrup is 2 inches from the face of the support.

Torsional Shear Reinforcement

On occasion beam members will see twist along the axis caused by an eccentric shape supporting a load, like on an L-shaped spandrel (edge) beam. The torsion results in shearing stresses, and closed stirrups may be needed to resist the stress that the concrete cannot resist.

Fig. R11.6.3.6(b)—Definition of $\mathbf{A}_{\mathbf{o h}}$

Development Length for Reinforcement

Because the design is based on the reinforcement attaining the yield stress, the reinforcement needs to be properly bonded to the concrete for a finite length (both sides) so it won't slip. This is referred to as the development length, l_{d}. Providing sufficient length to anchor bars that need to reach the yield stress near the end of connections are also specified by hook lengths. Detailing reinforcement is a tedious job. Splices are also necessary to extend the length of reinforcement that come in standard lengths. The equations are not provided here.

Development Length in Tension

With the proper bar to bar spacing and cover, the common development length equations are:

$$
\begin{array}{ll}
\text { \#6 bars and smaller: } & l_{d}=\frac{d_{b} F_{y}}{25 \sqrt{f_{c}^{\prime}}} \quad \text { or } 12 \text { in. minimum } \\
\text { \#7 bars and larger: } & l_{d}=\frac{d_{b} F_{y}}{20 \sqrt{f_{c}^{\prime}}} \quad \text { or } 12 \text { in. minimum }
\end{array}
$$

Development Length in Compression

$$
l_{d}=\frac{0.02 d_{b} F_{y}}{\sqrt{f_{c}^{\prime}}} \leq 0.0003 d_{b} F_{y}
$$

Hook Bends and Extensions

The minimum hook length is $l_{d h}=\frac{1200 d_{b}}{\sqrt{f_{c}^{\prime}}}$

Figure 9-17: Minimum requirements for 90° bar hooks.
Figure 9-18: Minimum requirements for 180° bar hooks.

Modulus of Elasticity \& Deflection

E_{c} for deflection calculations can be used with the transformed section modulus in the elastic range. After that, the cracked section modulus is calculated and E_{c} is adjusted.

Code values:

$$
E_{c}=57,000 \sqrt{f_{c}^{\prime}} \text { (normal weight) } \quad E_{c}=w_{c}^{1.5} 33 \sqrt{f_{c}^{\prime}}, w_{c}=90 \mathrm{lb} / f t^{3}-160 \mathrm{lb} / f t^{3}
$$

Deflections of beams and one-way slabs need not be computed if the overall member thickness meets the minimum specified by the code, and are shown in Table 9.5(a) (see Slabs).

Criteria for Flat Slab \& Plate System Design

Systems with slabs and supporting beams, joists or columns typically have multiple bays. The horizontal elements can act as one-way or two-way systems. Most often the flexure resisting elements are continuous, having positive and negative bending moments. These moment and shear values can be found using beam tables, or from code specified approximate design factors. Flat slab two-way systems have drop panels (for shear), while flat plates do not.

Criteria for Column Design

(American Concrete Institute) ACI 318-02 Code and Commentary:

$$
P_{u} \leq \phi_{\mathrm{c}} P_{n} \quad \text { where }
$$

P_{u} is a factored load
ϕ is a resistance factor
P_{n} is the nominal load capacity (strength)

Load combinations, ex: $\quad 1.4 \mathrm{D}$ (D is dead load)
$1.2 \mathrm{D}+1.6 \mathrm{~L}$ (L is live load)
For compression, $\phi_{c}=0.75$ and $\mathrm{P}_{\mathrm{n}}=0.85 \mathrm{P}_{\mathrm{o}}$ for spirally reinforced, $\phi_{c}=0.65$ and $\mathrm{P}_{\mathrm{n}}=0.8 \mathrm{P}_{\mathrm{o}}$ for tied columns where $P_{o}=0.85 f_{c}^{\prime}\left(A_{g}-A_{s t}\right)+f_{y} A_{s t}$ and P_{o} is the name of the maximum axial force with no concurrent bending moment.

Columns which have reinforcement ratios, $\rho_{g}=\frac{A_{s t}}{A_{g}}$, in the range of 1% to 2% will usually be the most economical, with 1% as a minimum and 8% as a maximum by code.

Bars are symmetrically placed, typically.

Spiral ties are harder to construct.

Columns with Bending (Beam-Columns)

Concrete columns rarely see only axial force and must be designed for the combined effects of axial load and bending moment. The interaction diagram shows the reduction in axial load a column can carry with a bending moment.

Design aids commonly present the interaction diagrams in the form of load vs. equivalent eccentricity for standard column sizes and bars used.

Rigid Frames

Monolithically cast frames with beams and column elements will have members with shear, bending and axial loads. Because the joints can rotate, the effective length must be determined from methods like that presented in the handout on Rigid Frames. The charts for evaluating k for non-sway and sway frames can be found in the ACI code.

Figure 5-3 Transition Stages on Interaction Diagram

Frame Columns

Because joints can rotate in frames, the effective length of the column in a frame is harder to determine. The stiffness (EI/L) of each member in a joint determines how rigid or flexible it is. To find k , the relative stiffness, G or Ψ, must be found for both ends, plotted on the alignment charts, and connected by a line for braced and unbraced fames.

$$
G=\Psi=\frac{\Sigma E I / l_{c}}{\Sigma E I / l_{b}}
$$

where
$\mathrm{E}=$ modulus of elasticity for a member

I = moment of inertia of for a member
$l_{c}=$ length of the column from center to center
$l_{\mathrm{b}}=$ length of the beam from center to center

- For pinned connections we typically use a value of 10 for Ψ.
- For fixed connections we typically use a value of 1 for Ψ.

Braced - non-sway frame

Unbraced - sway frame

(a)

(b)

Sway Frames

Example 1
Determine the design moment capacity for the reinforced concrete cross section shown Assume $f_{c}^{f}=3000$ psi and Grade 60 reinforcing steel.

Example 2 (a) Determine the ultimate moment capacity of a beam with dimensions $b=10 \mathrm{in}$. and $d_{\text {effective }}=15 \mathrm{in}$. and that has three No. 9 bars (3.0 in. ${ }^{2}$) of tension-reinforcing steel. Assume that $\quad h=18 \mathrm{in} ., F_{y}=40 \mathrm{ksi}$, and $f_{c}^{\prime}=5 \mathrm{ksi}$. (b) Assume also that the section is used as a cantilever beam 10 ft long, where the service loads are dead load $=400 \mathrm{lb} / \mathrm{ft}$ and live load $=300 \mathrm{lb} / \mathrm{ft}$. Is the beam adequate in bending? Calculate the ultimate moment capacity of the beam first.

Solution:

(a) $\quad a=A_{s} F_{y} / 0.85 f_{c}^{\prime} b=(3)(40,000) /(0.85)(5000)(10)=2.82 \mathrm{in}$.

$$
\phi M_{n}=\phi A_{s} F_{y}[d-a / 2]=0.9(3)(40,000)[15-(2.82) /(2)]=1,466,640 \mathrm{in} .-\mathrm{lb}
$$

Check for overreinforcement, $c=0.375 \cdot 15=5.625$. Depth of stress block $a=0.80 \cdot 5.625 \mathrm{in} .=$ $4.5 \mathrm{in} . A_{s, \text { max }}=(0.85)(5 \mathrm{ksi})(4.5 \mathrm{in}).(10 \mathrm{in}) /.(40 \mathrm{ksi})=4.78 \mathrm{in} .^{2}$ The beam is not over reinforced Check for minimum steel: $A_{s, \min }=\frac{3 \sqrt{f_{c}^{\prime}}}{F} b d=0.80 \mathrm{in}^{2}$, so beam is sufficiently
reinforced.

$$
\begin{align*}
& U=1.2 D+1.6 L=1.2(400)+1.6(300)=960 \mathrm{lb} / \mathrm{ft} \tag{b}\\
& M_{u}=w_{u} L^{2} \underset{\mathrm{lb}-\mathrm{in}}{2=}(960)\left(10^{2}\right) / 2=\underset{\mathrm{lb}-\mathrm{in}}{48,000 \mathrm{ft}-\mathrm{lb}=576,000 \mathrm{in} . \mathrm{lb}} \\
& \text { Since } \quad M_{u}=576,000<\phi M_{n}=1,466,640 \text {, the beam is adequate in bending. }
\end{align*}
$$

EXAMPLE

Determine the ultimate moment capacity of a beam of dimensions $b=250 \mathrm{~mm}$ and $d=350 \mathrm{~mm}$ and that has $300 \mathrm{~mm}^{2}$ of reinforcing steel. Assume that $F_{y}=400 \mathrm{MPa}$ and $f^{\prime}{ }_{c}=25 \mathrm{MPa}$.

Solution:

$$
\begin{aligned}
a & =\frac{A_{s} F_{y}}{0.85 f_{c}^{\prime} b}=\frac{(300)(400)}{(0.85)(25)(250)}=22.6 \mathrm{~mm} \\
\phi M_{n} & =\phi A_{s} F_{y}\left(d-\frac{a}{2}\right)=0.9(300)(400)\left(350-\frac{22.6}{2}\right)=36.5 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Example 3

Example 1. The service load bending moments on a beam are 58 kip$\mathrm{ft}[78.6 \mathrm{kN}-\mathrm{m}]$ for dead load and $38 \mathrm{kip-ft}[51.5 \mathrm{kN}-\mathrm{m}$] for live load. The beam is 10 in . [254 mm] wide, f_{c}^{\prime} is 3000 psi [27.6 MPa], and f_{y} is 60 ksi [414 MPa]. Determine the depth of the beam and the tensile reinforcing required.

Example 3 (continued)

Example 4

A simply supported beam 20 ft long carries a service dead load of $300 \mathrm{lb} / \mathrm{ft}$ and a live load of $500 \mathrm{lb} / \mathrm{ft}$. Design an appropriate beam (for flexure only). Use grade 40 steel and concrete strength of 5000 psi .

SOLUTION:

Find the design moment, M_{u}, from the factored load combination of $1.2 \mathrm{D}+1.6 \mathrm{~L}$. It is good practice to guess a beam size to include self weight in the dead load, because "service" means dead load of everything except the beam itself.

Guess a size of $10 \mathrm{in} x 12 \mathrm{in}$. Self weight for normal weight concrete is the density of $150 \mathrm{lb} / \mathrm{ft}^{3}$ multiplied by the cross section area: self weight $=150 \mathrm{lo} / \mathrm{ft}^{3}(10 \mathrm{in})(12 \mathrm{in}) \cdot\left(\frac{1 \mathrm{ft}}{12 \mathrm{in}}\right)^{2}=125 \mathrm{lb} / \mathrm{ft}$
$W_{u}=1.2(300 \mathrm{lb} / \mathrm{ft}+125 \mathrm{lb} / \mathrm{ft})+1.6(500 \mathrm{lb} / \mathrm{ft})=1310 \mathrm{lb} / \mathrm{ft}$
The maximum moment for a simply supported beam is $\frac{w l^{2}}{8}: \quad \quad \mathrm{M}_{\mathrm{u}}=\frac{w_{u} l^{2}}{8}=\frac{1310 \mathrm{lb} / \mathrm{ft}(20 \mathrm{ft})^{2}}{8} 65,500 \mathrm{lb}-\mathrm{ft}$
M_{n} required $=M_{u} / \phi=\frac{65,500^{l b-f t}}{0.9}=72,778 \mathrm{lb-ft}$

To use the design chart aid, find $\mathrm{R}_{\mathrm{n}}=\frac{M_{n}}{b d^{2}}$, estimating that d is about 1.75 inches less than h :
$\mathrm{d}=12 \mathrm{in}-1.75 \mathrm{in}-(0.375)=10.25 \mathrm{in}$ (NOTE: If there are stirrups, you must also subtract the diameter of the stirrup bar.)
$\mathrm{R}_{\mathrm{n}}=\frac{72,778^{\mathrm{lb}-\mathrm{ft}}}{(10 \mathrm{in})(10.25 \mathrm{in})^{2}} \cdot(12 \mathrm{in} / \mathrm{ft})=831 \mathrm{psi}$
ρ corresponds to approximately 0.023 (which is less than that for 0.005 strain of 0.0319), so the estimated area required, A_{s}, can be found:
$\mathrm{A}_{\mathrm{s}}=\rho \mathrm{bd}=(0.023)(10 \mathrm{in})(10.25 \mathrm{in})=2.36 \mathrm{in}^{2}$
The number of bars for this area can be found from handy charts.
(Whether the number of bars actually fit for the width with cover and space between bars must also be considered. If you are at $\rho_{\max }$ do not choose an area bigger than the maximum!)

Try $\mathrm{A}_{\mathrm{s}}=2.37 \mathrm{in}^{2}$ from $3 \# 8$ bars
$d=12$ in -1.5 in (cover) $-1 / 2(8 / 8$ in diameter bar) $=10$ in
Check $\rho=2.37 \mathrm{in}^{2} /(10 \mathrm{in})(10 \mathrm{in})=0.0237$ which is less than $\rho_{\mathrm{max}-0.005}=0.0319$ OK (We cannot have an over reinforced beam!!)
Find the moment capacity of the beam as designed, $\phi \mathrm{M}_{\mathrm{n}}$

$$
\begin{aligned}
& a=A_{s f y} / 0.85 f^{\prime} c b=2.37 \mathrm{in}^{2}(40 \mathrm{ksi}) /[0.85(5 \mathrm{ksi}) 10 \mathrm{in}]=2.23 \mathrm{in} \\
& \phi M_{n}=\phi A_{s} f_{y}(d-a / 2)=0.9\left(2.37 \mathrm{iri}^{2}\right)(40 \mathrm{ksi})\left(10 \mathrm{in}-\frac{2.23 \mathrm{in}}{2}\right) \cdot\left(\frac{1}{12 \mathrm{in} / \mathrm{tt}}\right)=63.2 \mathrm{k}-\mathrm{ft} \ngtr 65.5 \mathrm{k}-\mathrm{ft} \text { needed (not OK) }
\end{aligned}
$$

So, we can increase d to 13 in , and $\phi \mathrm{M}_{\mathrm{n}}=70.3 \mathrm{k}-\mathrm{ft}(\mathrm{OK})$. Or increase A_{s} to $2 \# 10$'s ($2.54 \mathrm{in}^{2}$), for a $=2.39$ in and $\phi \mathrm{M}_{\mathrm{n}}$ of 67.1 k -ft (OK). Don't exceed $\rho_{\max }$ or $\rho_{\text {max }-0.005}$ if you want to use $\phi=0.9$

Example 5

A simply supported beam 20 ft long carries a service dead load of $425 \mathrm{lb} / \mathrm{ft}$ (including self weight) and a live load of $500 \mathrm{lb} / \mathrm{ft}$. Design an appropriate beam (for flexure only). Use grade 40 steel and concrete strength of 5000 psi .

SOLUTION:

Find the design moment, M_{u}, from the factored load combination of $1.2 \mathrm{D}+1.6 \mathrm{~L}$. If self weight is not included in the service loads, you need to guess a beam size to include self weight in the dead load, because "service" means dead load of everything except the beam itself.
$W_{u}=1.2(425 \mathrm{lb} / \mathrm{ft})+1.6(500 \mathrm{lb} / \mathrm{ft})=1310 \mathrm{lb} / \mathrm{tt}$
The maximum moment for a simply supported beam is $\frac{w l^{2}}{8}: \quad \mathrm{M}_{\mathrm{u}}=\frac{w_{u} l^{2}}{8}=\frac{1310 \mathrm{lb} / \mathrm{ft}(20 \mathrm{ft})^{2}}{8} 65,500 \mathrm{lb}-\mathrm{ft}$
M_{n} required $=\mathrm{M}_{\mathrm{L}} / \phi=\frac{65,500^{\mathrm{lb}-\mathrm{ft}}}{0.9}=72,778 \mathrm{lb}-\mathrm{ft}$
To use the design chart aid, we can find $\mathrm{R}_{\mathrm{n}}=\frac{M_{n}}{b d^{2}}$, and estimate that h is roughly $1.5-2$ times the size of b , and $\mathrm{h}=1.1 \mathrm{~d}$ (rule of thumb): $d=h / 1.1=(2 b) / 1.1$, so $d \approx 1.8 b$ or $b \approx 0.55 d$.

We can find R_{n} at the maximum reinforcement ratio for our materials, keeping in mind $\rho_{\max }$ at a strain $=0.005$ is 0.0319 off of the chart at about 1070 psi, with $\rho_{\max }=0.037$. Let's substitute b for a function of d :
$R_{\mathrm{n}}=1070 \mathrm{psi}=\frac{72,778^{\mathrm{lb-ft}}}{(0.55 d)(d)^{2}} \cdot\left(12 \mathrm{in} / f_{t}\right) \quad$ Rearranging and solving for $\mathrm{d}=11.4$ inches
That would make balittle over 6 inches, which is impractical. 10 in is commonly the smallest width.
So if h is commonly 1.5 to 2 times the width, b, h ranges from 14 to 20 inches. ($10 \times 1.5=15$ and $10 \times 2=20$)
Choosing a depth of 14 inches, $d \cong 14-1.5$ (clear cover) $-1 / 2(1$ " diameter bar guess) $-3 / 8$ in (stirrup diameter) $=11.625$ in.
Now calculating an updated $\mathrm{R}_{\mathrm{n}}=\frac{72,77 \mathrm{db}-\mathrm{ft}}{(10 \mathrm{in})(11625 \mathrm{in})^{2}} \cdot(12 \mathrm{in} / \mathrm{ft})=646.2 \mathrm{psi}$
ρ now is 0.020 (under the limit at 0.005 strain of 0.0319), so the estimated area required, A_{s}, can be found:
$\mathrm{A}_{\mathrm{s}}=\rho b d=(0.020)(10 \mathrm{in})(11.625 \mathrm{in})=1.98 \mathrm{in}^{2}$
The number of bars for this area can be found from handy charts.
(Whether the number of bars actually fit for the width with cover and space between bars must also be considered. If you are at $\rho_{\text {max-0.005 }}$ do not choose an area bigger than the maximum!)

Try $A_{s}=2.37$ in 2 from $3 \# 8$ bars. (or $2.0 \mathrm{in}^{2}$ from $2 \# 9$ bars. $4 \# 7$ bars don't fit...)
$\mathrm{d}($ actually $)=14 \mathrm{in} .-1.5 \mathrm{in}($ cover $)-1 / 2(8 / 8$ in bar diameter $)-3 / 8 \mathrm{in}$. (stirrup diameter) $=11.625 \mathrm{in}$.
Check $\rho=2.37 \mathrm{in}^{2} /(10 \mathrm{in})(11.625 \mathrm{in})=0.0203$ which is less than $\rho_{\text {max- }-000}=0.0319$ OK (We cannot have an over reinforced beam!!)

Find the moment capacity of the beam as designed, $\phi \mathrm{M}_{\mathrm{n}}$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{A}_{s} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime} \mathrm{cb}=2.37 \mathrm{in}^{2}(40 \mathrm{ksi}) /[0.85(5 \mathrm{ksi}) 10 \mathrm{in}]=2.23 \mathrm{in} \\
& \phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{A}_{\mathrm{s} y}(\mathrm{~d}-\mathrm{a} / 2)=0.9\left(2.37 \mathrm{in}^{2}\right)(40 \mathrm{ksi})\left(11.625 \mathrm{in}-\frac{2.23 \mathrm{in}}{2}\right) \cdot\left(\frac{1}{12 \mathrm{in} / \mathrm{ft}}\right)=74.7 \mathrm{k}-\mathrm{ft}>65.5 \mathrm{k}-\mathrm{ft} \text { needed }
\end{aligned}
$$

OK! Note: If the section doesn't work, you need to increase d or A_{s} as long as you don't exceed $\rho_{\text {max- } 0.005}$

Example 6

A simply supported beam 25 ft long carries a service dead load of $2 \mathrm{k} / \mathrm{ft}$, an estimated self weight of $500 \mathrm{lb} / \mathrm{ft}$ and a live load of $3 \mathrm{k} / \mathrm{ft}$. Design an appropriate beam (for flexure only). Use grade 60 steel and concrete strength of 3000 psi.

SOLUTION:

Find the design moment, M_{u}, from the factored load combination of $1.2 \mathrm{D}+1.6 \mathrm{~L}$. If self weight is estimated, and the selected size has a larger self weight, the design moment must be adjusted for the extra load.
$\mathrm{W}_{\mathrm{u}}=1.2(2 \mathrm{k} / \mathrm{ft}+0.5 \mathrm{k} / \mathrm{ft})+1.6(3 \mathrm{k} / \mathrm{ft})=7.8 \mathrm{k} / \mathrm{ft} \quad \mathrm{So}, \mathrm{M}_{\mathrm{u}}=\frac{w_{u} l^{2}}{8}=\frac{7.8 \mathrm{k} / \mathrm{ft}(25 \mathrm{ft})^{2}}{8} 609.4 \mathrm{k}-\mathrm{ft}$
M_{n} required $=M_{u} / \phi=\frac{609.4^{k-f t}}{0.9}=677.1 \mathrm{k}-\mathrm{ft}$
To use the design chart aid, we can find $\mathrm{R}_{\mathrm{n}}=\frac{M_{n}}{b d^{2}}$, and estimate that h is roughly $1.5-2$ times the size of b , and $\mathrm{h}=1.1 \mathrm{~d}$ (rule of thumb): $d=h / 1.1=(2 b) / 1.1$, so $d \approx 1.8 b$ or $b \approx 0.55 d$.

We can find R_{n} at the maximum reinforcement ratio for our materials off of the chart at about 700 psi with $\rho_{\text {max- }-005}=0.0135$. Let's substitute b for a function of d :
$\mathrm{R}_{\mathrm{n}}=700 \mathrm{psi}=\frac{677.1^{k-f t}\left(1000^{l b / k}\right)}{(0.55 d)(d)^{2}} \cdot\left(12^{\mathrm{in}} / \mathrm{ft}\right) \quad \quad$ Rearranging and solving for $\mathrm{d}=27.6$ inches
That would make b 15.2 in. (from 0.55 d$)$. Let's try 15 . So,

$$
h \cong \mathrm{~d}+1.5 \text { (clear cover) }+1 / 2(1 \text { " diameter bar guess) }+3 / 8 \text { in }(\text { stirrup diameter })=27.6+2.375=29.975 \mathrm{in} .
$$

Choosing a depth of 30 inches, $\mathrm{d} \cong 30-1.5$ (clear cover) $-1 / 2(1$ " diameter bar guess) $-3 / 8$ in (stirrup diameter) $=27.625$ in.
Now calculating an updated $R_{n}=\frac{677,10 \mathrm{~d}^{\mathrm{b}}-\mathrm{ft}}{(15 \mathrm{in})(27.625 \mathrm{in})^{2}} \cdot(12 \mathrm{in} / \mathrm{ft})=710 \mathrm{psi} \quad$ This is larger than R_{n} for the 0.005 strain limit!
We can't just use $\rho_{\text {max-005. }}$. The way to reduce R_{n} is to increase b or d or both. Let's try increasing h to 31 in., then $R_{n}=661 \mathrm{psi}$ with $\mathrm{d}=28.625 \mathrm{in}$.. That puts us under $\rho_{\text {max-0.005 }}$. We'd have to remember to keep UNDER the area of steel calculated, which is hard to do.

From the chart, $\rho \approx 0.013$, less than the $\rho_{\text {max- }-0.005}$ of 0.0135 , so the estimated area required, A_{s}, can be found:
$A_{s}=\rho b d=(0.013)(15 \mathrm{in})(29.625 \mathrm{in})=5.8 \mathrm{in}^{2}$
The number of bars for this area can be found from handy charts. Our charts say there can be $3-6$ bars that fit when $3 / 4$ " aggregate is used. We'll assume 1 inch spacing between bars. The actual limit is the maximum of 1 in , the bar diameter or 1.33 times the maximum aggregate size.

Try $A_{s}=6.0$ in 2 from $6 \# 9$ bars. Check the width: $15-3$ (1.5 in cover each side) -0.75 (two \#3 stirrup legs) $-6 * 1.128-5 * 1.128$ in. $=$ -1.16 in NOT OK.
Try $A_{s}=5.08$ in² from 4\#10 bars. Check the width: $15-3$ (1.5 in cover each side) -0.75 (two \#3 stirrup legs) $-4 * 1.27-3 * 1.27 \mathrm{in}$. $=$ 2.36 OK.
$d($ actually $)=31 \mathrm{in} .-1.5 \mathrm{in}($ cover $)-1 / 2(1.27$ in bar diameter $)-3 / 8 \mathrm{in} .($ stirrup diameter $)=28.49 \mathrm{in}$.
Find the moment capacity of the beam as designed, $\phi \mathrm{Mn}_{n}$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{Asfy}_{\mathrm{s}} / 0.85 \mathrm{f}^{\prime} \mathrm{cb}=5.08 \mathrm{in}^{2}(60 \mathrm{ksi}) /[0.85(3 \mathrm{ksi}) 15 \mathrm{in}]=8.0 \mathrm{in} \\
& \phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}(\mathrm{~d}-\mathrm{a} / 2)=0.9\left(5.08 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(28.49 \mathrm{in}-\frac{8.0 \mathrm{in}}{2}\right) \cdot\left(\frac{1}{12 \mathrm{in} / \mathrm{tt}}\right)=559.8 \mathrm{k}-\mathrm{ft}<609 \mathrm{k}-\mathrm{ft} \text { needed!! (NO GOOD) }
\end{aligned}
$$

More steel isn't likely to increase the capacity much unless we are close. It looks like we need more steel and lever arm. Try h=32 in. AND $b=16$ in., then M_{u}^{*} (with the added self weight of $\left.33.3 \mathrm{lb} / \mathrm{ft}\right)=680.2 \mathrm{k}-\mathrm{ft}, \rho \approx 0.012$, As $=0.012(16 \mathrm{in})(29.42 \mathrm{in})=5.66 \mathrm{in}^{2}$. $6 \# 9^{\prime} \mathrm{s}$ won't fit, but 4\#11's will: $\rho=0.0132 \checkmark, a=9.18 \mathrm{in}$, and $\phi \mathrm{M}_{\mathrm{n}}=697.2 \mathrm{k}$-ft which is finally larger than $680.2 \mathrm{k}-\mathrm{ft} \mathrm{OK}$

Example 7

Example 3. A T-section is to be used for a beam to resist positive moment. The following data are given: beam span is 18 ft [5.49 m], beams are 9 ft [2.74 m] center to center, slab thickness is 4 in . [0.102 m], beam stem dimensions are $b_{w}=15 \mathrm{in}$. [0.381 m] and $d=22 \mathrm{in}$. [0.559 m], $f^{\prime}{ }_{c}$ $=4 \mathrm{ksi}[27.6 \mathrm{MPa}], f_{v}=60 \mathrm{ksi}[414 \mathrm{MPa}$]. Find the required area of steel and select the reinforcing bars for a dead load moment of $125 \mathrm{kip}-\mathrm{ft}[170$ $\mathrm{kN}-\mathrm{m}$] plus a live load moment of $100 \mathrm{kip}-\mathrm{ft}$ [$136 \mathrm{kN}-\mathrm{m}$].

Example 8

Design a T-beam for a floor with a 4 in slab supported by 22 -ft-span-length beams cast monolithically with the slab. The beams are 8 ft on center and have a web width of 12 in . and a total depth of 22 in .; $f^{\prime}{ }_{c}=3000 \mathrm{psi}$ and $f_{y}=60 \mathrm{ksi}$. Service loads are 125 psf and 200 psf dead load which does not include the weight of the floor system.

SOLUTION:

1. Establish the design moment:

$$
\begin{aligned}
\text { slab weight }=\frac{96(4)}{144}(0.150) & =0.400 \mathrm{kip} / \mathrm{ft} \\
\text { stem weight }=\frac{12(18)}{144}(0.150) & =\underline{0.225} \\
\text { total } & =0.625 \mathrm{kip} / \mathrm{ft}
\end{aligned}
$$

Calculate the factored load and moment:

$$
\begin{aligned}
w_{u} & =1.2(0.625+1.60)+1.6(1.00)=4.27 \mathrm{kip} / \mathrm{ft} \\
M_{u} & =\frac{w_{u} \ell^{2}}{8}=\frac{4.27(22)^{2}}{8}=258 \mathrm{ft}-\mathrm{kips}
\end{aligned}
$$

2. Assume an effective depth $d=h-3$ in.:

$$
d=22-3=19 \mathrm{in} .
$$

3. Determine the effective flange width:

$$
\begin{align*}
1 / 4 \text { span length } & =0.25(22)(12)=66 \mathrm{in} . \tag{O.K}\\
b_{w}+16 h_{f} & =12+16(4)=76 \mathrm{in} . \\
\text { beam spacing } & =96 \mathrm{in} .
\end{align*}
$$

Use an effective flange width $b=66 \mathrm{in}$.
4. Determine whether the beam behaves as a true T-beam or as a rectangular beam by computing the practical moment strength $\phi M_{n f}$ with the full effective flange assumed to be in compression. This assumes that the bottom of the compressive stress block coincides with the bottom of the flange, as shown in Figure 3-10. Thus

$$
\begin{aligned}
\phi M_{n f} & =\phi\left(0.85 f_{c}^{\prime}\right) b h_{f}\left(d-\frac{h_{f}}{2}\right) \\
& =0.9(0.85)(3)(66) \frac{4(19-4 / 2)}{12}=858 \mathrm{ft}-\mathrm{kips}
\end{aligned}
$$

8. Calculate the required steel area:

$$
\begin{aligned}
\text { required } A_{s} & =\rho b d \\
& =0.0024(66)(19)=3.01 \mathrm{in.}^{2}
\end{aligned}
$$

9. Select the steel bars. Use $3 \# 9\left(A_{s}=3.00\right.$ in. $\left.{ }^{2}\right)$

$$
\operatorname{minimum} b_{w}=7.125 \text { in }
$$

(O.K.)

Check the effective depth d :

$$
d=22-1.5-0.38-\frac{1.125}{2}=19.56 \mathrm{in} .
$$

$19.49 \mathrm{in} .>19 \mathrm{in}$.
10. Check $A_{s, \text { min }}$. From Table A-5:

$$
\begin{aligned}
A_{s, \min } & =0.0033 b_{w} d \\
& =0.0033(12)(19)=0.75 \mathrm{in} .^{2} \\
0.75 \mathrm{in.}^{2} & <3.00 \mathrm{in}^{2}
\end{aligned}
$$

11. Check $A_{s, \text { max }}$:

$$
\begin{aligned}
A_{s, \max } & =0.0135(66)(19) \\
& =16.93 \mathrm{in}^{2}>3.00 \mathrm{in.}^{2}
\end{aligned}
$$

12. Verify the moment capacity:

$$
\begin{aligned}
& \left(\text { Is } M_{u} \leq \phi M_{n}\right) \\
& \begin{aligned}
& a=(3.00)(60) /[0.85(3)(66)]=1.07 \mathrm{in} . \\
& \phi M_{n}=0.9(3.00)(60)(19.56\left.-\frac{1.07}{2}\right) 1 / 12 \\
& \quad=256.9 .1 \mathrm{ft}-\mathrm{kips}(\text { Not O.K })
\end{aligned}
\end{aligned}
$$

Choose more steel, $\mathrm{A}_{\mathrm{s}}=3.16$ in 2 from 4-\#8's

$$
d=19.62 \mathrm{in}, \mathrm{a}=1.13 \mathrm{in}
$$

$$
\phi M_{n}=271.0 \mathrm{ft}-\mathrm{kips}, \text { which is } \mathrm{OK}
$$

13. Sketch the design

$$
\begin{align*}
& \text { service } \mathrm{DL}=8(0.200)=1.60 \mathrm{kips} / \mathrm{ft} \\
& \text { service } \mathrm{LL}=8(0.125)=1.00 \mathrm{kip} / \mathrm{ft} \tag{O.K.}
\end{align*}
$$

5. Since 858 ft -kips $>258 \mathrm{ft}$-kips, the total effective flange need not be completely utilized in compression (i.e., $a<h_{f}$), and the T-beam behaves as a wide rectangular beam with a width b of 66 in .
6. Design as a rectangular beam with b and d as known values (see Section 2-15):

$$
\text { required } R_{n}=\frac{M_{u}}{\phi b d^{2}}=\frac{258(12)}{0.9(66)(19)^{2}}=0.1444 \mathrm{ksi}
$$

7. From Table A-8, select the required steel ratio to provide a R_{n} of 0.1444 ksi

$$
\text { required } \rho=0.0024
$$

Example 9

Design a T-beam for the floor system shown for which b_{w} and d are given. $M_{D}=200 \mathrm{ft}-\mathrm{k}, \mathrm{M}_{\mathrm{L}}=425 \mathrm{ft}-\mathrm{k}$, $f^{\prime}{ }_{c}=3000 \mathrm{psi}$ and $f_{y}=60 \mathrm{ksi}$, and simple span $=18 \mathrm{ft}$.

SOLUTION

Effective Flange Width

(a) $\frac{1}{4} \times 18^{\prime}=4^{\prime} 6^{\prime \prime}=\underline{54^{\prime \prime}}$

(b) $15^{\prime \prime}+(2)(8)(3)=63^{\prime \prime}$
(c) $6^{\prime} 0^{\prime \prime}=72^{\prime \prime}$

Moments Assuming $\boldsymbol{\phi}=\mathbf{0 . 9 0}$

$$
\begin{aligned}
& M_{u}=(1.2)(200)+(1.6)(425)=920 \mathrm{ft}-\mathrm{k} \\
& M_{n}=\frac{M_{u}}{0.90}=\frac{920}{0.90}=1022 \mathrm{ft}-\mathrm{k}
\end{aligned}
$$

First assume $a \leq h_{f}$ (which is very often the case). Then the design would proceed like that of a rectangular beam with a width equal to the effective width of the T beam flange.

$$
\begin{aligned}
& \frac{M_{u}}{\phi b d^{2}}=\frac{920(12,000)}{(0.9)(54)(24)^{2}}=394.4 \mathrm{psi} \\
& \quad \text { from Table A.12, } \rho=0.0072 \\
& a=\frac{\rho f_{y} d}{0.85 f_{c}^{\prime}}=\frac{0.0072(60)(24)}{(0.85)(3)}=4.06 \mathrm{in} .>h_{f}=3 \mathrm{in} .
\end{aligned}
$$

The beams acts like a T beam, not a rectangular beam, and the values for ρ and a above are not correct. If the value of a had been $\leq h_{f}$, the value of A_{s} would have been simply $\rho b d=0.0072(54)(24)=9.33 \mathrm{in}^{2}$. Now break the beam up into two parts (Figure 5.7) and design it as a T beam.

Assuming $\phi=0.90$

$$
\begin{aligned}
A_{s f} & =\frac{(0.85)(3)(54-15)(3)}{60}=4.97 \mathrm{in} .^{2} \\
M_{u f} & =(0.9)(4.97)(60)\left(24-\frac{3}{2}\right)=6039 \mathrm{in} .-\mathrm{k}=503 \mathrm{ft}-\mathrm{k} \\
M_{u w} & =920-503=417 \mathrm{ft}-\mathrm{k}
\end{aligned}
$$

Designing a rectangular beam with $b_{w}=15 \mathrm{in}$. and $d=24 \mathrm{in}$. to resist $417 \mathrm{ft}-\mathrm{k}$

$$
\begin{aligned}
\frac{M_{u w}}{\phi b_{w} d^{2}} & =\frac{(12)(417)(1000)}{(0.9)(15)(24)^{2}}=643.5 \\
\rho_{w} & =0.0126 \text { from Appendix Table A. } 12 \\
A_{s w} & =(0.0126)(15)(24)=4.54 \mathrm{in.}^{2} \\
A_{s} & =4.97+4.54=9.51 \mathrm{in.}^{2}
\end{aligned}
$$

(a)

(b)

(c)

Figure 5.7 Separation of T beam into rectangular parts.

Example 10

Example 6. A one-way solid concrete slab is to be used for a simple span of 14 ft [4.27 m]. In addition to its own weight, the slab carries a superimposed dead load of 30 psf [1.44 kPa] plus a live load of 100 psf [4.79 kPa]. Using $f^{\prime}{ }_{c}=3 \mathrm{ksi}$ [20.7 MPa] and $f_{y}=40 \mathrm{ksi}$ [276 MPa], design the slab for minimum overall thickness.

TABLE 13.6 Areas Provided By Spaced Reinforcement

Bar Spacing (in.)	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11
	0.44	0.80	1.24	1.76	2.40	3.16	4.00		
3	0.38	0.69	1.06	1.51	2.06	2.71	3.43	4.35	
3.5	0.33	0.60	0.93	1.32	1.80	2.37	3.00	3.81	4.68
4	0.29	0.53	0.83	1.17	1.60	2.11	2.67	3.39	4.16
4.5	0.26	0.48	0.74	1.06	1.44	1.89	2.40	3.05	3.74
5	0.24	0.44	0.68	0.96	1.31	1.72	2.18	2.77	3.40
5.5	0.22	0.40	0.62	0.88	1.20	1.58	2.00	2.54	3.12
6	0.19	0.34	0.53	0.75	1.03	1.35	1.71	2.18	2.67
7	0.16	0.30	0.46	0.66	0.90	1.18	1.50	1.90	2.34
8	0.15	0.27	0.41	0.59	0.80	1.05	1.33	1.69	2.08
9	0.13	0.24	0.37	0.53	0.72	0.95	1.20	1.52	1.87
10	0.12	0.22	0.34	0.48	0.65	0.86	1.09	1.38	1.70
11	0.11	0.20	0.31	0.44	0.60	0.79	1.00	1.27	1.56
12	0.10	0.18	0.29	0.40	0.55	0.73	0.92	1.17	1.44
13	0.09	0.17	0.27	0.38	0.51	0.68	0.86	1.09	1.34
14	0.09	0.16	0.25	0.35	0.48	0.63	0.80	1.01	1.25
15	0.08	0.15	0.23	0.33	0.45	0.59	0.75	0.95	1.17
16	0.07	0.13	0.21	0.29	0.40	0.53	0.67	0.85	1.04
18	0.05	0.10	0.15	0.22	0.30	0.39	0.50	0.63	0.78
24									

Example 11

nple 2-9

Design a simple-span one-way slab to carry a uniformly distributed live load of 400 psf . The span is 10 ft (center to center of supports). Use $f_{c}^{\prime}=4000 \mathrm{psi}$ and $f_{y}=60,000 \mathrm{psi}$. Select the thickness to be not less than the ACI minimum thickness requirement.

Solution:

Determine the required minimum h and use this to estimate the slab dead weight.

1. From ACI Table 9.5(a), for a simply supported, solid, one-way slab,

$$
\operatorname{minimum} h=\frac{\ell}{20}=\frac{10(12)}{20}=6.0 \mathrm{in} .
$$

Try $h=6$ in. and design a 12 -in.-wide segment.
2. Determine the slab weight dead load:

$$
\frac{6(12)}{144}(0.150)=0.075 \mathrm{kip} / \mathrm{ft}
$$

The total design load is

$$
\begin{aligned}
w_{u} & =1.2 w_{\mathrm{DL}}+1.6 w_{\mathrm{LL}} \\
& =1.2(0.075)+1.6(0.400) \\
& =0.730 \mathrm{kip} / \mathrm{ft}
\end{aligned}
$$

3. Determine the design moment:

$$
M_{u}=\frac{w_{u} \ell^{2}}{8}=\frac{0.73(10)^{2}}{8}=9.125 \mathrm{ft}-\mathrm{kips}
$$

4. Establish the approximate d. Assuming No. 6 bars and minimum concrete cover on the bars of $3 / \mathrm{in}$.,

$$
\text { assumed } d=6.0-0.75-0.375=4.88 \mathrm{in} .
$$

5. Determine the required R_{n} :

$$
\text { required } \begin{aligned}
R_{n} & =\frac{M_{u}}{\phi b d^{2}} \\
& =\frac{9.125(12)}{0.9(12)(4.88)^{2}}=0.4257 \mathrm{ksi}
\end{aligned}
$$

6. From Table A-10, for a required $R_{n}=0.4257$, the required $\rho=0.0077$. (Note that the required ρ selected is the next higher value from Table A10.) Thus

$$
\begin{equation*}
\rho_{\max }=0.0181>0.0077 \tag{O.K.}
\end{equation*}
$$

Use $\rho=0.0077$.
7. required $A_{s}=\rho b d=0.0077(12)(4.88)=0.45 \mathrm{in} .{ }^{2} / \mathrm{ft}$
8. Select the main steel (from Table A-4). Select No. 5 bars at $71 / 2$ in. o.c. $\left(A_{s}=0.50 \mathrm{in}^{2}{ }^{2}\right)$. The assumption on bar size was satisfactory. The code requirements for maximum spacing have been discussed in Section 2-13. Minimum spacing of bars in slabs, practically, should not be less than 4 in.. although the ACI Code allows bars to be placed closer together, as discussed in Example 2-7. Check the maximum spacing (ACI Code, Section 7.6.5):

$$
\begin{align*}
\text { maximum spacing } & =3 h \quad \text { or } 18 \mathrm{in} . \\
3 h & =3(6)=18 \mathrm{in} . \\
71 / 2 \mathrm{in} . & <18 \mathrm{in} . \tag{O.K.}
\end{align*}
$$

Therefore use No. 5 bars at $71 / 2$ in. o.c.

Example 12

Example 7. Design the required shear reinforcement for the simple beam shown in Figure 13.18 . Use $f_{c}^{\prime}=3 \mathrm{ksi}$ [20.7 MPa] and $f_{y}=40 \mathrm{ksi}$ [276 MPa] and single U-shaped stirrups.

Example 13

For the simply supported concrete beam shown in Figure 5-61, determine the stirrup spacing (if required) using No. 3 U stirrups of Grade $60\left(f_{y}=60 \mathrm{ksi}\right)$. Assume $f^{\prime}{ }_{c}=3000 \mathrm{psi}$.

Figure 5-61: Simply supported concrete beam for Example 5-15.

$$
\begin{array}{lll}
f_{c}^{\prime}=3000 \mathrm{psi} . & \text { For \#3 bars, } & A_{s}=0.11 \mathrm{in.}^{2}, \\
F_{y}=60 \mathrm{ksi} . & \text { with } 2 \text { legs, then } & A_{\mathrm{v}}=0.22 \mathrm{in.}^{2}
\end{array}
$$

Solution:

$$
V_{u}=50 \mathrm{kips} \text { (neglecting weight of the beam) }
$$

$$
\begin{aligned}
\phi V_{c} & =\phi 2 \sqrt{f_{c}^{\prime}} b_{w} d \\
& =(0.75) \frac{2 \sqrt{3000}(12)(32.5)}{1000}=32.0 \mathrm{kips}<V_{u} \quad \therefore \text { Need Stirrups }
\end{aligned}
$$

Note: If $V_{u}=\frac{1}{2} \varphi V_{c}$, minimum stirrups would still be required.

$$
\begin{aligned}
V_{u} & \leq \phi V_{c}+\phi V_{s} \\
& \therefore \phi V_{s}=V_{u}-\phi V_{c}=50-32.0=18.0 \mathrm{kips} \quad\left(\left\langle\phi 4 \sqrt{f_{c}^{\prime}} b_{w} d=64.1 \mathrm{kips}\right)\right. \\
s_{\text {req'd }} & \leq \frac{\phi A_{v} F_{y} d}{\phi V_{s}}=\frac{(0.75)\left(0.22 \mathrm{in}^{2}\right)(60 \mathrm{ksi})(32.5 \mathrm{in})}{18.0 \mathrm{k}} \\
& =17.875 \mathrm{in} . \\
s_{\max }= & \frac{d}{2}=\frac{32.5}{2}=16.2 \mathrm{in} . \quad \text { controls } \\
& =24 \mathrm{in} .
\end{aligned}
$$

$\left[\begin{array}{c}s_{r e q^{\prime} d} \leq \frac{A_{v} F_{y}}{50 b_{w}}=\frac{(0.22)(60,000)}{50(12)}=22.0 \text { in., but } 16 "(\mathrm{~d} / 2) \text { would be the maximum } \\ \text { as well. }\end{array}\right]$
\therefore Use \#3 U@ 16" max spacing

Example 14

Design the shear reinforcement for the simply supported reinforced concrete beam shown with a dead load of $1.5 \mathrm{k} / \mathrm{ft}$ and a live load of $2.0 \mathrm{k} / \mathrm{ft}$. Use 5000 psi concrete and Grade 60 steel. Assume that the point of reaction is at the end of the beam.

SOLUTION:

Shear diagram:

Find self weight $=1 \mathrm{ft} \times(27 / 12 \mathrm{ft}) \times 150 \mathrm{lb} / \mathrm{tt}^{3}=338 \mathrm{lb} / \mathrm{ft}=0.338 \mathrm{k} / \mathrm{ft}$
$\mathrm{w}_{\mathrm{u}}=1.2(1.5 \mathrm{k} / \mathrm{ft}+0.338 \mathrm{k} / \mathrm{ft})+1.6(2 \mathrm{k} / \mathrm{ft})=5.41 \mathrm{k} / \mathrm{ft}(=0.451 \mathrm{k} / \mathrm{n})$
$\mathrm{V}_{\mathrm{u}(\text { max })}$ is at the ends $=\mathrm{w}_{\mathrm{u}} \mathrm{L} / 2=5.41 \mathrm{k} / \mathrm{ft}(24 \mathrm{ft}) / 2=64.9 \mathrm{k}$
$\mathrm{V}_{\mathrm{u}(\text { support })}=\mathrm{V}_{\mathrm{u}(\text { max })}-\mathrm{W}_{\mathrm{u}}($ distance $)=64.9 \mathrm{k}-5.41 \mathrm{k} / \mathrm{ft}(6 / 12 \mathrm{ft})=62.2 \mathrm{k}$
V_{u} for design is d away from the support $=\mathrm{V}_{\mathrm{u}(\text { support })}-\mathrm{w}_{\mathrm{u}}(\mathrm{d})=62.2 \mathrm{k}-5.41 \mathrm{k} / \mathrm{ft}(23.5 / 12 \mathrm{ft})=51.6 \mathrm{k}$

Concrete capacity:

We need to see if the concrete needs stirrups for strength or by requirement because $V_{u} \leq \phi V_{c}+\phi V_{s}$ (design requirement) $\phi \mathrm{V}_{\mathrm{c}}=\phi 2 \sqrt{f_{c}^{\prime}} \mathrm{b}_{\mathrm{w}} \mathrm{d}=0.75(2) \sqrt{5000} \mathrm{psi}(12 \mathrm{in})(23.5 \mathrm{in})=299106 \mathrm{lb}=29.9 \mathrm{kips}(<51.6 \mathrm{k}!)$

Stirrup design and spacing

We need stirrups: $A_{v}=V_{s} s / f_{y} d$
$\phi \mathrm{V}_{\mathrm{s}} \geq \mathrm{V}_{\mathrm{u}}-\not \subset \mathrm{V}_{\mathrm{c}}=51.6 \mathrm{k}-29.9 \mathrm{k}=21.7 \mathrm{k}$
Spacing requirements are in Table 3-8 and depend on $\phi \mathcal{V}_{\mathrm{c}} 12=15.0 \mathrm{k}$ and $2 \not \mathcal{V}_{\mathrm{c}}=59.8 \mathrm{k}$

$$
\begin{aligned}
& \text { Locating end points: } \\
& \begin{array}{c}
29.9 \mathrm{k}=64.9 \mathrm{k}-0.451 \mathrm{k} / \mathrm{in} \times(\mathrm{a}) \\
\mathrm{a}=78 \text { in } \\
15 \mathrm{k}=64.9 \mathrm{k}-0.451 \mathrm{k} / \mathrm{in} \times(\mathrm{b}) \\
\mathrm{b}=111 \mathrm{in} .
\end{array}
\end{aligned}
$$

2 legs for a \#3 is $0.22 \mathrm{in}^{2}$, so $\mathrm{S}_{\text {req'd }} \leq \phi \mathrm{A}_{\mathrm{v}} \mathrm{f} y \mathrm{~d} / \phi \mathrm{V}_{\mathrm{s}}=0.75\left(0.22 \mathrm{in}^{2}\right)(60 \mathrm{ksi})(23.5 \mathrm{in}) / 21.7 \mathrm{k}=10.72$ in Use $s=10^{\prime \prime}$ our maximum falls into the $\mathrm{d} / 2$ or $24^{\prime \prime}$, so $\mathrm{d} / 2$ governs with 11.75 in Our 10 " is ok.

This spacing is valid until $\mathrm{V}_{\mathrm{u}}=\phi \mathrm{V}_{\mathrm{c}}$ and that happens at $(64.9 \mathrm{k}-29.9 \mathrm{k}) / 0.451 \mathrm{k} / \mathrm{in}=78$ in
We can put the first stirrup at a minimum of 2 in fr support face, so we need 10 " spaces for (78-2 7 even (8 stirrups altogether ending at 78 in)

After 78 " we can change the spacing to the requir more than the maximum of $\mathrm{d} / 2=11.75 \mathrm{in} \leq 24 \mathrm{in}$);

$$
\mathrm{s}=\mathrm{A}_{\mathrm{v}} \mathrm{f}_{\mathrm{y}} / 50 \mathrm{~b}_{\mathrm{w}}=0.22 \mathrm{in}^{2}(60,000 \mathrm{psi}) / 50(1
$$

We need to continue to 111 in , so (111-78 in)/ / even

Example 15

Example 1. A solid one-way slab is to be used for a framing system similar to that shown in Figure 14.1. Column spacing is 30 ft . with evenly spaced beams occurring at 10 ft . center to center. Superimposed loads on the structure (floor live load plus other construction dead load) are a dead load of 38 psf [1.82 kPa] and a live load of 100 psf [4.79 kPa]. Use $f_{c}^{\prime}=3$ ksi [20.7 MPa] and $f_{y}=40 \mathrm{ksi}$ [275 MPa]. Determine the thickness for the slab and select its reinforcement.

Example 15 (continued)

Example 16

Example 6-1

The floor system shown in Figure 6-4 consists of a continuous one-way slab supported by continuous beams. The service loads on the floor are 25 psf dead load (does not include weight of slab) and 250 psf live load. Use $f_{c}^{\prime}=3000 \mathrm{psi}$ (normal-weight concrete) and $f_{y}=60,000$ psi. The bars are uncoated.
Design the continuous one-way floor slab.

Solution:

The primary difference in this design from previous flexural designs is that, because of continuity, the ACI coefficients and equations will be used to determine design shears and moments.

A. Continuous one-way floor slab

1. Determine the slab thickness. The slab will be designed to satisfy the ACI minimum thickness requirements from Table 9.5(a) of the code and this thickness will be used to estimate slab weight.

With both ends continuous,

$$
\operatorname{minimum} h=\frac{1}{28} \ell_{n}=\frac{1}{28}(11)(12)=4.71 \mathrm{in} .
$$

With one end continuous,

$$
\operatorname{minimum} h=\frac{1}{24} \ell_{n}=\frac{1}{24}(11)(12)=5.5 \mathrm{in} .
$$

Try a $51 / 2$-in.-thick slab. Design a 12 -in.-wide segment ($b=12 \mathrm{in}$.).
2. Determine the load:

$$
\begin{aligned}
\text { slab dead load } & =\frac{5.5}{12}(150)=68.8 \mathrm{psf} \\
\text { total dead load } & =25.0+68.8=93.8 \mathrm{psf} \\
\qquad w_{u} & =1.2 w_{\mathrm{DL}}+1.6 w_{\mathrm{LL}}=1.2(93.8)+1.6(250)=112.6+400.0=516.2 \mathrm{psf} \quad(\text { design load })
\end{aligned}
$$

Because we are designing a slab segment that is 12 in . wide, the foregoing loading is the same as $512.6 \mathrm{lb} / \mathrm{ft}$ or $0.513 \mathrm{kip} / \mathrm{ft}$.

Example 16 (continued)

3. Determine the moments and shears. Moments are determined using the ACI moment equations. Refer to Figures 6-1 and 6-4. Thus

$$
\begin{array}{ll}
+M_{u}=\frac{1}{14} w_{u} \ell_{n}^{2}=\frac{1}{14}(0.513)(11)^{2}=4.43 \mathrm{ft}-\mathrm{kips} & \\
\text { (end span) } \\
+M_{u}=\frac{1}{16} w_{u} \ell_{n}^{2}=\frac{1}{16}(0.513)(11)^{2}=3.88 \mathrm{ft}-\mathrm{kips} & \\
\text { (interior span) } \\
-M_{u}=\frac{1}{10} w_{u} \ell_{n}^{2}=\frac{1}{10}(0.513)(11)^{2}=6.20 \mathrm{ft}-\mathrm{kips} & \\
\text { (end span }- \text { first interior } \text { support) } \\
-M_{u}=\frac{1}{11} w_{u} \ell_{n}^{2}=\frac{1}{11}(0.513)(11)^{2}=5.64 \mathrm{ft}-\mathrm{kips} & \\
\text { (interior span }- \text { both supports) } \\
-M_{u}=\frac{1}{24} w_{u} \ell_{n}^{2}=\frac{1}{24}(0.513)(11)^{2}=2.58 \mathrm{ft}-\mathrm{kips} & \\
\text { (end span }- \text { exterior support) }
\end{array}
$$

Similarly, the shears are determined using the ACI shear equations. In the end span at the face of the first interior support,

$$
V_{u}=1.15 \frac{w_{u} \ell_{n}}{2}=1.15(0.513)\left(\frac{11}{2}\right)=3.24 \mathrm{kips} \quad \text { (end span - first interior support) }
$$

whereas at all other supports,

$$
V_{u}=\frac{w_{u} \ell_{n}}{2}=(0.513)\left(\frac{11}{2}\right)=2.82 \mathrm{kips}
$$

4. Design the slab. Assume \#4 bars for main steel with $3 / 4 \mathrm{in}$. cover: $d=5.5-0.75-1 / 2(0.5)=4.5 \mathrm{in}$.
5. Design the steel. (All moments must be considered.) For example, the negative moment in the end span at the first interior support:

$$
\begin{aligned}
& R_{n}=\frac{M_{u}}{\phi b d^{2}}=\frac{6.20(12)(1000)}{0.9(12)(4.5)^{2}}=340^{\text {ft-kips }} \quad \text { so } \rho \cong 0.006 \\
& A_{s}=\rho b d=0.006(12)(4.5)=0.325 \mathrm{in}^{2} \text { per ft. width of slab } \therefore \text { Use \#4 at } 7 \mathrm{in} .(16.5 \mathrm{in} . \text { max. spacing })
\end{aligned}
$$

The minimum reinforcement required for flexure is the same as the shrinkage and temperature steel.
(Verify the moment capacity is achieved: $a 0.67 \mathrm{in}$. and $\phi M_{n}=6.38 \mathrm{ft}$-kips $>6.20 \mathrm{ft}$-kips)
For grade 60 the minimum for shrinkage and temperature steel is:
$A_{s-\min }=0.0018 b t=0.0018(12)(5.5)=0.12 \mathrm{in}^{2}$ per ft . width of slab \therefore Use \#3 at 11 in . (18 in. max spacing)
6. Check the shear strength.
$\phi V_{c}=\phi 2 \sqrt{f_{c}^{\prime}} b d=0.75(2) \sqrt{3000}(12)(4.5)=4436.6 \mathrm{lb}=4.44 \mathrm{kips}$
$V_{u} \leq \phi V_{c}$ Therefore the thickness is O.K.
7. Development length for the flexure reinforcement is required. (Hooks are required at the spandrel beam.) For example, \#6 bars:
$l_{d}=\frac{d_{b} F_{y}}{25 \sqrt{f_{c}^{\prime}}} \quad$ or 12 in. minimum
With grade 40 steel and 3000 psi concrete:
$l_{d}=\frac{6 / 8 \mathrm{in}(40,000 \mathrm{psi})}{25 \sqrt{3000} p s i}=21.9 \mathrm{in}$
(which is larger than 12 in.)
8. Sketch:

Example 17

A building is supported on a grid of columns that is spaced at 30 ft on center in both the north-south and east-west directions. Hollow core planks with a 2 in. topping span 30 ft in the east-west direction and are supported on precast L and inverted T beams. Size the hollow core planks assuming a live load of $100 \mathrm{lb} / \mathrm{ft}^{2}$. Choose the shallowest plank with the least reinforcement that will span the 30 ft while supporting the live load.

SOLUTION:

The shallowest that works is an 8 in. deep hollow core plank.
The one with the least reinforcing has a strand pattern of $68-S$, which contains 6 strands of diameter $8 / 16 \mathrm{in} .=1 / 2$ in. The S indicates that the strands are straight. The plank supports a superimposed service load of $124 \mathrm{lb} / \mathrm{ft}^{2}$ at a span of 30 ft with an estimated camber at erection of 0.8 in . and an estimated long-time camber of 0.2 in .

The weight of the plank is $81 \mathrm{lb} / \mathrm{tt}^{2}$.

Figure 6.88 Allowed load on 4 ft -wide, 8 in.-deep hollow-core planks (HCPs). (Copyright Prestressed/Precast Concrete Institute (PCl). Reprinted with permission. All rights reserved.)

Example 18

Example 1. A square tied column with $f_{c}^{\prime}=5 \mathrm{ksi}$ and steel with $f_{y}=60$ ksi sustains an axial compression load of 150 kips dead load and 250 kips live load with no computed bending moment. Find the minimum practical column size if reinforcing is a maximum of 4% and the maximum size if reinforcing is a minimum of 1%. Also, design for $\mathrm{e}=6 \mathrm{in}$.

Example 19

Determine the capacity of a $16 "$ x 16 " column with 8 - \#10 bars, tied. Grade 40 steel and 4000 psi concrete.

SOLUTION:

Find $\phi \mathrm{P}_{\mathrm{n}}$, with $\phi=0.65$ and $\mathrm{P}_{\mathrm{n}}=0.80 \mathrm{P}_{0}$ for tied columns and

$$
P_{o}=0.85 f_{c}^{\prime}\left(A_{g}-A_{s t}\right)+f_{y} A_{s t}
$$

Steel area (found from reinforcing bar table for the bar size):

$$
\mathrm{A}_{\mathrm{st}}=8 \text { bars } \times\left(1.27 \mathrm{in}^{2}\right)=10.16 \mathrm{in}^{2}
$$

Concrete area (gross):

$$
\mathrm{Ag}_{\mathrm{g}}=16 \text { in } \times 16 \text { in }=256 \mathrm{in}^{2}
$$

Grade 40 reinforcement has $\mathrm{f}_{\mathrm{y}}=40,000 \mathrm{psi}$ and $f_{c}^{\prime}=4000 \mathrm{psi}$
$\phi \mathrm{P}_{\mathrm{n}}=(0.65)(0.80)\left[0.85(4000 \mathrm{psi})\left(256 \mathrm{in}^{2}-10.16 \mathrm{in}^{2}\right)+(40,000 \mathrm{psi})\left(10.16 \mathrm{in}^{2}\right)\right]=646,026 \mathrm{lb}=646 \mathrm{kips}$

Example 20

$16 " \times 16 "$ precast reinforced columns support inverted T girders on corbels as shown. The unfactored loads on the corbel are 81 k dead, and 72 k live. The unfactored loads on the column are 170 k dead and 150 k live. Determine the reinforcement required using the interaction diagram provided. Assume that half the moment is resisted by the column above the corbel and the other half is resisted by the column below. Use grade 50 steel and 5000 psi concrete.

Example 21

EXAMPLE 5-4

Design a short square tied column to carry an axial dead load of 300 kip and a live load of 200 kip . Assume that the applied moments on the column are negligible. Use $f_{c}^{\prime}=4,000 \mathrm{psi}$ and $f_{y}=60,000 \mathrm{psi}$.

Solution

Step 1 The factored load, P_{u}, is:

$$
\begin{aligned}
& P_{u}=1.2 P_{D}+1.6 P_{L} \\
& P_{u}=1.2(300)+1.6(200) \\
& P_{u}=680 \mathrm{kip}
\end{aligned}
$$

Assume $\rho_{g}=0.03$.
Step 2 The required area of the column, A_{g}, is:

$$
\begin{aligned}
A_{g} & =\frac{P_{u}}{0.8 \phi\left[0.85 f_{c}^{\prime}\left(1-\rho_{g}\right)+f_{y} \rho_{g}\right]} \\
A_{g} & =\frac{680}{0.80(0.65)[0.85(4)(1-0.03)+60(0.03)]} \\
A_{g} & =257 \mathrm{in}^{2}
\end{aligned}
$$

Step 3 For a square column, the size, h, is:

$$
\begin{aligned}
h & =\sqrt{A_{g}}=\sqrt{257} \\
\therefore h & =16.0 \mathrm{in} .
\end{aligned}
$$

Try a 16 in. $\times 16$ in. column:

$$
A_{g}=(16)(16)=256 \mathrm{in}^{2}
$$

Step 4 The required amount of steel, $A_{s t}$, is:

$$
\begin{aligned}
A_{s t} & =\frac{P_{u}-0.8 \phi\left(0.85 f_{c}^{\prime} A_{g}\right)}{0.8 \phi\left(f_{y}-0.85 f_{c}^{\prime}\right)} \\
A_{s t} & =\frac{680-0.8 \times 0.65(0.85 \times 4 \times 256)}{0.8 \times 0.65(60-0.85 \times 4)}=7.73 \mathrm{in}^{2}
\end{aligned}
$$

Step 5 Select the size and number of bars. For a square column with bars uniformly distributed along the edges, we keep the number of bars as multiples of four. Using Table A2-9, $8 \# 9$ bars $\left(A_{s}=8 \mathrm{in}^{2}\right)$ are selected.

$$
\text { From Table A5-1 } \longrightarrow \text { Maximum of } 12 \# 9 \text { bars } \quad \therefore \text { ok }
$$

Step 6 Because the longitudinal bars are \#9, select \#3 bars for the ties. The maximum spacing of the ties $\left(s_{\max }\right)$ is:

$$
\begin{aligned}
s_{\max } & =\min \left\{16 d_{b}, 48 d_{t}, b_{\min }\right\} \\
s_{\max } & =\min \{16(1.128), 48(3 / 8), 16\} \\
s_{\max } & =\min \{18.0,18.0,16.0\} \\
\therefore s_{\max } & =16 \mathrm{in} .
\end{aligned}
$$

The selected ties are \#3 @ 16 in.

Example 22

Design a 10 ft long circular spiral column for a braced system to support the service dead and live loads of 300 k and 460 k , respectively, and the service dead and live moments of $100 \mathrm{ft}-\mathrm{k}$ each. The moment at one end is zero. Use $f_{c}^{\prime}=4,000 \mathrm{psi}$ and $f_{y}=60,000 \mathrm{psi}$.

Solution

1. $P_{v}=1.2(300)+1.6(460)=1096 \mathrm{k}$
$M_{u}=1.2(100)+1.6(100)=280 \mathrm{ft}-\mathrm{k}$
2. Assume $\rho_{g}=0.01$, from Equation 16.10:

$$
\begin{aligned}
A_{g} & =\frac{P_{u}}{0.60\left[0.85 f_{c}^{\prime}\left(1-\rho_{g}\right)+f_{y} \rho_{g}\right]} \\
& =\frac{1096}{0.60[0.85(4)(1-0.01)+60(0.01)]} \\
& =460.58 \mathrm{in} .^{2}
\end{aligned}
$$

$\frac{\pi h^{2}}{4}=460.58$
or $h=24.22 \mathrm{in}$.
Use $h=24 \mathrm{in} ., A_{g}=452 \mathrm{in}^{2}{ }^{2}$
3. Assume $\# 9$ size of bar and $3 / 8 \mathrm{in}$. spiral center-to-center distance
$=24-2$ (cover) -2 (spiral diameter) -1 (bar diameter)
$=24-2(1.5)-2(3 / 8)-1.128=19.12 \mathrm{in}$.

ACI 7.7: Concrete exposed to earth or weather:
No. 6 through No. 18 bars....... 2 in. minimum
$\gamma=\frac{19.12}{24}=0.8$

Use the interaction diagram Appendix D. 21
4. $K_{n}=\frac{P_{u}}{\phi f_{c}^{\prime} A_{g}}=\frac{1096}{(0.75)(4)(452)}=0.808$
$R_{n}=\frac{M_{u}}{\phi f_{c}^{\prime} A_{g} h}=\frac{3360}{(0.75)(4)(452)(24)}=0.103$
5. At the intersection point of K_{n} and $R_{n} \rho_{g}=0.02$
6. The point is above the strain line $=1$, hence $\phi=0.75 \mathbf{O K}$
7. $A_{\mathrm{st}}=(0.02)(452)=9.04 \mathrm{in} .^{2}$

From Appendix D.2, select 12 bars of \#8, $A_{s t}=9.48$ in. ${ }^{\text { }}$
From Appendix D. 14 for a core diameter of $24-3=21$ in. 17 bars of \#8 can be arranged in a row
8. Selection of spirals

From Appendix D.13, size $=3 / 8 \mathrm{in}$.
pitch $=2 \frac{1}{4}$ in.
Clear distance $=2.25-3 / 8=1.875>1 \mathrm{in}$. OK
9. $K=1, I=10 \times 12=120 \mathrm{in}$., $r=0.25(24)=6 \mathrm{in}$.
$\frac{K I}{r}=\frac{1(120)}{6}=20$
$\left(\frac{M_{1}}{M_{2}}\right)=0$
ACI 10.12: In nonsway frames it shall be permitted to ignore slenderness effects for
$34-12\left(\frac{M_{1}}{M_{2}}\right)=34$ compression members that satisfy: $\frac{k l_{u}}{r} \leq 34-12\left(M_{1} / M_{2}\right)$
since $(K l / r)<34$, short column.

Factored Moment Resistance of Concrete Beams, $\phi M_{n}(\mathrm{k}-\mathrm{ft})$ with $\boldsymbol{f}^{\prime}{ }_{c}=\mathbf{4 k s i}, f_{y}=\mathbf{6 0} \mathbf{k s i}{ }^{\mathrm{a}}$

$b \times d$ (in)	Approximate Values for a/d		
	0.1	0.2	0.3
	Approximate Values for ρ		
	0.0057	0.01133	0.017
10×14	2 \#6	2 \#8	3 \#8
	53	90	127
10×18	3 \#5	2 \#9	3 \#9
	72	146	207
10×22	2 \#7	3 \#8	(3 \#10)
	113	211	321
12×16	2 \#7	3 \#8	4 \#8
	82	154	193
12×20	2 \#8	3 \#9	4 \#9
	135	243	306
12×24	2 \#8	3 \#9	(4 \#10)
	162	292	466
15×20	3 \#7	4 \#8	5 \#9
	154	256	383
15×25	3 \#8	4 \#9	4 \#11
	253	405	597
15×30	3 \#8	5 \#9	(5 \#11)
	304	608	895
18×24	3 \#8	5 \#9	6 \#10
	243	486	700
18×30	3 \#9	6 \#9	(6 \#11)
	385	729	1074
18×36	3 \#10	6 \#10	(7 \#11)
	586	1111	1504
20×30	3 \# 10	7 \# 9	6 \# 11
	489	851	1074
20×35	4 \#9	5 \#11	(7 \#11)
	599	1106	1462
20×40	6 \#8	6 \#11	(9 \#11)
	811	1516	2148
24×32	6 \#8	7 \#10	(8 \#11)
	648	1152	1528
24×40	6 \#9	7 \#11	(10 \#11)
	1026	1769	2387
24×48	5 \#10	(8 \#11)	(13 \#11)
	1303	2426	3723

${ }^{a}$ Table yields values of factored moment resistance in kip-ft with reinforcement indicated. Reinforcement choices shown in parentheses require greater width of beam or use of two stack layers of bars. (Adapted and corrected from Simplified Engineering for Architects and Builders, $11^{\text {th }}$ ed, Ambrose and Tripeny, 2010.
Column interaction Diagrams

IGURE D. 17 Column interaction diagram for tied column with bars on all faces. (Courtesy of the A
'oncrete Institute, Farmington Hills, MI.)
FIGURE D. 15 Column interaction diagram for tied column with bars on end faces only. (Courtesy of the American Concrete Institute, Farmington Hills, MI.)
 Zoncrete Institute, Farmington Hills, MI.)

Column interaction diagram for tied column w

FIGURE D. 16 Column interaction diagram for tied
American Concrete Institute, Farmington Hills, MI.)

FIGURE D. 19 Column interaction diagra
Concrete Institute, Farmington Hills, MI.)

(
 Institute, Farmington Hills, MI.)

Beam / One-Way Slab Design Flow Chart

Beam / One-Way Slab Design Flow Chart - continued

