## Problem Solving, Units and Numerical Accuracy

## Problem Solution Method:

1. $\left.\begin{array}{c}\text { Inputs } \\ \text { Outputs } \\ \text { "Critical Path" }\end{array} \quad \square \quad \begin{array}{l}\underline{\text { GIVEN: }} \\ \underline{\text { FIND: }} \\ \text { SOLUTION }\end{array}\right\}$ on graph paper
2. Draw simple diagram of body/bodies $\&$ forces acting on it/them.
3. Choose a reference system for the forces.
4. Identify key geometry and constraints.
5. Write the basic equations for force components.
6. Count the equations \& unknowns.
7. SOLVE
8. "Feel" the validity of the answer. (Use common sense. Check units...)

Example: Two forces, $\mathrm{A} \& \mathrm{~B}$, act on a particle. What is the resultant?

1. GIVEN: Two forces on a particle and a diagram with size and orientation


FIND: The "resultant" of the two forces
SOLUTION:
2. Draw what you know (the diagram, any other numbers in the problem statement that could be put on the drawing....)
3. Choose a reference system. What would be the easiest? Cartesian, radian?
4. Key geometry: the location of the particle as the origin of all the forces

Key constraints: the particle is "free" in space
5. Write equations:

$$
\begin{aligned}
& \text { sizeof } A^{2}+\text { sizeof } B^{2}=\text { sizeof resultant } \\
& \sin \alpha=\frac{\operatorname{sizeof} B}{\operatorname{sizeof} A+B}
\end{aligned}
$$

6. Count: Unknowns: 2 , magnitude and direction $\leq$ Equations: $2 \therefore$ can solve
7. Solve: graphically or with equations
8. "Feel": Is the result bigger than A and bigger than B? Is it in the right direction? (like A \& B)

Units

| Units | Mass | Length | Time | Force |
| :---: | :---: | :---: | :---: | :---: |
| SI | kg | m | S | $N=\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}}$ |
| Absolute English | lb | ft | S | Poundal $=\frac{l b \cdot f t}{s^{2}}$ |
| Technical English | $\text { slug }=\frac{l b_{f} \cdot s^{2}}{f t}$ | ft | S | $1 b_{\text {force }}$ |
| Engineering English | lb | ft | S | $1 b_{\text {force }}$ |
| $l b_{\text {force }}=l b_{(\text {mass })} \times 32.17 \mathrm{ft} / \mathrm{s}^{2}$ |  |  |  |  |
| gravitational constant | $g_{c}=32.17 \mathrm{ft} / \mathrm{s}^{2}$ | (Engli |  |  |
|  | $g_{c}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ | (SI) |  |  |
| conversions (pg. vii) | $\begin{aligned} & 1 \mathrm{in}=25.4 \mathrm{~mm} \\ & 1 \mathrm{lb}=4.448 \mathrm{~N} \end{aligned}$ |  |  |  |

## Numerical Accuracy

Depends on 1) accuracy of data you are given
2) accuracy of the calculations performed

The solution CANNOT be more accurate than the less accurate of \#1 and \#2 above!
DEFINITIONS: precision the number of significant digits accuracy the possible error

Relative error measures the degree of accuracy:

$$
\frac{\text { relativeerror }}{\text { measurement }} \times 100=\text { degree of accuracy (\%) }
$$

For engineering problems, accuracy rarely is less than $0.2 \%$.

