Problem Solving, Units and Numerical Accuracy

Problem Solution Method:

1.	Inputs Outputs "Critical Path" $ \begin{array}{c} \hline \\ \hline \\$				
2.	Draw simple diagram of body/bodies & forces acting on it/them.				
3.	. Choose a reference system for the forces.				
4.	. Identify key geometry and constraints.				
5.	. Write the basic equations for force components.				
6.	. Count the equations & unknowns.				
7.	. SOLVE				
8.	8. "Feel" the validity of the answer. (Use common sense. Check units)				
Ex	ample: Two forces, A & B, act on a particle. What is the resultant? 1. <u>GIVEN:</u> Two forces on a particle and a diagram with size and orientation <u>FIND:</u> The "resultant" of the two forces				

SOLUTION:

- 2. Draw what you know (the diagram, any other numbers in the problem statement that could be put on the drawing....)
- 3. Choose a reference system. What would be the easiest? Cartesian, radian?
- 4. Key geometry: the location of the particle as the origin of all the forces Key constraints: the particle is "free" in space
- 5. Write equations: $size of A^2 + size of B^2 = size of resultant$ $sin \alpha = \frac{size of B}{size of A + B}$
- 6. Count: Unknowns: 2, magnitude and direction \leq Equations: 2 \therefore can solve
- 7. Solve: graphically or with equations
- 8. "Feel": Is the result bigger than A and bigger than B? Is it in the right direction? (like A & B)

Units

Units	Mass	Length	Time	Force
SI	kg	m	S	$N = \frac{kg \cdot m}{s^2}$
Absolute English	lb	ft	S	Poundal = $\frac{lb \cdot ft}{s^2}$
Technical English	$slug = \frac{lb_{f} \cdot s^{2}}{ft}$	ft	S	Ib _{force}
Engineering English	lb	ft	S	Ib _{force}
	$lb_{force} = lb_{(mass)} \times 32$	2.17 $\frac{ft}{s^2}$		
gravitational constant	$g_c = 32.17 \frac{ft}{s^2}$	(English)		
	$g_{c} = 9.81 \frac{m}{s^{2}}$	(SI)		
conversions (pg. vii)	1 in = 25.4 mm 1 lb = 4.448 N			

Numerical Accuracy

Depends on 1) accuracy of data you are given

2) accuracy of the calculations performed

The solution CANNOT be more accurate than the less accurate of #1 and #2 above!

DEFINITIONS:	precision	the number of significant digits
	accuracy	the possible error

Relative error measures the degree of accuracy:

 $\frac{relative error}{measurement} \times 100 = degree of accuracy(\%)$

For engineering problems, accuracy *rarely* is less than 0.2%.