31. Using a TI-83 to solve a system of linear equations in a matrix form with rref(:

Matrices of linear equations expect the coefficients in front of variable to be put in the same order in each row, and the numerical solution ($=$ to) as the last value. So for the $2^{\text {nd }}$ set of equations in $\# 27(2 x+3 y=8$ and $4 x-y=2)$, the matrix to enter would look like

$$
\left[\begin{array}{ccc}
2 & 3 & 8 \\
4 & -1 & 2
\end{array}\right]
$$

1. Press 2nd [matrix]. Press to display the MATRIX EDIT menu. Press 1 to select $1:[\mathrm{A}]$,
2. Press 2 ENTER 3 ENTER to define a 2×3 matrix. The rectangular cursor indicates the current element. Ellipses (...) indicate additional columns beyond the screen.

MATRIX[A]	2	$x 3$	
$[0$	0	0	
$[0$	0	0	
$1, \quad 1=0$			

3. Press 2 ENTER to enter the first element. The rectangular cursor moves to the second column of the first row.
4. Press 3 ENTER 8 ENTER to complete the first row for $2 x+3 y=8$
5. Press $\mathbf{4}$ ENTER -1 ENTER 2 ENTER to enter the second row for $4 x-y=2$
$\left.\begin{array}{|cccc}\hline \text { MATRIX[A] } & 2 & \text { x3 } \\ {[2} & 0 & 0 &] \\ {[0} & 0 & 0 &]\end{array}\right]$
6. Press 2nd [QUIT] to return to the home screen. If necessary, press CLEAR to clear the home screen. Press 2nd [MATRIX] to display the MATRIX MATH menu. Press Δ to wrap to the end of the menu. Select B:rref(to copy rref(to the home screen.
7. Press 2nd [MATrix] $\mathbf{1}$ to select $\mathbf{1 : [A] ~ f r o m ~ t h e ~ M A T R I X ~ N A M E S ~}$ menu. Press \square ENTER. The reduced row-echelon form of the matrix is displayed and stored in Ans.

$$
\begin{array}{lll}
1 x+0 y=1 & \text { therefore } & x=1 \\
0 x+1 y=2 & \text { therefore } & y=2
\end{array}
$$

$\operatorname{MATRIX}[A]$				2
$[2$	3	8		
$[2$	-1	2		$]$
2,	$3=2$			

