Steel Design

Notation:

= name for width dimension d_{h} = nominal bolt diameter a \boldsymbol{A} = name for area D = shorthand for dead load = area of a bolt DL= shorthand for dead load A_h = effective net area found from the = eccentricity A_e e product of the net area A_n by the \boldsymbol{E} = shorthand for earthquake load shear lag factor U = modulus of elasticity = gross area, equal to the total area = axial compressive stress f_c A_g ignoring any holes f_b = bending stress = gross area subjected to shear for = bearing stress f_p A_{gv} block shear rupture = shear stress f_{v} $f_{v-max} = \text{maximum shear stress}$ = net area, equal to the gross area A_n subtracting any holes, as is A_{net} = yield stress = net area subjected to tension for = shorthand for fluid load F A_{nt} block shear rupture $F_{allow(able)}$ = allowable stress = net area subjected to shear for block = allowable axial (compressive) stress A_{nv} F_a shear rupture = allowable bending stress F_b = area of the web of a wide flange F_{cr} = flexural buckling stress A_w = elastic critical buckling stress section F_e AISC = American Institute of Steel F_{EXX} = yield strength of weld material Construction F_n = nominal strength in LRFD ASD = allowable stress design = nominal tension or shear strength of = name for a (base) width a bolt = total width of material at a = allowable bearing stress F_p horizontal section F_t = allowable tensile stress F_u = name for height dimension = ultimate stress prior to failure = width of the flange of a steel beam = allowable shear stress F_{v} b_f cross section F_{y} = yield strength = factor for determining M_u for = yield strength of web material B_1 F_{yw} combined bending and compression F.S. = factor of safety = largest distance from the neutral = gage spacing of staggered bolt cg axis to the top or bottom edge of a holes G= relative stiffness of columns to = coefficient for shear stress for a beams in a rigid connection, as is Ψ c_1 rectangular bar in torsion = name for a height h = lateral torsional buckling C_{h} = height of the web of a wide flange h_c modification factor for moment in steel section ASD & LRFD steel beam design Н = shorthand for lateral pressure load = column slenderness classification C_c Ι = moment of inertia with respect to constant for steel column design neutral axis bending C_m = modification factor accounting for = moment of inertia of trial section I_{trial} combined stress in steel design $I_{req'd}$ = moment of inertia required at C_{v} = web shear coefficient limiting deflection = calculus symbol for differentiation I_{v} = moment of inertia about the y axis = depth of a wide flange section = polar moment of inertia

= nominal bolt diameter

 P_c

k = distance from outer face of W flange to the web toe of fillet

> = shape factor for plastic design of steel beams

K = effective length factor for columns, as is k

l= name for length

= length of beam in rigid joint ℓ_b

 ℓ_c = length of column in rigid joint

= name for length or span length L

= shorthand for live load

= unbraced length of a steel beam L_{b}

= clear distance between the edge of a L_c hole and edge of next hole or edge of the connected steel plate in the direction of the load

 L_e = effective length that can buckle for column design, as is ℓ_e

= shorthand for live roof load L_r

> = maximum unbraced length of a steel beam in LRFD design for inelastic lateral-torsional buckling

= maximum unbraced length of a L_p steel beam in LRFD design for full plastic flexural strength

L' = length of an angle in a connector with staggered holes

= shorthand for live load LL

LRFD = load and resistance factor design

M= internal bending moment

= required bending moment (ASD) M_a

= nominal flexure strength with the M_n full section at the yield stress for LRFD beam design

 M_{max} = maximum internal bending moment

 $M_{max-adj}$ = maximum bending moment adjusted to include self weight

= internal bending moment when all M_p fibers in a cross section reach the vield stress

= maximum moment from factored M_u loads for LRFD beam design

= internal bending moment when the M_{ν} extreme fibers in a cross section reach the yield stress

= number of bolts n

= shorthand for neutral axis n.a.

N = bearing length on a wide flange steel section

> = bearing type connection with threads included in shear plane

= bolt hole spacing (pitch) p

P = name for load or axial force vector

 P_a = allowable axial force

= required axial force (ASD)

 $P_{allowable}$ = allowable axial force = available axial strength

 P_{e1} = Euler buckling strength

= nominal column load capacity in P_n LRFD steel design

= required axial force P_r

= factored column load calculated P_u from load factors in LRFD steel design

= first moment area about a neutral Q

> = generic axial load quantity for LRFD design

= radius of gyration r

= radius of gyration with respect to a $r_{\rm v}$ v-axis

= generic load quantity (force, shear, R moment, etc.) for LRFD design

= shorthand for rain or ice load

= radius of curvature of a deformed beam

 R_a = required strength (ASD)

= nominal value (capacity) to be R_n multiplied by ϕ in LRFD and divided by the safety factor Ω in **ASD**

 R_u = factored design value for LRFD design

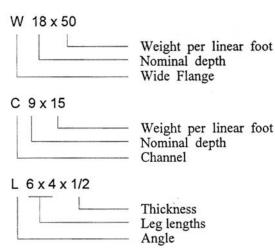
= longitudinal center-to-center S spacing of any two consecutive holes

S = shorthand for snow load

= section modulus

= allowable strength per length of a weld for a given size

 $S_{reg'd}$ = section modulus required at allowable stress


 $S_{req'd-adj}$ = section modulus required at allowable stress when moment is adjusted to include self weight

SC= slip critical bolted connection

= thickness of the connected material = vertical distance y = thickness of flange of wide flange Z= plastic section modulus of a steel t_f = thickness of web of wide flange beam t_w T= torque (axial moment) $Z_{reg'd}$ = plastic section modulus required = plastic section modulus of a steel = shorthand for thermal load = throat size of a weld beam with respect to the x axis U= shear lag factor for steel tension = method factor for B_1 equation member design Δ_{actual} = actual beam deflection = reduction coefficient for block U_{bs} $\Delta_{allowable}$ = allowable beam deflection shear rupture Δ_{limit} = allowable beam deflection limit V= internal shear force Δ_{max} = maximum beam deflection = required shear (ASD) = yield strain (no units) \mathcal{E}_{v} V_{max} = maximum internal shear force = resistance factor φ $V_{max-adj} = \text{maximum internal shear force}$ = diameter symbol adjusted to include self weight = resistance factor for bending for = nominal shear strength capacity for ϕ_h V_n LRFD beam design **LRFD** = maximum shear from factored loads V_u ϕ_c = resistance factor for compression for LRFD beam design for LRFD = name for distributed load = resistance factor for tension for ϕ_{t} $w_{adjusted}$ = adjusted distributed load for **LRFD** equivalent live load deflection limit = resistance factor for shear for ϕ_{v} $w_{equivalent}$ = the equivalent distributed load derived from the maximum bending = load factor in LRFD design γ moment $w_{self wt}$ = name for distributed load from self $= pi (3.1415 \text{ radians or } 180^{\circ})$ π weight of member = slope of the beam deflection curve θ W= shorthand for wind load = radial distance ρ = horizontal distance х = safety factor for ASD Ω X = bearing type connection with = symbol for integration threads excluded from the shear Σ = summation symbol plane

Steel Design

Structural design standards for steel are established by the *Manual of Steel Construction* published by the American Institute of Steel Construction, and uses **Allowable Stress Design** and **Load and Factor Resistance Design**. With the 13th edition, both methods are combined in one volume which provides common requirements for analyses and design and requires the application of the same set of specifications.

Materials

American Society for Testing Materials (ASTM) is the organization responsible for material and other standards related to manufacturing. Materials meeting their standards are guaranteed to have the published strength and material properties for a designation.

A36 – carbon steel used for plates, angles $F_y = 36 \text{ ksi}$, $F_u = 58 \text{ ksi}$, E = 29,000 ksi A572 – high strength low-alloy use for some beams $F_y = 60 \text{ ksi}$, $F_u = 75 \text{ ksi}$, E = 29,000 ksi A992 – for building framing used for most beams $F_y = 50 \text{ ksi}$, $F_u = 65 \text{ ksi}$, F

 $\underline{ASD} \qquad R_a \leq \frac{R_n}{\Omega}$

where R_a = required strength (dead or live; force, moment or stress)

 R_n = nominal strength specified for ASD

 Ω = safety factor

Factors of Safety are applied to the limit stresses for allowable stress values:

 $\begin{array}{ll} \text{bending (braced, $L_b < L_p$)} & \Omega = 1.67 \\ \text{bending (unbraced, $L_p < L_b$ and $L_b > L_r$)} & \Omega = 1.67 \text{ (nominal moment reduces)} \\ \text{shear (beams)} & \Omega = 1.5 \text{ or } 1.67 \\ \text{shear (bolts)} & \Omega = 2.00 \text{ (tabular nominal strength)} \\ \text{shear (welds)} & \Omega = 2.00 \end{array}$

- L_b is the unbraced length between bracing points, laterally
- L_p is the limiting laterally unbraced length for the limit state of yielding
- L_r is the limiting laterally unbraced length for the limit state of inelastic lateral-torsional buckling

LRFD $R_u \leq \phi R_n \qquad where \cdots R_u = \Sigma \gamma_i R_i$ where $\phi = \text{resistance factor}$ $\gamma = \text{load factor for the type of load}$ R = load (dead or live; force, moment or stress) $R_u = \text{factored load (moment or stress)}$ $R_n = \text{nominal load (ultimate capacity; force, moment or stress)}$

Nominal strength is defined as the

capacity of a structure or component to resist the effects of loads, as determined by computations using specified material strengths (such as yield strength, F_y , or ultimate strength, F_u) and dimensions and formulas derived from accepted principles of structural mechanics or by field tests or laboratory tests of scaled models, allowing for modeling effects and differences between laboratory and field conditions

Factored Load Combinations

The design strength, ϕR_n , of each structural element or structural assembly must equal or exceed the design strength based on the ASCE-7 (2010) combinations of factored nominal loads:

$$1.4D$$

$$1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$$

$$1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$$

$$1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$$

$$1.2D + 1.0E + L + 0.2S$$

$$0.9D + 1.0W$$

$$0.9D + 1.0E$$

Criteria for Design of Beams

Allowable normal stress or normal stress from LRFD should not be exceeded:

$$F_b \text{ or } \phi F_n \ge f_b = \frac{Mc}{I}$$
$$(M_a \le M_n / \Omega \text{ or } M_u \le \phi_b M_n)$$

Knowing M and F_y, the minimum plastic section modulus fitting the limit is:

$$Z_{req'd} \ge \frac{M_a}{F_y \Omega}$$
 $\left(S_{req'd} \ge \frac{M}{F_b} \right)$

Determining Maximum Bending Moment

Drawing V and M diagrams will show us the maximum values for design. Remember:

$$V = \Sigma(-w)dx$$

$$M = \Sigma(V)dx$$

$$\frac{dV}{dx} = -w$$

$$\frac{dM}{dx} = V$$

Determining Maximum Bending Stress

For a prismatic member (constant cross section), the maximum normal stress will occur at the maximum moment.

For a *non-prismatic* member, the stress varies with the cross section AND the moment.

Deflections

If the bending moment changes, M(x) across a beam of constant material and cross section then the curvature will change: $\frac{1}{R} = \frac{M(x)}{EI}$

The slope of the n.a. of a beam, θ , will be tangent to the radius of curvature, R: $\theta = slope = \frac{1}{EI} \int M(x) dx$

The equation for deflection, y, along a beam is: $y = \frac{1}{EI} \int \theta dx = \frac{1}{EI} \iint M(x) dx$

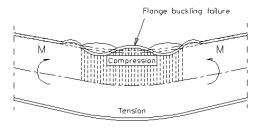
Elastic curve equations can be found in handbooks, textbooks, design manuals, etc...Computer programs can be used as well. Elastic curve equations can be superimposed ONLY if the stresses are in the elastic range.

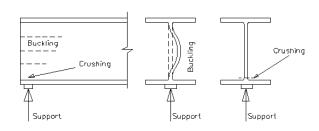
The deflected shape is roughly the same shape flipped as the bending moment diagram but is constrained by supports and geometry.

Allowable Deflection Limits

All building codes and design codes limit deflection for beam types and damage that could happen based on service condition and severity.

$$y_{\text{max}}(x) = \Delta_{actual} \le \Delta_{allowable} = \frac{L}{value}$$


Use	LL only	DL+LL
Roof beams:		
Industrial	L/180	L/120
Commercial		
plaster ceiling	L/240	L/180
no plaster	L/360	L/240
Floor beams:		
Ordinary Usage	L/360	L/240
Roof or floor (damageable	e elements)	L/480


Lateral Buckling

With compression stresses in the top of a beam, a sudden "popping" or buckling can happen even at low stresses. In order to prevent it, we need to brace it along the top, or laterally brace it, or provide a bigger I_y .

Local Buckling in Steel Wide-flange Beams- Web Crippling or Flange Buckling

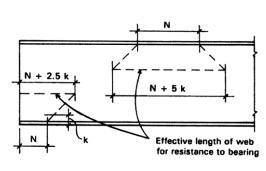
Concentrated forces on a steel beam can cause the web to buckle (called **web crippling**). Web stiffeners under the beam loads and bearing plates at the supports reduce that tendency. Web stiffeners also prevent the web from shearing in plate girders.

The maximum support load and interior load can be determined from:

$$P_{n \text{(max-end)}} = (2.5k + N)F_{yw}t_{w}$$

$$P_{n \text{ (interior)}} = (5k + N)F_{yw}t_w$$

where


 t_w = thickness of the web

 F_{yw} = yield strength of the web

N =bearing length

k = dimension to fillet found in beam section tables

$$\phi = 1.00 \text{ (LRFD)} \qquad \Omega = 1.50 \text{ (ASD)}$$

Beam Loads & Load Tracing

In order to determine the loads on a beam (or girder, joist, column, frame, foundation...) we can start at the top of a structure and determine the <u>tributary area</u> that a load acts over and the beam needs to support. Loads come from material weights, people, and the environment. This area is assumed to be from half the distance to the next beam over to halfway to the next beam.

The reactions must be supported by the next lower structural element *ad infinitum*, to the ground.

LRFD - Bending or Flexure

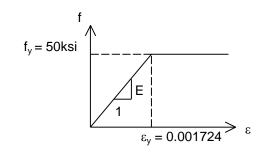
For determining the flexural design strength, $\phi_b M_n$, for resistance to pure bending (no axial load) in most flexural members where the following conditions exist, a single calculation will suffice:

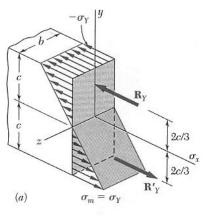
$$\Sigma \gamma_i R_i = M_u \le \phi_b M_n = 0.9 F_v Z$$

where

 M_u = maximum moment from factored loads

 $\varphi_b = resistance \ factor \ for \ bending = 0.9$

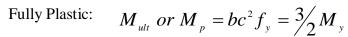

 M_n = nominal moment (ultimate capacity)

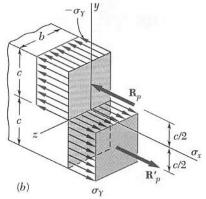

 F_y = yield strength of the steel

Z = plastic section modulus

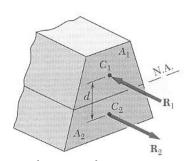
Plastic Section Modulus

Plastic behavior is characterized by a yield point and an increase in strain with no increase in stress.

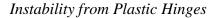


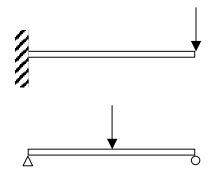

Internal Moments and Plastic Hinges

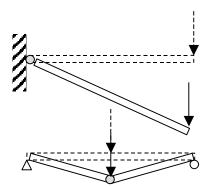
Plastic hinges can develop when all of the material in a cross section sees the yield stress. Because all the material at that section can strain without any additional load, the member segments on either side of the hinge can rotate, possibly causing instability.


For a rectangular section:

Elastic to
$$f_y$$
: $M_y = \frac{I}{c} f_y = \frac{bh^2}{6} f_y = \frac{b(2c)^2}{6} f_y = \frac{2bc^2}{3} f_y$






For a non-rectangular section and internal equilibrium at σ_y , the n.a. will not necessarily be at the centroid. The n.a. occurs where the $A_{tension} = A_{compression}$. The reactions occur at the centroids of the tension and compression areas.

 $A_{tension} = A_{compression}$

Shape Factor:

The ratio of the plastic moment to the elastic moment at yield:

$$k = \frac{M_p}{M_y}$$

k = 3/2 for a rectangle

 $k \approx 1.1$ for an I beam

Plastic Section Modulus

$$Z = \frac{M_p}{f_y} \qquad and \qquad k = \frac{Z}{S}$$

Design for Shear

$$V_a \leq V_n / \Omega$$
 or $V_u \leq \phi_v V_n$

The nominal shear strength is dependent on the cross section shape. Case 1: With a thick or stiff web, the shear stress is resisted by the web of a wide flange shape (with the exception of a handful of W's). Case 2: When the web is not stiff for doubly symmetric shapes, singly symmetric shapes (like channels) (excluding round high strength steel shapes), inelastic web buckling occurs. When the web is very slender, elastic web buckling occurs, reducing the capacity even more:

Case 1) For
$$h/t_w \le 2.24 \sqrt{\frac{E}{F_y}}$$
 $V_n = 0.6 F_{yw} A_w$ $\phi_v = 1.00 \text{ (LRFD)}$ $\Omega = 1.50 \text{ (ASD)}$

where *h* equals the clear distance between flanges less the fillet or corner radius for rolled shapes

$$\begin{split} V_n &= nominal \ shear \ strength \\ F_{yw} &= yield \ strength \ of \ the \ steel \ in \ the \ web \\ A_w &= t_w d = area \ of \ the \ web \end{split}$$

Case 2) For
$$h/t_w > 2.24 \sqrt{\frac{E}{F_v}}$$
 $V_n = 0.6 F_{yw} A_w C_v$ $\phi_v = 0.9 \text{ (LRFD)}$ $\Omega = 1.67 \text{ (ASD)}$

where C_v is a reduction factor (1.0 or less by equation)

Design for Flexure

$$M_a \le M_n / \Omega$$
 or $M_u \le \phi_b M_n$ $\phi_b = 0.90 \text{ (LRFD)}$ $\Omega = 1.67 \text{ (ASD)}$

The nominal flexural strength M_n is the *lowest* value obtained according to the limit states of

- 1. yielding, limited at length $L_p = 1.76r_y \sqrt{\frac{E}{F_y}}$, where r_y is the radius of gyration in y
- 2. lateral-torsional buckling limited at length L_r
- 3. flange local buckling
- 4. web local buckling

Beam design charts show available moment, M_n/Ω and $\phi_b M_n$, for unbraced length, L_b , of the compression flange in one-foot increments from 1 to 50 ft. for values of the bending coefficient $C_b = 1$. For values of $1 < C_b \le 2.3$, the required flexural strength M_u can be reduced by dividing it by C_b . ($C_b = 1$ when the bending moment at any point within an unbraced length is larger than that at both ends of the length. C_b of 1 is conservative and permitted to be used in any case. When the free end is unbraced in a cantilever or overhang, $C_b = 1$. The full formula is provided below.)

NOTE: the self weight is not included in determination of M_n/Ω $\phi_h M_n$

Compact Sections

For a laterally braced *compact* section (one for which the plastic moment can be reached before local buckling) only the limit state of yielding is applicable. For unbraced compact beams and non-compact tees and double angles, only the limit states of yielding and lateral-torsional buckling are applicable.

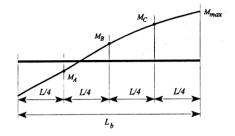
Compact sections meet the following criteria: $\frac{b_f}{2t_f} \le 0.38 \sqrt{\frac{E}{F_y}}$ and $\frac{h_c}{t_w} \le 3.76 \sqrt{\frac{E}{F_y}}$

where:

 b_f = flange width in inches

 t_f = flange thickness in inches

E = modulus of elasticity in ksi


 F_{v} = minimum yield stress in ksi

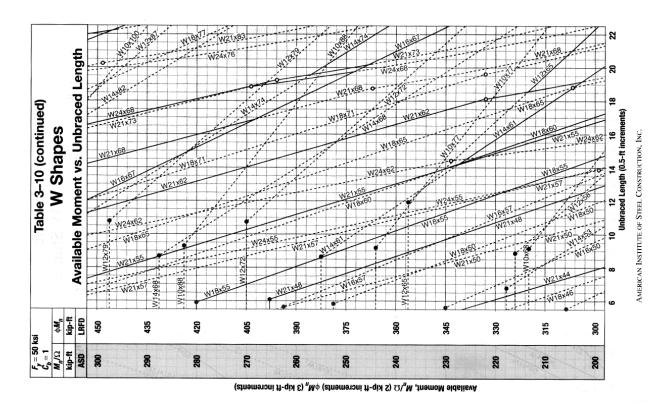
 h_c = height of the web in inches

 t_w = web thickness in inches

With lateral-torsional buckling the nominal flexural strength is

$$M_n = C_b \left[M_p - (M_p - 0.7F_y S_x) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le M_p$$

where $M_p = M_n = F_y Z_x$


and C_b is a modification factor for non-uniform moment diagrams where, when both ends of the beam segment are braced:

$$C_b = \frac{12.5M_{max}}{2.5M_{max} + 3M_A + 4M_B + 3M_C}$$

$$\begin{split} M_{max} &= \text{absolute value of the maximum moment in the unbraced beam segment} \\ M_A &= \text{absolute value of the moment at the quarter point of the unbraced beam segment} \\ M_B &= \text{absolute value of the moment at the center point of the unbraced beam segment} \\ M_C &= \text{absolute value of the moment at the three quarter point of the unbraced beam segment length.} \end{split}$$

Available Flexural Strength Plots

Plots of the available moment for the unbraced length for wide flange sections are useful to find sections to satisfy the design criteria of $M_a \leq M_n/\Omega$ or $M_u \leq \phi_b M_n$. The maximum moment that can be applied on a beam (taking self weight into account), M_a or M_u , can be plotted against the unbraced length, L_b . The limiting length, L_p (fully plastic), is indicated by a solid dot (\bullet), while the limiting length, L_r (for lateral torsional buckling), is indicated by an open dot (\circ). Solid lines indicate the most economical, while dashed lines indicate there is a lighter section that could be used. C_b , which is a lateral torsional buckling modification factor for non-zero moments at the ends, is 1 for simply supported beams (0 moments at the ends). (see *figure*)

Design Procedure

The intent is to find the most light weight member (which is economical) satisfying the section modulus size.

- 1. Determine the unbraced length to choose the limit state (yielding, lateral torsional buckling or more extreme) and the factor of safety and limiting moments. Determine the material.
- 2. Draw V & M, finding V_{max} and M_{max} .for unfactored loads (ASD, $V_a \& M_a$) or from factored loads (LRFD, $V_u \& M_u$)
- 3. Calculate $Z_{\text{req'd}}$ when yielding is the limit state. This step is equivalent to determining if $f_b = \frac{M_{max}}{S} \le F_b, \ Z_{req'd} \ge \frac{M_{max}}{F_b} = \frac{M_{max}}{F_y} \text{ and } \ Z_{req'd} \ge \frac{M_u}{\phi_b F_y} \text{ to meet the design criteria that}$

$$M_a \leq M_n / \Omega$$
 or $M_u \leq \phi_b M_n$

If the limit state is something other than yielding, determine the nominal moment, M_n , or use plots of available moment to unbraced length, L_b .

4. For steel: use the section charts to find a trial Z and remember that the beam self weight (the second number in the section designation) will increase Z_{req'd}. The design charts show the lightest section within a grouping of similar Z's.

TABLE 9.1 Load Factor Resistance Design Selection

			$F_y = 3$	6 ksi	
Designation	Z_x in. ³	L_p ft	$\frac{L_r}{\mathrm{ft}}$	M_p kip-ft	M _r kip-ft
W 33 × 141	514	10.1	30.1	1,542	971
W 30 × 148	500	9.50	30.6	1,500	945
W 24 × 162	468	12.7	45.2	1,404	897
W 24 × 146	418	12.5	42.0	1,254	804
W 33 × 118	415	9.67	27.8	1,245	778
W 30 × 124	408	9.29	28.2	1,224	769
W 21 \times 147	373	12.3	46.4	1,119	713
$W 24 \times 131$	370	12.4	39.3	1,110	713
W 18×158	356	11.4	56.5	1,068	672

**** Determine the "updated" V_{max} and M_{max} including the beam self weight, and verify that the updated $Z_{req'd}$ has been met. *****

- 5. Consider lateral stability.
- 6. Evaluate horizontal shear using V_{max} . This step is equivalent to determining if $f_v \leq F_v$ is satisfied to meet the design criteria that $V_a \leq V_n/\Omega$ or $V_u \leq \phi_v V_n$

For I beams:
$$f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{web}} = \frac{V}{t_w d}$$

$$V_n = 0.6F_{yw}A_w \quad or \ V_n = 0.6F_{yw}A_w C_v$$
 Others:
$$f_{v-\text{max}} = \frac{VQ}{Ib}$$

- 7. Provide adequate bearing area at supports. This step is equivalent to determining if $f_p = \frac{P}{A} \le F_p$ is satisfied to meet the design criteria that $P_a \le P_n / \Omega$ or $P_u \le \phi P_n$
- 8. Evaluate shear due to torsion $f_{v} = \frac{T\rho}{J} \text{ or } \frac{T}{c_{1}ab^{2}} \le F_{v} \text{ (circular section or rectangular)}$
- 9. Evaluate the deflection to determine if $\Delta_{maxLL} \leq \Delta_{LL-allowed}$ and/or $\Delta_{maxTotal} \leq \Delta_{Total allowed}$
- **** note: when $\Delta_{calculated} > \Delta_{limit}$, $I_{req'd}$ can be found with: and $Z_{req'd}$ will be satisfied for similar self weight ***** $I_{req'd} \geq \frac{\Delta_{toobig}}{\Delta_{limit}} I_{trial}$

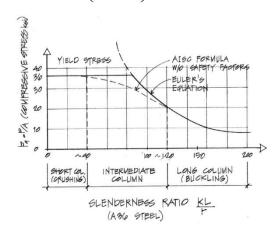
FOR ANY EVALUATION:

Redesign (with a new section) at any point that a stress or serviceability criteria is NOT satisfied and re-evaluate each condition until it is satisfactory.

Load Tables for Uniformly Loaded Joists & Beams

Tables exist for the common loading situation of uniformly distributed load. The tables either provide the safe distributed load based on bending and deflection limits, they give the allowable span for specific live and dead loads including live load deflection limits.

If the load is *not uniform*, an *equivalent uniform load* can be calculated $M_{max} = \frac{w_{equivalent}L^2}{8}$ from the maximum moment equation:


If the deflection limit is less, the design live load to check against allowable must be increased, ex.

$$w_{adjusted} = w_{ll-have} \left(\frac{L/360}{L/400} \right)$$
 table limit wanted

Criteria for Design of Columns

If we know the loads, we can select a section that is adequate for strength & buckling.

If we know the length, we can find the limiting load satisfying strength & buckling.

Allowable Stress Design

American Institute of Steel Construction (AISC) Manual of ASD, 9th ed:

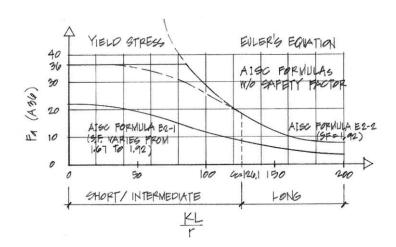
<u>Long and slender:</u> [$L_e/r \ge C_c$, preferably < 200]

$$F_{allowable} = \frac{F_{cr}}{F.S.} = \frac{12\pi^2 E}{23(Kl/r)^2}$$

The yield limit is idealized into a parabolic curve that blends into the Euler's Formula at C_c.

With
$$F_y = 36$$
 ksi, $C_c = 126.1$

With
$$F_y = 50$$
 ksi, $C_c = 107.0$


$$C_c = \sqrt{\frac{2\pi^2 E}{F_y}}$$

Short and stubby: $[L_e/r < C_c]$

$$F_a = \left[1 - \frac{\left(\frac{Kl}{r}\right)^2}{2C_c^2}\right] \frac{F_y}{F.S.}$$

with:

$$F.S. = \frac{5}{3} + \frac{3(Kl/r)}{8C_c} - \frac{(Kl/r)^3}{8C_c^3}$$

Design for Compression

American Institute of Steel Construction (AISC) Manual 14th ed:

$$P_a \leq P_n / \Omega$$
 or $P_u \leq \phi_c P_n$ where $P_u = \sum \gamma_i P_i$

 γ is a <u>load factor</u>

P is a <u>load</u> type

φ is a <u>resistance factor</u>

P_n is the <u>nominal load capacity (strength)</u>

$$\phi = 0.90 \, (LRFD)$$
 $\Omega = 1.67 \, (ASD)$

For compression $P_n = F_{cr}A_g$

where : A_g is the cross section area and F_{cr} is the flexural buckling stress

The flexural buckling stress, F_{cr} , is determined as follows:

when
$$\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{F_y}}$$
 or $(F_e \ge 0.44F_y)$:
$$F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y$$
when $\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}$ or $(F_e < 0.44F_y)$:
$$F_{cr} = 0.877 F_e$$

where F_e is the elastic critical buckling stress:

$$F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$

Design Aids

Tables exist for the value of the flexural buckling stress based on slenderness ratio. In addition, tables are provided in the AISC Manual for Available Strength in Axial Compression based on the effective length with respect to least radius of gyration, r_y . If the critical effective length is about the largest radius of gyration, r_x , it can be turned into an effective length about the y axis by dividing by the fraction r_x/r_y .

Shape	•		3						ł	
Shape Wt/ft				w onapes	abes				W12	
#/#					¥	W12×				3
	9,0	96	87	7	7 0/ 0	79	0/4	72	9 0/ 0	8
Design	ASD	2	ASD	I RFD	ASD ASD	I RFD	ASD ASD	I RED	ASD	I RFD
0	844	1270	992	1150	694	1040	633	951	571	859
9	118	1220	735	1110	299	1000	209	913	548	824
5 u	800	1200	222	1090	657	987	298	899	540	811
otten o ou	712	1160	689	1050	634	952	277	867	520	782
ر 6¥	756	1140	685	1030	620	932	292	849	209	765
to su	739	1110	699	1010	909	910	251	828	497	747
nibe S E	707	1080	652	980	573	887	537	784	484	706
1 tess	089	1020	615	924	556	836	200	761	456	685
	600	990	080	080	020	500	430	710	1 5	700
128 5 <u>7</u>	614	957	554	833	2020	752	47.5	684	409	615
	591	888	233	801	184	723	437	657	393	591
. win & &	543	852	511	769	461	694	419	630	377	541
1 116	495	744	446	670	402	603	365	548	327	491
75 KT (447	672	405	605	362	544	328	493	294	442
	356	534	360	541	323	486	250	389	297	347
	312	469	279	420	250	376	526	340	202	303
	274	.412	246	369	220	331	199	539	171	267
	243	365	218	327	135	293	176	265	157	236
8 8 :	195	292	7 7	262	156	234	14	212	126	189
₽	9/-	704	/6	730	141	717	/71	8	411	=
				Properties	rties					
wo (kips)	137	206	121	181	104	157	90.9	136	78.2	117
Pwe (kips)	296	445	243	366	185	278	142	213	106	159
(kdbs)	152	877		185		152		126	6.89	0
€€		10.9 46.6	- 4	10.8 43.0	- ∞	10.8 39.9	- 63	10.7 37.4	- m	35.1
g (in.²) (in.³) (in.³)	80.71	28.2 833 270	25. 740 241	25.6 740 241	23. 662 216	23.2 662 116	1, 93 tz	21.1 597 195	19. 533 174	19.1 33
f _{r.} (in.) Ratio r./r. P. (KL ²)/10 ⁴ (k-in. ²) P. (KL ²)/10 ⁴ (k-in. ²)	3. 1. 23800 7730	3.09 0.76 00 00 00 00 00 00 00 00 00 00 00 00 00	21200 6900	3.07 1.75 00	3. 1. 18900 6180	3.05 1.75 00 80	3. 1. 17100 5580	3.04 1.75 00 80	1. 1. 15300 4980	3.02 1.75 30
ASD	LRFD	e						2		51
$\Omega_{\rm c} = 1.67$	-6	= 0.90								

Procedure for Analysis

- 1. Calculate KL/r for each axis (if necessary). The largest will govern the buckling load.
- 2. Find F_a or F_{cr} as a function of KL/r from the appropriate equation (above) or table.
- 3. Compute $P_{allowable} = F_a \cdot A$ or $P_n = F_{cr} \cdot A_g$ or alternatively compute $f_c = P/A$ or P_u/A
- 4. Is the design satisfactory?

Is
$$P \le P_{\text{allowable}}$$
 (or $P_a \le P_n/\Omega$) or $P_u \le \phi_c P_n$? \Rightarrow yes, it is; no, it is no good or Is $f_c \le F_a$ (or $\le F_{cr}/\Omega$) or $\phi_c F_{cr}$? \Rightarrow yes, it is; no, it is no good

Procedure for Design

- 1. Guess a size by picking a section.
- 2. Calculate KL/r for each axis (if necessary). The largest will govern the buckling load.
- 3. Find F_a or F_{cr} as a function of KL/r from appropriate equation (above) or table.
- 4. Compute $P_{allowable} = F_a \cdot A$ or $P_n = F_{cr} \cdot A_g$ or alternatively compute $f_c = P/A$ or P_u/A
- 5. Is the design satisfactory?
 - Is $P \le P_{\text{allowable}} (P_a \le P_n/\Omega)$ or $P_u \le \phi_c P_n$? yes, it is; no, pick a bigger section and go back to step 2.
 - Is $f_c \le F_a$ ($\le F_{cr}/\Omega$) or $\phi_c F_{cr}$? \Rightarrow yes, it is; no, pick a bigger section and go back to step 2.
- 6. Check design efficiency by calculating percentage of stress used:

$$\frac{P}{P_{allowable}} \cdot 100\% \left(\frac{P_a}{P_n/\Omega} \cdot 100\% \right) or \frac{P_u}{\phi_c P_n} \cdot 100\%$$

If value is between 90-100%, it is efficient.

If values is less than 90%, pick a smaller section and go back to step 2.

Columns with Bending (Beam-Columns)

In order to *design* an adequate section for allowable stress, we have to start somewhere:

- 1. Make assumptions about the limiting stress from:
 - buckling
 - axial stress
 - combined stress
- 2. See if we can find values for \underline{r} or \underline{A} or \underline{Z} .
- 3. Pick a trial section based on if we think r or A is going to govern the section size.

- 4. Analyze the stresses and compare to allowable using the allowable stress method or interaction formula for eccentric columns.
- 5. Did the section pass the stress test?
 - If not, do you *increase* r or A or Z?
 - If so, is the difference really big so that you could *decrease* r or A or Z to make it more efficient (economical)?
- 6. Change the section choice and go back to step 4. Repeat until the section meets the stress criteria.

Design for Combined Compression and Flexure:

The interaction of compression and bending are included in the form for two conditions based on the size of the required axial force to the available axial strength. This is notated as P_r (either P from ASD or P_u from LRFD) for the axial force being supported, and P_c (either P_n/Ω for ASD or $\phi_c P_n$ for LRFD). The increased bending moment due to the P- Δ effect must be determined and used as the moment to resist.

For
$$\frac{P_{r}}{P_{c}} \ge 0.2$$
: $\frac{P}{P_{n/\Omega}} + \frac{8}{9} \left(\frac{M_{x}}{M_{nx/\Omega}} + \frac{M_{y}}{M_{ny/\Omega}} \right) \le 1.0$ $\frac{P_{u}}{\phi_{c} P_{n}} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_{b} M_{nx}} + \frac{M_{uy}}{\phi_{b} M_{ny}} \right) \le 1.0$ (ASD) (LRFD)

For $\frac{P_{r}}{P_{c}} < 0.2$: $\frac{P}{2P_{n/\Omega}} + \left(\frac{M_{x}}{M_{nx/\Omega}} + \frac{M_{y}}{M_{ny/\Omega}} \right) \le 1.0$ $\frac{P_{u}}{2\phi_{c} P_{n}} + \left(\frac{M_{ux}}{\phi_{b} M_{nx}} + \frac{M_{uy}}{\phi_{b} M_{ny}} \right) \le 1.0$ (ASD) (LRFD)

where:

 $\begin{array}{ll} \text{for compression} & & \varphi_c = 0.90 \; (LRFD) & & \Omega = 1.67 \; (ASD) \\ \text{for bending} & & \varphi_b = 0.90 \; (LRFD) & & \Omega = 1.67 \; (ASD) \end{array}$

For a <u>braced</u> condition, the moment magnification factor B_I is determined by $B_1 = \frac{C_m}{1 - \alpha (P_u/P_{el})} \ge 1.0$ where C_m is a modification factor accounting for end conditions

When not subject to transverse loading between supports in plane of bending:

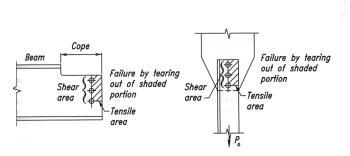
= 0.6 - 0.4 (M₁/M₂) where M₁ and M₂ are the end moments and M₁<M₂. M₁/M₂ is positive when the member is bent in reverse curvature (same direction), negative when bent in single curvature.

When there is transverse loading between the two ends of a member:

= 0.85, members with restrained (fixed) ends

= 1.00, members with unrestrained ends

 $P_{e1} = \frac{\pi^2 EA}{\left(\frac{Kl}{r}\right)^2}$


 $\alpha = 1.00 \text{ (LRFD)}, 1.60 \text{ (ASD)}$

 P_{e1} = Euler buckling strength

Criteria for Design of Connections

Connections must be able to transfer any axial force, shear, or moment from member to member or from beam to column.

Connections for steel are typically high strength bolts and electric arc welds. Recommended practice for ease of construction is to specified *shop welding* and *field bolting*.

Small tension force

Large shear force

(a)

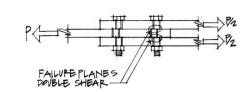
Small tension

Po

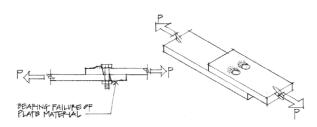
Small shear force

(b)

Fig. C-J4.1. Failure for block shear rupture limit state.


Fig. C-J4.2. Block shear rupture in tension.

Bolted and Welded Connections


The limit state for connections depends on the loads:

- 1. tension yielding
- 2. shear yielding
- 3. bearing yielding
- 4. bending yielding due to eccentric loads
- 5. rupture

Welds must resist shear stress. The design strengths depend on the weld materials.

FAILURE PLANE IN SINGLE SHEAR

Bolted Connection Design

Bolt designations signify material and type of connection where

SC: slip critical

N: bearing-type connection with bolt threads included in shear plane

X: bearing-type connection with bolt threads excluded from shear plane

A307: similar in strength to A36 steel (also known as ordinary, common or unfinished bolts)

A325: high strength bolts (Group A)

A490: high strength bolts (higher than A325) (Group B)

Bearing-type connection: no frictional resistance in the contact surfaces is assumed and slip between members occurs as the load is applied. (Load transfer through bolt only).

Slip-critical connections: bolts are torqued to a high tensile stress in the shank, resulting in a clamping force on the connected parts. (Shear resisted by clamping force). Requires inspections and is useful for structures seeing dynamic or fatigue loading. Class A indicates the *faying* (contact) surfaces are clean mill scale or adequate paint system, while Class B indicates blast cleaning or paint for $\mu = 0.50$.

Bolts rarely fail in bearing. The material with the hole will more likely yield first.

For the determination of the net area of a bolt hole the width is taken as 1/16" greater than the nominal dimension of the hole. Standard diameters for bolt holes are 1/16" larger than the bolt diameter. (This means the net width will be 1/8" larger than the bolt.)

Design for Bolts in Bearing, Shear and Tension

Available shear values are given by bolt type, diameter, and loading (Single or Double shear) in AISC manual tables. Available shear value for slip-critical connections are given for limit states of serviceability or strength by bolt type, hole type (standard, short-slotted, long-slotted or oversized), diameter, and loading. Available tension values are given by bolt type and diameter in AISC manual tables.

Available bearing force values are given by bolt diameter, ultimate tensile strength, F_u , of the connected part, and thickness of the connected part in AISC manual tables.

For shear OR tension (same equation) in bolts:

$$R_a \le R_n / \Omega$$
 or $R_u \le \phi R_n$
where $R_u = \sum \gamma_i R_i$

- single shear (or tension) $R_n = F_n A_b$
- double shear $R_n = F_n 2A_b$

where $\phi =$ the resistance factor

 $F_n = \ the \ nominal \ tension \ or \ shear \ strength \ of \ the \ bolt$

 A_b = the cross section area of the bolt

$$\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$$

For bearing of plate material at bolt holes:

$$R_a \le R_n / \Omega$$
 or $R_u \le \phi R_n$
where $R_u = \Sigma \gamma_i R_i$

• deformation at bolt hole is a concern

$$R_n = 1.2L_c t F_u \le 2.4 dt F_u$$

• deformation at bolt hole is not a concern

$$R_n = 1.5 L_c t F_u \le 3.0 dt F_u$$

• long slotted holes with the slot perpendicular to the load

$$R_n = 1.0 L_c t F_u \le 2.0 dt F_u$$

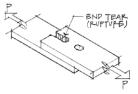


Figure 10.11 End tear-out

where R_n = the nominal bearing strength

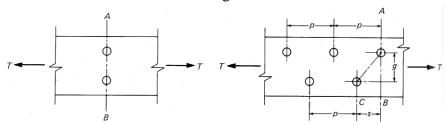
 F_u = specified minimum tensile strength

 L_c = clear distance between the edges of the hole and the next hole or edge in

the direction of the load nominal bolt diameter

t = thickness of connected material

 $\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$


The *minimum* edge desistance from the center of the outer most bolt to the edge of a member is generally 13/4 times the bolt diameter for the sheared edge and 11/4 times the bolt diameter for the rolled or gas cut edges.

The maximum edge distance should not exceed 12 times the thickness of thinner member or 6 in.

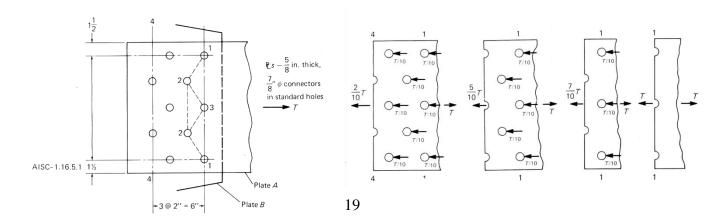
Standard bolt hole spacing is 3 in. with the minimum spacing of $2\frac{2}{3}$ times the diameter of the bolt, d_b . Common edge distance from the center of last hole to the edge is $1\frac{1}{4}$ in..

Tension Member Design

In steel tension members, there may be bolt holes that reduce the size of the cross section.

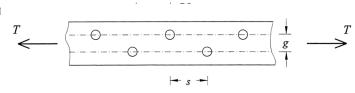
g refers to the row spacing or gage

p refers to the bolt spacing or pitch


s refers to the longitudinal spacing of two consecutive holes

Effective Net Area:

The smallest effective are must be determined by subtracting the bolt hole areas. With staggered holes, the shortest length must be evaluated.


A series of bolts can also transfer a portion of the tensile force, and some of the effective net areas see reduced stress.

The effective net area, A_e , is determined from the net area, A_n , multiplied by a shear lag factor, U, which depends on the element type and connection configuration. If a portion of a connected member is not fully connected (like the leg of an angle), the unconnected part is not subject to the

full stress and the shear lag factor can range from The staggered hole path area is determined by:

$$A_n = A_g - A_{of \ all \ holes} + t\Sigma \frac{s^2}{4g}$$

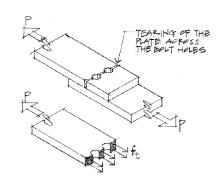
where t is the plate thickness, s is each stagger spacing, and g is the gage spacing.

For tension elements:

$$R_a \le R_n / \Omega$$
 or $R_u \le \phi R_n$
where $R_u = \sum \gamma_i R_i$

1. yielding
$$R_{n} = F_{y}A_{g}$$

$$\phi = 0.90 \text{ (LRFD)} \qquad \Omega = 1.67 \text{ (ASD)}$$


2. rupture
$$R_n = F_u A_e$$

$$\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$$

where A_g = the gross area of the member (excluding holes)

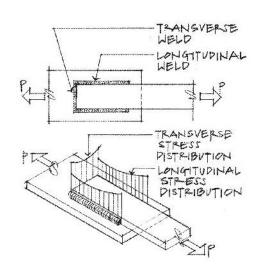
 A_e = the effective net area (with holes, etc.)

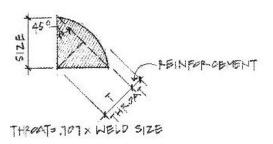
 F_y = the yield strength of the steel

 F_u = the tensile strength of the steel (ultimate)

Welded Connections

Weld designations include the strength in the name, i.e. E70XX has Fy = 70 ksi. Welds are weakest in shear and are assumed to always fail in the shear mode.


The throat size, T, of a fillet weld is determined trigonometry by: $T = 0.707 \times \text{weld size}^*$


* When the submerged arc weld process is used, welds over 3/8" will have a throat thickness of 0.11 in. larger than the formula.

Weld sizes are limited by the size of the parts being put together and are given in AISC manual table J2.4 along with the allowable strength per length of fillet weld, referred to as *S*.

The *maximum* size of a fillet weld:

- a) can't be greater than the material thickness if it is ¼" or less
- b) is permitted to be 1/16" less than the thickness of the material if it is over 1/4"

The *minimum length* of a fillet weld is 4 times the nominal size. If it is not, then the weld size used for design is 1/4 the length.

Intermittent fillet welds cannot be less than four times the weld size, not to be less than $1 \frac{1}{2}$ ".

TABLE J2.4 Minimum Size of Fillet Welds

Material Thickness of Thicker	Minimum Size of Fillet
Part Joined (in.)	Weld ^a (in.)
To 1/4 inclusive	1/8
Over 1/4 to 1/2	3/ ₁₆
Over ½ to ¾	1/4
Over ¾	5/16

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

For fillet welds:

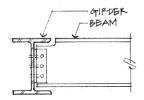
$$R_a \le R_n / \Omega$$
 or $R_u \le \phi R_n$
where $R_u = \sum \gamma_i R_i$

for the weld metal:
$$R_n = 0.6F_{EXX}Tl = Sl$$

$$\phi = 0.75 \text{ (LRFD)}$$
 $\Omega = 2.00 \text{ (ASD)}$

where:

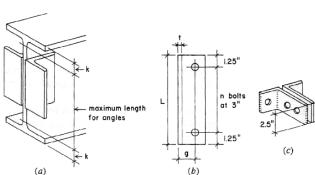
T is throat thickness l is length of the weld


For a connected part, the other limit states for the base metal, such as tension yield, tension rupture, shear yield, or shear rupture **must** be considered.

Available	Strength of Fil	llet Welds
per	r inch of weld (φS)
Weld Size	E60XX	E70XX
(in.)	(k/in.)	(k/in.)
$\frac{3}{16}$	3.58	4.18
1/4	4.77	5.57
5/ ₁₆	5.97	6.96
3/8	7.16	8.35
7/16	8.35	9.74
1/2	9.55	11.14
5/8	11.93	13.92
3/4	14.32	16.70

(not considering increase in throat with submerged arc weld process)

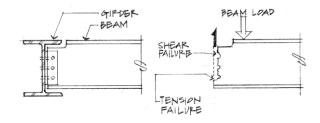
Framed Beam Connections


Coping is the term for cutting away part of the flange to connect a beam to another beam using welded or bolted angles.

AISC provides tables that give bolt and angle available strength knowing number of bolts, bolt type, bolt diameter, angle leg thickness, hole type and coping, and the wide flange beam being connected. For the connections the limit-state of bolt shear, bolts bearing on the angles, shear yielding of the angles, shear rupture of the angles, and block shear rupture of the angles, and bolt bearing on the beam web are considered.

Group A bolts include A325, while Group B includes A490.

There are also tables for bolted/welded double-angle connections and all-welded double-angle connections.


Sample AISC Table for Bolt and Angle Available Strength in All-Bolted Double-Angle Connections

Be √ ₂	= 65 ksi	(D)	₹	<u></u>		g g	200	Bolted Double-A		All-Bolted Double-Angle	<u>e</u>	716 X2	$\frac{3}{4}$ -in.	<u>:</u>
					ŏ	Connections	ec	Ę	ns	,			Bolts	ts
Ę,	= 58 ksi	100	The second	016 91	9	off and	Angle	Availab	le Stre	Bolt and Angle Available Strength, kips	ips	76		
4	4 Rows	Rolf	É	Throad	ž	Holo	o la	3	Ā	Angle Thickness, in.	ckness	Ē	Rowe	
3	9	Group		Cond.	= =	Ne	0.5	1/4	_	5/16		3/8		1/2
W24, 2	WZ4, Z1, 18, 16	0.8%		0.84	3383	425	ASD	ASD LRFD		ASD LRFD	1111111			
				z >	is is	E E	67.1	5 5	83.9	126	95.5	143	95.5	243
					ا د	O LE	- 70	-						
		2	S	SC	n C	ONS ONS	73.1	-		64.5	14.8		30.6	
1	-	dioup A	Clar	Class A	٠ <i>٢</i>	SSIT	20.5	75.9	8.306	75.9				- 1
				83	5 0	STO	67.1	101	1 57%	126		_		-
	ceic		ν <u>ς</u>	25	0	SAO	65.3	97.9		108	71.9	108	71.9	108
1	1		Clas	Class B	જ	SSLT	65.8	98.7	82.2	123	84.4		84.4	
	2			Z	S	STD	67.1	101	83.9	126	101	151	120	180
6-1					S	STD	67.1	101	43.4	126		디	134	2
· ·	7		S	SC	တ	STD	63.3	94.9	200	94.9	200		63.3	
-7		Group	Clas	Class A	o ۶	SAC	53.9	80.7	53.9	80.7	53.9	80.7	53.9	80.7
		۵			5 0	STD	67.1	101	17	126		151	-	
			S	SC	, č	SNO	65.3	97.9	And be	122	8		8 9	
			Clas	Class B	8	SSLT	65.8	- (5)	-	123	98.7		105	
		æ	am We	b Avail	able S	rength	per	ch Thic	kness,	Beam Web Available Strength per Inch Thickness, kips/in.				
'	1122			S	STD		L	0	OVS		L	SSLI	5	
	Hole Type			3	1 5			Leh	Leh*, in.					
	1		5	11/2	÷	13/4	-	11/2	-	13/4	=	11/2	-	13/4
	7 m.	CRA	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
0		11/4	167	250	175	262	156	234	164	246	164	245	172	257
		13/8	169	254	171	566	158	238	167	220	166	249	174	261
obec Cobec	Coped at Top	11/2	171	257	180	569	161	241	169	254	168	253	177	265
Pang	Hange Only	15/8	174	261	182	273	1 63	245	17	257	=	526	179	268
		7	18	272	189	284	1	256	179	268	178	267	186	279
	28	9	501	30	500	313	96	285	198	297	138	596	506	309
		1,4	120	234	156	234	146	219	146	219	126	234	126	234
	6	13/8	19	241	191	241	151	227	151	227	161	241	161	241
20 i	Coped at Both	11/2	166	249	166	249	126	234	126	234	166	249	166	249
Fla	Hanges	15/8	1	256	171	256	161	241	191	241	171	526	171	256
		7	181	272	185	278	171	256	176	263	178	267	185	278
		က	201	301	209	313	190	285	198	297	198	596	206	309
	Uncoped	37.6	234	351	234	351	234	351	234	351	234	351	234	351
Supr St Inch	Support Available Strength per Inch Thickness,	e ,	Notes: STD = OVS = SSLT =	STD = Standard holes OVS = Oversized holes SLT = Short-slotted h	rd holes ed holes lotted ho	Notes: STD = Standard holes OVS = Oversized holes SSLT = Short-slotted holes transverse	sverse		N = T N = T N = T	N = Threads included X = Threads excluded SC = Slip critical	cluded			
	kips/in.			to direc	to direction of load	ad	è		10 (3.6)					
Hole	ASD	LRFD	* Tabul	ated valu	ues inclu	ide 1/4-in	. reducti	ion in en	d distan	Tabulated values include ¹ /4-in. reduction in end distance, L _{en} , to account for possible	o accour	nt for pos	ssible	340F
STD/ OVS/	468	702	Note: S been a	onerium in beam lengur. ote: Slip-critical bolt value een added to distribute lo	al bolt v distribute	underfulf in Deall religion. Note: Slip-critical bolt values assume no mo been added to distribute loads in the fillers.	sume no n the fills	o more the	an one	Universities and reads resulted for the control of	peen pr	ovided o	r bolts h	ave
5	THE REAL PROPERTY.													

Limiting Strength or Stability States

In addition to resisting shear and tension in bolts and shear in welds, the connected materials may be subjected to shear, bearing, tension, flexure and even prying action. Coping can significantly reduce design strengths and may require web reinforcement. All the following must be considered:

- shear yielding
- shear rupture
- block shear rupture failure of a block at a beam as a
 result of shear and tension
- · tension yielding
- tension rupture
- local web buckling
- lateral torsional buckling

Block Shear Strength (or Rupture):

$$R_a \le R_n / \Omega$$
 or $R_u \le \phi R_n$
where $R_u = \sum \gamma_i R_i$

$$R_n = 0.6F_u A_{nv} + U_{bs} F_u A_{nt} \le 0.6F_y A_{gv} + U_{bs} F_u A_{nt}$$

 $\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$

where:

 A_{nv} is the net area subjected to shear

 A_{nt} is the net area subjected to tension

 A_{gv} is the gross area subjected to shear

 $U_{bs} = 1.0$ when the tensile stress is uniform (most cases)

= 0.5 when the tensile stress is non-uniform

Gusset Plates

Gusset plates are used for truss member connections where the geometry prevents the members from coming together at the joint "point". Members being joined are typically double angles.

Decking

Shaped, thin sheet-steel panels that span several joists or evenly spaced support behave as continuous beams. Design tables consider a "1 unit" wide strip across the supports and determine maximum bending moment and deflections in order to provide allowable loads depending on the depth of the material.

The other structural use of decking is to construct what is called a *diaphragm*, which is a horizontal unit tying the decking to the joists that resists forces parallel to the surface of the diaphragm.

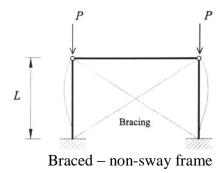
When decking supports a concrete topping or floor, the steel-concrete construction is called *composite*.

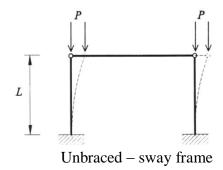
Frame Columns

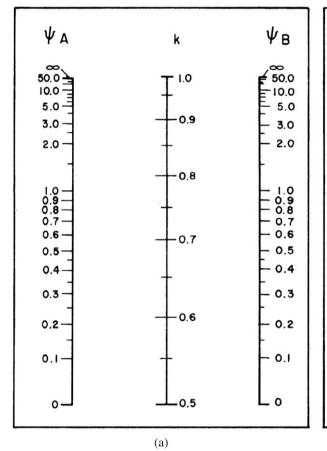
Because joints can rotate in frames, the effective length of the column in a frame is harder to determine. The stiffness (EI/L) of each member in a joint determines how rigid or flexible it is. To find k, the relative stiffness, G or Ψ , must be found for both ends, plotted on the alignment charts, and connected by a line for braced and unbraced fames.

$$G = \Psi = \frac{\sum \frac{EI}{l_c}}{\sum \frac{EI}{l_b}}$$

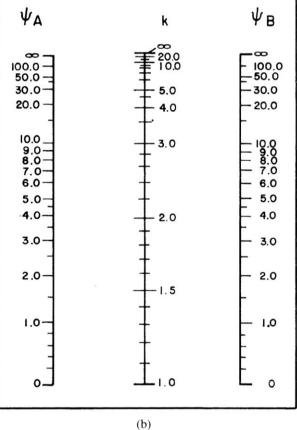
where


E = modulus of elasticity for a member


I = moment of inertia of for a member

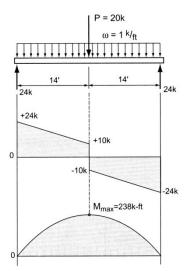

 l_c = length of the column from center to center

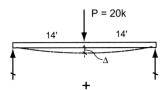
 $l_{\rm b}$ = length of the beam from center to center

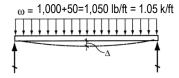

- For pinned connections we typically use a value of 10 for Ψ .
- For fixed connections we typically use a value of 1 for Ψ .

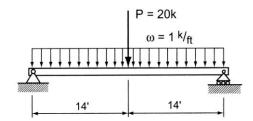
Nonsway Frames

Sway Frames

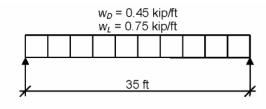

Example 1 (pg 330)


*Hypothetically determine the size of section required when the deflection criteria is NOT met


Example Problem 9.16 (Figures 9.76 to 9.78)


A steel beam (A572/50) is loaded as shown. Assuming a deflection requirement of $\Delta_{\rm total}$ = L/240 and a depth restriction of 18" nominal, select the most economical section. (unified ASD)

$$F_b = 30 \text{ ksi}$$
; $F_v = 20 \text{ ksi}$; $E = 30 \times 10^3 \text{ ksi}$ $F_v = 50 \text{ ksi}$



Given:

Select an ASTM A992 W-shape beam with a simple span of 35 feet. Limit the member to a maximum nominal depth of 18 in. Limit the live load deflection to L/360. The nominal loads are a uniform dead load of 0.45 kip/ft and a uniform live load of 0.75 kip/ft. Assume the beam is continuously braced. Use ASD of the Unified Design method.

Beam Loading & Bracing Diagram (full lateral support)

Solution:

Material Properties:

ASTM A992

 $F_v = 50 \text{ ksi}$

 $F_u = 65 \text{ ksi}$

- 1. The unbraced length is 0 because it says it is fully braced.
- 2. Find the maximum shear and moment from unfactored loads:

 $w_a = 0.450 \text{ k/ft} + 0.750 \text{ k/ft} = 1.20 \text{ k/ft}$

 $V_a = 1.20 \text{ k/ft}(35 \text{ ft})/2 = 21 \text{ k}$

 $M_a = 1.20 \text{ k/ft}(35 \text{ ft})^2/8 = 184 \text{ k-ft}$

If $M_a \le M_n/\Omega$, the maxmimum moment for design is $M_a\Omega$: $M_{max} = 184$ k-ft

3. Find Zreg'd:

 $Z_{\text{reg'd}} \ge M_{\text{max}}/F_b = M_{\text{max}}/\Omega)/F_v = 184 \text{ k-ft}(1.67)(12 \text{ in/ft})/50 \text{ ksi} = 73.75 \text{ in}^3 (F_v \text{ is the limit stress when fully braced})$

4. Choose a trial section, and also limit the depth to 18 in as instructed:

W18 x 40 has a plastic section modulus of 78.4 in³ and is the most light weight (as indicated by the bold text) in Table 9.1

Include the self weight in the maximum values:

 $w^*_{a-adjusted} = 1.20 \text{ k/ft} + 0.04 \text{ k/ft}$

 $V_{a-adjusted}^* = 1.24 \text{ k/ft}(35 \text{ ft})/2 = 21.7 \text{ k}$

 $M^*_{a-adjusted} = 1.24 \text{ k/ft}(35 \text{ ft})^3/8 = 189.9 \text{ k}$

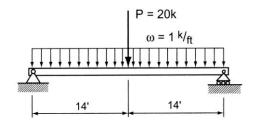
 $Z_{req'd} \ge 189.9 \text{ k-ft}(1.67)(12 \text{ in/ft})/50 \text{ ksi} = 76.11 \text{ in}^3$ And the Z we have (78.4) is larger than the Z we need (76.11), so OK.

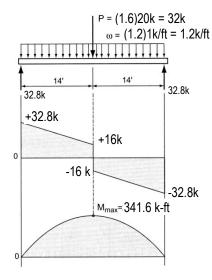
Evaluate shear (is V_a ≤ V₀/Ω): A_w = dt_w so look up section properties for W18 x 40: d = 17.90 in and t_w = 0.315 in

 $V_n/\Omega = 0.6F_{yy}A_{yy}/\Omega = 0.6(50 \text{ ksi})(17.90 \text{ in})(0.315 \text{ in})/1.5 = 112.8 \text{ k which is much larger than } 21.7 \text{ k, so OK}$.

9. Evaluate the deflection with respect to the limit stated of L/360 for the live load. (If we knew the **total** load limit we would check that as well). The moment of inertia for the W18 x 40 is needed. I_x = 612 in⁴

 Δ live load limit = 35 ft(12 in/ft)/360 = 1.17 in


 Δ = 5wL⁴/384EI = 5(0.75 k/ft)(35 ft)⁴(12 in/ft)³/384(29 x 10³ ksi)(612 in⁴) = 1.42 in! This is TOO BIG (not less than the limit. Find the moment of inertia needed:


$$I_{\text{req'd}} \ge \Delta_{\text{too big}} (I_{\text{trial}}) / \Delta_{\text{limit}} = 1.42 \text{ in} (612 \text{ in}^4) / (1.17 \text{ in}) = 742.8 \text{ in}^4$$

From Table 9.1, a W16 x 45 is larger (by Z), but not the most light weight (efficient), as is W10 x 68, W14 x 53, W18 x 46, (W21 x 44 is too deep) and W18 x 50 is bolded (efficient). (Now look up I's). (In order: $I_x = 586$, 394, 541, 712 and 800 in⁴)

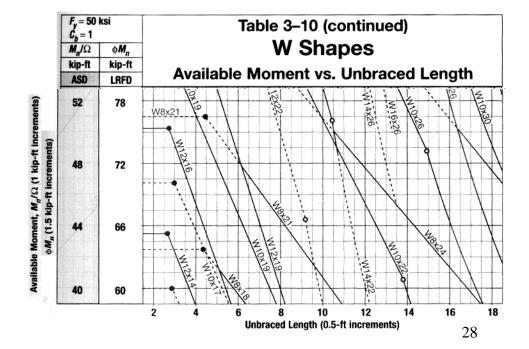
Choose a W18 x 50

For the same beam and loading of Example 1, select the most economical beam using Load and Resistance Factor Design (LRFD) with the 18" depth restriction. Assume the distributed load is dead load, and the point load is live load. $F_v = 50$ ksi and $E = 30 \times 10^3$ ksi

- To find V_{u-max} and M_{u-max}, factor the loads, construct a *new* load diagram, shear diagram and bending moment diagram.
- 2. To satisfy $M_u \le \phi_b M_{n}$, we find $M_n = \frac{M_u}{\phi_b} = \frac{341.6^{k-ft}}{0.9} = 379.6^{k-ft}$ and solve for Z needed: $Z = \frac{M_n}{F_v} = \frac{379.6^{k-ft}(12\frac{in}{ft})}{50ksi} = 91.1in^3$
 - Choose a *trial* section from the <u>Listing of W Shapes in Descending Order of Z</u> by selecting the **bold** section at the top of the grouping satisfying our Z and depth requirement W18 x 50 is the *lightest* with Z = 101 in³. (W22 x 44 is the lightest without the depth requirement.) Include the additional self weight (dead load) and find the maximum shear and bending moment:

$$\begin{split} &V_{u-adjusted}^* = 32.8k + \frac{1.2(50^{\,lb}/_{fi})28\,ft}{2(1000^{\,lb}/_{k})} = 33.64k \\ &M_{u-adjusted}^* = 341.6^{k-ft} + \frac{1.2(50^{\,lb}/_{fi})(28\,ft\,)^2}{8(1000^{\,lb}/_{k})} = 347.5^{k-ft} \\ &Z_{req'd}^* \geq \frac{M_u}{\phi_b F_v} = \frac{347.5^{k-ft}(12^{\,in}/_{fi})}{0.9(50ksi)} = 92.7in^3 \text{ , so Z (have) of 101 in}^3 \text{ is greater than the Z (needed)}. \end{split}$$

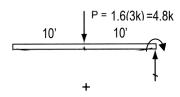
- 3. Check the shear capacity to satisfy $V_u \le \phi_v V_n$: $A_{web} = dt_w$ and d=17.99 in., $t_w = 0.355$ in. for the W18x50 $\phi_v V_n = \phi_v 0.6 F_{vv} A_w = 1.0(0.6)50 ksi(17.99in)0.355in = 191.6k$ So 33.64k \le 191.6 k OK
- 4. Calculate the deflection from the *unfactored* loads, including the self-weight now because it is known, and satisfy the deflection criteria of Δ_{LL}≤Δ_{LL-limit} and Δ_{total}≤Δ_{total-limit}. (This is <u>identical</u> to what is done in Example 1.) I_x =800 in³ for the W18x50


$$\Delta_{\text{total-limit}}$$
 = L/240 = 1.4 in., say Δ_{LL} = L/360 = 0.93 in

$$\Delta_{total} = \frac{PL^3}{48EI} + \frac{5wL^4}{384EI} = \frac{20k(28ft)^3(12^{in}/f_t)^3}{48(30x10^3ksi)800in^4} + \frac{5(1.050^{k/f_t})(28ft)^4(12^{in}/f_t)^3}{384(30x10^3ksi)800in^4} = 0.658 + 0.605 = 1.26in$$

So 1.26 in. \leq 1.4 in., and 0.658 in. \leq 0.93 in. OK

.: FINAL SELECTION IS W18x50


A steel beam with a 20 ft span is designed to be simply supported at the ends on columns and to carry a floor system made with open-web steel joists at 4 ft on center. The joists span 28 feet and frame into the beam from *one side only* and have a self weight of 8.5 lb/ft. Use A992 (grade 50) steel and select the most economical wide-flange section for the beam with LRFD design. Floor loads are 50 psf LL and 14.5 psf DL.

Select a A992 W shape flexural member ($F_y = 50$ ksi, $F_u = 65$ ksi) for a beam with distributed loads of 825 lb/ft (dead) and 1300 lb/ft (live) and a live point load at midspan of 3 k using the Available Moment tables. The beam is simply supported, 20 feet long, and braced at the ends and midpoint only ($L_b = 10$ ft.) The beam is a roof beam for an institution without plaster ceilings. (LRFD)

SOLUTION:

To use the Available Moment tables, the maximum moment required is plotted against the unbraced length. The first solid line with capacity or unbraced length *above* what is needed is the most economical.

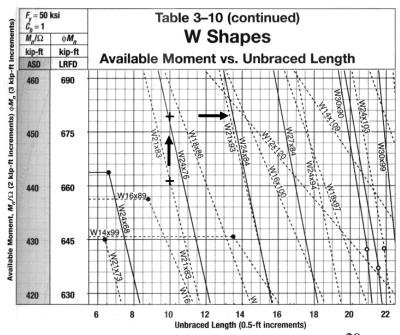
w = 1.2(825 lb/ft) + 1.6(1300 lb/ft) = 3.07 k/ft

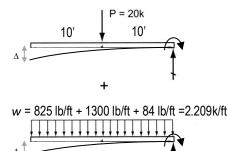
DESIGN LOADS (load factors applied on figure):

$$M_{u} = \frac{wl^{2}}{2} + Pb = \frac{3.07 \frac{k}{ft} (20 ft)^{2}}{2} + 4.8k(10 ft) = 662^{k-ft} \quad V_{u} = wl + P = 3.07 \frac{k}{ft} (20 ft) + 4.8k = 66.2k$$

Plotting 662 k-ft vs. 10 ft lands just on the capacity of the W21x83, but it is dashed (and not the most economical) AND we need to consider the contribution of self weight to the total moment. Choose a *trial* section of W24 x 76. Include the new dead load:

$$M_{u-adjusted}^* = 662^{k-ft} + \frac{1.2(76^{lb}/ft)(20ft)^2}{2(1000^{lb}/k)} 680.2^{k-ft} \qquad V_{u-adjusted}^* = 66.2k + 1.2(0.076^{k}/ft)(20ft) = 68.0k$$

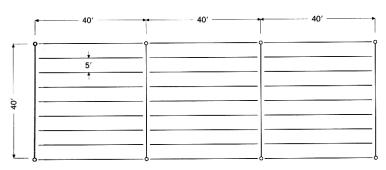

Replot 680.2 k-ft vs. 10ft, which lands *above* the capacity of the W21x83. We can't look up because the chart ends, but we can look for that capacity with a longer unbraced length. This leads us to a **W24** x **84** as the most economical. (With the additional self weight of 84 - 76 lb/ft = 8 lb/ft, the increase in the *factored* moment is only 1.92 k-ft; therefore, it is still OK.)


Evaluate the shear capacity:

$$\phi_v V_n = \phi_v 0.6 F_{vw} A_w = 1.0(0.6) 50 ksi(24.10 in) 0.47 in = 338.4 k$$
 so yes, 68 k \leq 338.4 k OK

Evaluate the deflection with respect to the limits of L/240 for live (unfactored) load and L/180 for total (unfactored) load: L/240 = 1 in. and L/180 = 1.33 in.

$$\Delta_{total} = \frac{Pb^2(3l-b)}{6EI} + \frac{wL^4}{24EI} = \frac{3k(10ft)^2(3\cdot20-10ft)(12\frac{i\eta_{ft}}{f})^3}{6(30x10^3ksi)2370in^4} + \frac{(2.209^{\frac{k}{ft}})(20ft)^4(12\frac{i\eta_{ft}}{f})^3}{24(30x10^3ksi)2370in^4} = 0.06 + 0.36 = 0.42in$$


So, $\Delta_{LL} \leq \Delta_{LL-limit}$ and $\Delta_{total} \leq \Delta_{total-limit}$:

 $0.06 \text{ in.} \le 1 \text{ in.}$ and $0.42 \text{ in.} \le 1.33 \text{ in.}$

(This section is so big to accommodate the large bending moment at the cantilever support that it deflects very little.)

∴ FINAL SELECTION IS W24x84

Select the most economical joist for the 40 ft grid structure with floors and a flat roof. The roof loads are 10 lb/ft² dead load and 20 lb/ft² live load. The floor loads are 30 lb/ft² dead load 100 lb/ft² live load. (Live load deflection limit for the roof is L/240, while the floor is L/360). Use the (LRFD) K and LH series charts provided.

Figure 7.218 Framing plan for joists, girders, and columns on 40 ft \times 40 ft grid.

(Top values are maximum total factored load in lb/ft, while the lower (lighter) values are maximum (unfactored) live load for a deflection of L/360)

			Ва	sed or										TS, K-S nds per			(plf)				
Joist Designation	18K3	18K4	18K5	18K6	18K7	18K9	18K10	20K3	20K4	20K5	20K6	20K7	20K9	20K10	22K4	22K5	22K6	22K7	22K9	22K10	22K11
Depth (In.)	18	18	18	18	18	18	18	20	20	20	20	20	20	20	22	22	22	22	22	22	22
Approx. Wt. (lbs./ft.)	6.6	7.2	7.7	8.5	9	10.2	11.7	6.7	7.6	8.2	8.9	9.3	10.8	12.2	8	8.8	9.2	9.7	11.3	12.6	13.8
Span (ft.)																					
38								211 74	255 87	286 98	312 106	348 118	418 139	496 164	280 107	316 119	345 130	384 144	462 170	549 200	628 228
39								199 69	241 81	271 90	297 98	330 109	397 129	471 151	267 98	300 110	327 120	364 133	438 157	520 185	595 211
40								190 64	229 75		282 91	313 101	376 119	447 140	253 91	285 102	310 111	346 123	417 146	495 171	565 195
41								04	70	04		101	110	140	241	271 95	295	330 114	396 135	471 159	538 181
Joist		4K4	24K5	24	/6	24K7	24K8	241	V0	24K10	24K1	2 /	26K5	26K6	26K		26K8	26K9		K10	26K12
Designation Depth (In.)		24	245	241		24 24	2400	241		24 24	241	2 4	26	26	26		26	26		26	26
Approx. Wt. (lbs./ft.)		8.4	9.3	9.		10.1	11.5	12		13.1	16.0		9.8	10.6	10.9		12.1	12.2		3.8	16.6
Span (ft.)																					
38		307 128	346 143	37 15	-	421 172	465 189	50 20		601 240	691 275		376 169	411 184	457		505 223	550 241	_	54 84	691 299
39	2	292	328 132	35	18	399 159	441 174	48	30	570 222	673 261		357 156	390 170	433	3	480 206	522 223	6	19	673 283
40	2	277	312	34	10	379	420	45	56	541	657		340	370	412	2	456	496	5	89	657
41	2	109 264	122 297	13	4	148 361	161 399	43	35	206 516	247 640		145 322	157 352	393	3	191 433	207 472	5	43 61	269 640
	1	101	114	12	.4	137	150	16	2	191	235		134	146	162	2	177	192	2	25	256
Joist Designation	1	28K6	28	3K7	28	< 8	28K9	28	3K10	28K	12	30K	7	30K8	30	K9	30K	10	30K11	3	0K12
Depth (In.) Approx. Wt		28 11.4		28	12		28		28	28		30		30		0	30 15.		30		30
(lbs./ft.) Span (ft.)		11.4	+ '	1.8	12	.1	13.0	+ '	14.3	17	.1	12.	3	13.2	13	3.4	15.		16.4		17.6
38		444 214		93 37	54 26		594 282		691 325	69		531 274		586 300		39 25	691 353		691 353		691 353
39		420 198	4	69 19	51 24	9	564 260	6	670 306	67 30	3	504 253		556 277	6	06	673 333	3	673 333		673 333
40		399 183	4	45 03	49	2	535 241	6	636 284	65 29	7	478 234	3	529 256	5	76 78	657 315	7	657 315		657 315
41		379 170	4	24 89	46 20	8	510 224	6	606 263	64 27	0	454 217		502 238	5-		640)	640 300		640 300

Example 6 (continued)

(Top values are maximum total factored load in lb/ft, while the lower (lighter) values are maximum (unfactored) live load for a deflection of L/360)

Joist	Approx. Wt in Lbs. Per	Depth in	SAFE LOAD* in Lbs.							CLE	AR SP	AN IN F	EET						
Designation	Linear Ft	inches	Between																_
	(Joists only)		22-24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	4
20LH02	10	20	16950	663	655	646	615	582	547	516	487	460	436	412	393	373	355	337	32
				306	303	298	274	250	228	208	190	174	160	147	136	126	117	108	10
20LH03	11	20	18000	703	694	687	678	651	621	592	558	528	499	474	448	424	403	382	36
				337	333	317	302	280	258	238	218	200	184	169	156	143	133	123	11
20LH04	12	20	22050	861	849	837	792	744	700	660	624	589	558	529	502	477	454	433	41
				428	406	386	352	320	291	265	243	223	205	189	174	161	149	139	12
20LH05	14	20	23700	924	913	903	892	856	816	769	726	687	651	616	585	556	529	504	48
				459	437	416	395	366	337	308	281	258	238	219	202	187	173	161	15
20LH06	15	20	31650	1233	1186	1144	1084	1018	952	894	840	790	745	703	666	631	598	568	54
				606	561	521	477	427	386	351	320	292	267	246	226	209	192	178	16
20LH07	17	20	33750	1317	1267	1221	1179	1140	1066	1000	940	885	834	789	745	706	670	637	60
				647	599	556	518	484	438	398	362	331	303	278	256	236	218	202	18
20LH08	19	20	34800	1362	1309	1263	1219	1177	1140	1083	1030	981	931	882	837	795	754	718	68
				669	619	575	536	500	468	428	395	365	336	309	285	262	242	225	20
20LH09	21	20	38100	1485	1429	1377	1329	1284	1242	1203	1167	1132	1068	1009	954	904	858	816	77
				729	675	626	581	542	507	475	437	399	366	336	309	285	264	244	22
20LH10	23	20	41100	1602	1542	1486	1434	1386	1341	1297	1258	1221	1186	1122	1060	1005	954	906	86
			1	786	724	673	626	585	545	510	479	448	411	377	346	320	296	274	25
0.41.1.10.0	44	04	17050	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	4
24LH03	11	24	17250	513 235	508	504	484	460	439	418	400	382 141	366 132	351 124	336	322	310 102	298 96	28
24LH04	12	24	21150	628	226 597	218 568	204 540	188 514	175 490	162 468	152 447	427	409	393	116 376	109 361	346	333	32
24LI104	12	24	21100	288	265	246	227	210	195	182	169	158	148	138	130	122	114	107	10
24LH05	13	24	22650	673	669	660	628	598	570	544	520	496	475	456	436	420	403	387	3
2-121100			LLCCC	308	297	285	264	244	226	210	196	182	171	160	150	141	132	124	1
24LH06	16	24	30450	906	868	832	795	756	720	685	655	625	598	571	546	522	501	480	46
				411	382	356	331	306	284	263	245	228	211	197	184	172	161	152	14
24LH07	17	24	33450	997	957	919	882	847	811	774	736	702	669	639	610	583	559	535	5
				452	421	393	367	343	320	297	276	257	239	223	208	195	182	171	16
24LH08	18	24	35700	1060	1015	973	933	895	858	817	780	745	712	682	652	625	600	576	55
0.41.1.10.0			10000	480	447	416	388	362	338	314	292	272	254	238	222	208	196	184	17
24LH09	21	24	42000	1248	1212	1177	1146	1096	1044 393	994 363	948 337	903	861 292	822 272	786 254	751 238	720 223	690 209	66
24LH10	23	24	44400	562 1323	530 1284	501 1248	460 1213	424 1182	1152	1105	1053	313 1002	955	912	873	834	799	766	73
24LH10	23	-4	44400	596	559	528	500	474	439	406	378	351	326	304	285	266	249	234	22
24LH11	25	24	46800	1390	1350	1312	1276	1243	1210	1180	1152	1101	1051	1006	963	924	885	850	8
	20		10000	624	588	555	525	498	472	449	418	388	361	337	315	294	276	259	24
			33-40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	5
28LH05	13	28	21000	505	484	465	445	429	412	397	382	367	355	342	330	319	309	298	28
	1.5			219	205	192	180	169	159	150	142	133	126	119	113	107	102	97	9
28LH06	16	28	27900	672	643	618	592	568	546	525	505	486	469	451	436	421	406	393	37
001 1107	17	-,,	21500	289	270	253	238	223	209	197	186	175	166	156	148	140	133	126	12
28LH07	17	28	31500	757 326	726 305	696 285	667 267	640 251	615 236	591 222	568 209	547 197	528 186	508 176	490 166	474 158	457 150	442 142	13
28LH08	18	28	33750	810	775	744	712	684	657	630	604	580	556	535	516	496	478	462	44
2021100			00700	348	325	305	285	268	252	236	222	209	196	185	175	165	156	148	14
28LH09	21	28	41550	1000	958	918	879	844	810	778	748	721	694	669	645	622	601	580	56
				428	400	375	351	329	309	291	274	258	243	228	216	204	193	183	17
28LH10	23	28	45450	1093	1056	1018	976	937	900	864	831	799	769	742	715	690	666	643	62
				466	439	414	388	364	342	322	303	285	269	255	241	228	215	204	19
28LH11	25	28	48750	1170	1143	1104	1066	1023	982	943	907	873	841	810	781	753	727	702	67
				498	475	448	423	397	373	351	331	312	294	278	263	249	236	223	2
28LH12	27	28	53550	1285	1255	1227	1200	1173	1149	1105	1063	1023	984	948	913	880	849	819	79
28LH13	00	-00	EECCO	545	520	496	476	454	435	408	383	361	340	321	303	285	270	256	24
	30	28	55800	1342	1311	1281	1252	1224	1198	1173	1149	1126	1083	1041	1002	964	930	897	86

Shaded areas indicate the bridging requirements.

Example 7 (LRFD)

EXAMPLE 5.1 Open-Web Steel Joist Design

A fully exposed roof system for a commercial building, spanning 35 ft, located in Muncie, Indiana, in an urban environment.

IBC specifies a **20 psf snow live load** for Muncie, Indiana, home of Ball State University. Table 1.3 indicates the snow exposure factor: $C_e = 0.9$. Table 1.4 indicates the snow thermal factor: $C_t = 1.0$. Table 1.7 indicates an occupancy importance factor (for Category II): $I_S = 1.0$. Fig. 1.2 indicates the ground snow load: $p_q = 20$ psf

$$P_S = 0.7(0.9)1.0(1.0)20 \text{ psf} = 13.9 \text{ psf}$$

A typical roof construction might consist of:

Membrane roofing 1.0 psf 4 in. average tapered rigid insulation 6.0 psf Steel deck (2–4 ft span) 1.0 psf

Estimated joist weight:

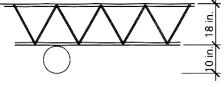
35 ft span would be a minimum 18 in. joist

An average 18 in. joist weight = 9.0 plf

Spaced @ 4 ft-0 in. o.c. 9.0 plf/4 ft 2.3 psf Ceiling suspension system 1.0 psf $\frac{1}{2}$ in. gypsum ceiling 2.0 psf

Mechanical system estimates should also be included; the heavy sprinkler/drain piping running parallel to a joist or pair of joists is especially critical.

Miscellaneous ductwork/electrical 1.0 psf

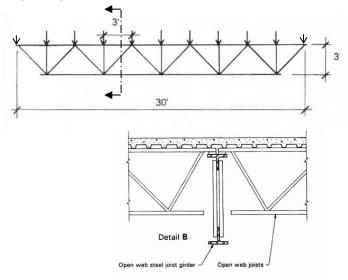

Total dead load 14.3 psf \times 4 ft o.c. = 57.2 plf Total live load 13.9 psf \times 4 ft o.c. = 55.6 plf

Total factored live snow load + dead load = 1.2(55.6) + 1.6(57.2) = 158.2 plf

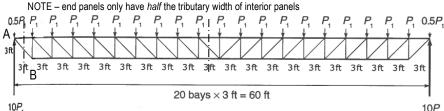
Use joist load tables to select the best section:

At 35 ft, 18K3 joists carry 237 plf TFL and 84 plf LL LL: deflection controls and the weight is 6.4 plf.

At least on the surface, this is the best choice, but depending upon the need to integrate mechanical systems into the joist space, a 20K3 at 6.5 plf or even a 22K4 at 7.3 plf which is both deeper and heavier than the previous selection may be best:

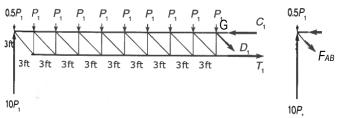


LRFD


		E	Based											STS, K ounds F			oot (p	lf)			
Joist Designation	18K3	18K4	18K5	18K6	18K7	18K9	18K10	20K3	20K4	20K5	20K6	20K7	20K9	20K10	22K4	22K5	22K6	22K7	22K9	22K10	22K11
Depth (In.)	18	18	18	18	18	18	18	20	20	20	20	20	20	20	22	22	22	22	22	22	22
Approx. Wt. (lbs./ft.)	6.4	7.2	7.7	8.4	8.9	10.1	11.6	6.5	7.2	7.7	8.4	8.9	10.1	11.6	7.3	7.7	8.5	9.0	10.2	11.7	11.9
Span (ft.) ↓																					
34	237	285	321	349	390	468	555	264	318	358	391	435	523	621	352	397	432	481	579	687	774
	84	98	110	120	132	156	184	105	122	137	149	165	195	229	149	167	182	202	239	280	314
35	223	268	303	330	367	441	523	249	300	339	369	411	493	585	331	373	408	454	546	648	741
	77	90	101	110	121	143	168	96	112	126	137	151	179	210	137	153	167	185	219	257	292

A floor with multiple bays is to be supported by open-web steel joists spaced at 3 ft. on center and spanning 30 ft. having a dead load of 70 lb/ft² and a live load of 100 lb/ft². The joists are supported on joist girders spanning 30 ft. with 3 ft.-long panel points (shown). Determine the member forces at the location shown in a horizontal chord and the maximum force in a web member for an interior girder. Use factored loads. Assume a self weight for the openweb joists of 12 lb/ft, and the self weight for the joist girder of 35 lb/ft.

A floor is to be supported by trusses spaced at 5 ft. on center and spanning 60 ft. having a dead load of 53 lb/ft² and a live load of 100 lb/ft². With 3 ft.-long panel points, the depth is assumed to be 3 ft with a span-to-depth ratio of 20. With 6 ft.-long panel points, the depth is assumed to be 6 ft with a span-to-depth ratio of 10. Determine the maximum force in a horizontal chord and the maximum force in a web member. Use factored loads. Assume a self weight of 40 lb/ft.


Table 7.2 Computation of Truss Joint Loads tributary widths Floor Factored Total Factored Node-Truss-Area Factored Load area loads Dead Live totoper 1.2 · P_{dead} + P_{dead} P_{live} Load Node Truss Node Load Wdead 1.2 · P_{dead} $1.6 \cdot P_{\text{live}}$ $1.6 \cdot P_{live}$ Spacing Spacing Α $(=w_{dead} \cdot A)$ $(=w_{live} \cdot A)$ (K) (K/ft^2) (ft) (ft^2) (K) (K) (K) (#/ft2) (K/ft^2) (#/ft2) (ft) (K) Truss 3 ft 3.35 + 0.14 = 3.490.100 5 15 0.795 1.50 0.954 2.40 53 0.053 100 3 deep 6 ft 1.59 3.00 1.908 4.80 6.71 + 0.29 = 7.00100 0.100 30 53 0.053 deep 3 self weight 0.04 k/ft (distributed) $1.2P_{\text{dead}} = 1.2w_{\text{dead}} \cdot tributary \ width = 0.14 \ \text{K}$ $1.2P_{\text{dead}} = 1.2w_{\text{dead}} \cdot tributary \ width = 0.29 \ \text{K}$

<u>FBD 3:</u> Maximum web force will be in the end diagonal (just like maximum shear in a beam)

$$\Sigma F_y = 10P_1 - 0.5P_1 - F_{AB} \cdot \sin 45^\circ = 0$$

 $F_{AB} = 9.5P_1/\sin 45^\circ = 9.5(3.49 \text{ k})/0.707 = 46.9 \text{ k}$

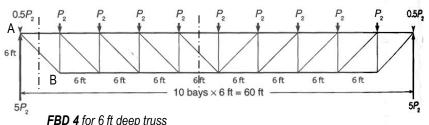
FBD 1 for 3 ft deep truss

FBD 2 of cut just to the left of midspan

FBD 3 of cut just to right of left support

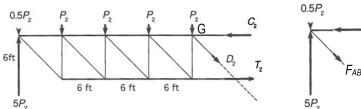
FBD 2: Maximum chord force (top or bottom) will be at midspan

$$\Sigma M_G = -9.5 P_1(27^{\hat{n}}) + P_1(24^{\hat{n}}) + P_1(21^{\hat{n}}) + P_1(18^{\hat{n}}) + P_1(15^{\hat{n}})$$


$$+ P_1(12^{\hat{n}}) + P_1(9^{\hat{n}}) + P_1(6^{\hat{n}}) + P_1(3^{\hat{n}}) + T_1(3^{\hat{n}}) = 0$$

$$T_1 = P_1(148.5^{\hat{n}})/3^{\hat{n}} = (3.49 \text{ k})(49.5) = 172.8 \text{ k}$$

$$\Sigma F_y = 10P_1 - 9.5P_1 - D_1 \cdot \sin 45^\circ = 0$$


 $D_1 = 0.5(3.49 \text{ k})/0.707 = 2.5 \text{ k}$ (minimum near midspan)

$$\Sigma F_x = -C_1 + T_1 + D_1 \cdot \cos 45^\circ = 0$$
 $C_1 = 174.5 \text{ k}$

<u>FBD 6:</u> Maximum web force will be in the end diagonal

$$\Sigma F_y = 5P_2 - 0.5P_2 - F_{AB} \cdot \sin 45^\circ = 0$$

 $F_{AB} = 4.5P_2 / \sin 45^\circ = 4.5(7 \text{ k}) / 0.707 = 44.5 \text{ k}$

FBD 5: Maximum chord (top or bottom) force will be at midspan

$$\Sigma M_G = -4.5P_2(24^{ft}) + P_2(18^{ft}) + P_2(12^{ft}) + P_2(6^{ft}) + T_2(6^{ft}) = 0$$

$$T_2 = P_2(72^{ft})/6^{ft} = (7 k)(12) = 84 k$$

$$\Sigma F_{v} = 5P_{2} - 4.5P_{1} - D_{s} \cdot \sin 45^{\circ} = 0$$

 $D_2 = 0.5(7 \text{ k})/0.707 = 4.9 \text{ k}$ (minimum near midspan)

FBD 5 of cut just to the left of midspan
FBD 6 of cut just to right
$$\Sigma F_x = -C_2 + T_2 + D_2 \cdot \cos 45^\circ = 0$$
 of left support

 $C_2 = 87.5 k$

Example 10 (pg 367) + LRFD Example Problem 10.10 (Figure 10.41)

A 24-ft.-tall, A572 grade 50, steel column (W14×82) with an F_y = 50 ksi has pins at both ends. Its weak axis is braced at midheight, but the column is free to buckle the full 24 ft. in the strong direction. Determine the safe load capacity for this column. using ASD and LRFD.

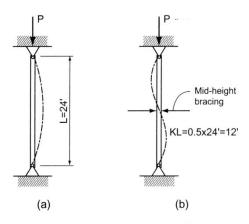
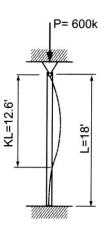
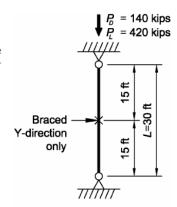



Figure 10.41 (a) Strong axis buckling. (b) Weak axis buckling.

Example 11 (pg 371) + chart method Example Problem 10.14: Design of Steel Columns (Figure 10.48)


Select the most economical W12 \times column 18' in height to support an axial load of 600 kips using A572 grade 50 steel. Assume that the column is hinged at the top but fixed at the base. Use LRFD assuming that the load is a dead load (factor of 1.4)

ALSO: Select the W12 column using the Available Strength charts.

Given:

Redesign the column from Example E.1a assuming the column is laterally braced about the y-y axis and torsionally braced at the midpoint. Use both ASD and LRFD. $F_y = 50 \text{ ksi.}$ (Not using Available Strength charts)

Solution:

ASD:

- 1. $P_a = 140 k + 420 k = 560 k$
- 2. The effective length in the weak (y-y) axis is 15 ft, while the effective length in the strong (x-x) axis is 30 ft. (K = 1, KL = 1×30 ft). To find kL/ r_x and kL/ r_y we can assume or choose values from the wide flange charts. r_y 's range from 1 to 3 in., while r_x 's range from 3 to 14 inches. Let's try r_y = 2 in and r_x = 9 in. (something in the W21 range, say.)

$$kL/r_y \cong 15 \text{ ft}(12 \text{ in/ft})/2 \text{ in.} = 90 \iff GOVERNS \text{ (is larger)}$$

$$kL/r_x \cong 30 \text{ ft}(12 \text{ in/ft})/9 \text{ in.} = 40$$

3. Find a section with sufficient area (which then will give us "real" values for r_x and r_y):

If
$$P_a \le P_n/\Omega$$
, and $P_n = F_{cr} A$, we can find $A \ge P_a \Omega/F_{cr}$ with $\Omega = 1.67$

The tables provided have ϕF_{cr} , so we can get F_{cr} by dividing by $\phi = 0.9$

$$\phi F_{cr}$$
 for 90 is 24.9 ksi, $F_{cr} = 24.9 \text{ ksi}/0.9 = 27.67 \text{ ksi}$ so $A \ge 560 \text{ k}(1.67)/27.67 \text{ ksi} = 33.8 \text{ in}^2$

4. Choose a trial section, and find the effective lengths and associated available strength, F_{cr}:

Looking from the smallest sections, the W14's are the first with a big enough area:

Try a W14 x 120 (A = 35.3 in²) with
$$r_y$$
 = 3.74 in and r_x = 6.24 in.: kL/r_y = 48.1 and kL/r_x = 57.7 (GOVERNS)

 ϕF_{cr} for 58 is 35.2 ksi, $F_{cr} = 39.1$ ksi so A \geq 560 k(1.67)/39.1 ksi = 23.9 in²

Choose a W14 x 90 (Choosing a W14 x 82 would make $kL/r_x = 59.5$, and $A_{reg'd} = 24.3 \text{ in}^2$, which is more than 24.1 in²!)

LRFD:

- 1. $P_u = 1.2(140 \text{ k}) + 1.6(420 \text{ k}) = 840 \text{ k}$
- 2. The effective length in the weak (y-y) axis is 15 ft, while the effective length in the strong (x-x) axis is 30 ft. (K = 1, KL = 1×30 ft). To find kL/ r_x and kL/ r_y we can assume or choose values from the wide flange charts. r_y 's range from 1 to 3 in., while r_x 's range from 3 to 14 inches. Let's try r_y = 2 in and r_x = 9 in. (something in the W21 range, say.)

$$kL/r_y \cong 15 \text{ ft}(12 \text{ in/ft})/2 \text{ in.} = 90 \iff GOVERNS \text{ (is larger)}$$

$$kL/r_x \cong 30 \text{ ft}(12 \text{ in/ft})/9 \text{ in.} = 40$$

3. Find a section with sufficient area (which then will give us "real" values for rx and ry):

If
$$P_u \le \phi P_n$$
, and $\phi P_n = \phi F_{cr} A$, we can find $A \ge P_u/\phi F_{cr}$ with $\phi = 0.9$

$$\phi F_{cr}$$
 for 90 is 24.9 ksi, so A \geq 840 k/24.9 ksi = 33.7 in²

4. Choose a trial section, and find the effective lengths and associated available strength, φF_{cr}:

Looking from the smallest sections, the W14's are the first with a big enough area:

Try a W14 x 120 (A = 35.3 in²) with
$$r_v = 3.74$$
 in and $r_x = 6.24$ in.: $kL/r_v = 48.1$ and $kL/r_x = 57.7$ (GOVERNS)

 ϕF_{cr} for 58 is 35.2 ksi, so A \geq 840 k/35.2 ksi = 23.9 in²

Choose a W14 x 90 (Choosing a W14 x 82 would make kL/r_x = 59.5, and A_{req'd} = 24.3 in², which is more than 24.1 in²!)

Example 6-1:

For the building frame shown in Fig. 6-20, determine the effective column length factor, K, the slenderness ratio, KL/r for each column. Assume the columns buckle and the beams bend about their strong axis.

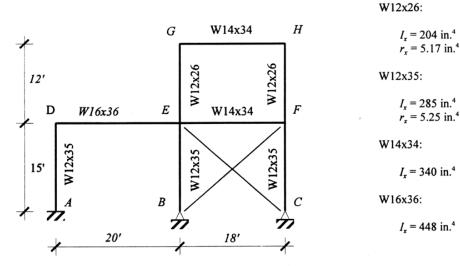


Figure 6-20: Building frame for Example 6-1.

Solution:

Note: The diagonal bracing prevents sidesway of the first story columns only.

$$G_{A} = 1.0 \text{ (fixed support)}$$

$$G_{B} = G_{C} = 10.0 \text{ (pinned support)}$$

$$G_{C} = \frac{\frac{285}{15}}{\frac{448}{20}} = 0.85$$

$$G_{C} = \frac{\frac{285}{15} + \frac{204}{12}}{\frac{448}{20} + \frac{340}{18}} = 0.87$$

$$G_{C} = \frac{\frac{285}{15} + \frac{204}{12}}{\frac{340}{18}} = 1.91$$

$$G_{C} = G_{C} = \frac{\frac{204}{12}}{\frac{448}{20}} = 0.87$$

Column	G_{Top}	$G_{\mathtt{Bot}}$	K		KL/r
AD	0.85	1.0	0.76	Braced	0.76(15)(12)/5.25 = 26.1
BE	0.87	10.0	0.85	Braced	0.85(15)(12)/5.25 = 29.1
CF	1.91	10.0	0.90	Braced	0.90(15)(12)/5.25 = 30.9
EG	0.90	0.87	1.29	Unbraced	1.29(12)(12)/5.17 = 35.9
FH	0.90	1.91	1.43	Unbraced	1.43(12)(12)/5.17 = 39.8

Table 6-1: Column effective length factors and slenderness ratios for Example 6-1.

Investigate the accepatbility of a W16 x 67 used as a beam-column under the unfactored loading shown in the figure. It is A992 steel ($F_y = 50 \text{ ksi}$). Assume 25% of the load is dead load with 75% live load.

SOLUTION:

DESIGN LOADS (shown on figure):

Axial load = 1.2(0.25)(350k)+1.6(0.75)(350k)=525k

Moment at joint = $1.2(0.25)(60^{k-ft}) + 1.6(0.75)(60^{k-ft}) = 90^{k-ft}$

Determine column capacity and fraction to choose the appropriate interaction equation:

$$\begin{split} \frac{kL}{r_x} &= \frac{15 ft (12^{\frac{iv}{f_f}})}{6.96 in} = 25.9 \quad \text{and} \quad \frac{kL}{r_y} = \frac{15 ft (12^{\frac{iv}{f_f}})}{2.46 in} = 73 \quad \text{(governs)} \\ P_c &= \phi_c P_n = \phi_c F_{cr} A_g = (30.5 ksi) 19.7 in^2 = 600.85 k \\ \frac{P_r}{P_c} &= \frac{525 k}{600.85 k} = 0.87 > 0.2 \quad \text{so use} \quad \frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \leq 1.0 \end{split}$$

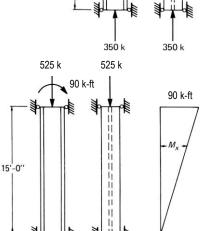
There is no bending about the y axis, so that term will not have any values.

Determine the bending moment capacity in the x direction:

The unbraced length to use the full plastic moment (L_p) is listed as 8.69 ft, and we are over that so of we don't want to determine it from formula, we can find the beam in the Available Moment vs. Unbraced Length tables. The value of ϕM_n at L_b =15 ft is 422 k-ft.

Determine the magnification factor when $M_1 = 0$, $M_2 = 90$ k-ft:

$$C_m = 0.6 - 0.4 \frac{M_1}{M_2} = 0.6 - \frac{0^{k-ft}}{90^{k-ft}} = 0.6 \le 1.0 \qquad P_{e1} = \frac{\pi^2 EA}{\left(\frac{Kl}{r}\right)^2} = \frac{\pi^2 (30x10^3 \, ksi) 19.7 in^2}{\left(25.9\right)^2} = 8,695.4k$$

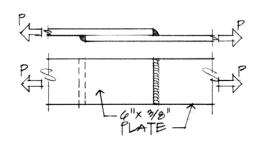

$$B_1 = \frac{C_m}{1 - \left(\frac{P_n}{P_{e1}}\right)} = \frac{0.6}{1 - \left(\frac{525k}{8695.4k}\right)} = 0.64 \ge 1.0 \quad \text{USE 1.0} \qquad \text{Mu = (1)90 k-ft}$$

Finally, determine the interaction value:

$$\frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{ux}} + \frac{M_{uy}}{\phi_b M_{uy}} \right) = 0.87 + \frac{8}{9} \left(\frac{90^{k-ft}}{422^{k-ft}} \right) = 1.06 \le 1.0$$

Example 15

10.9 Determine the maximum load carrying capacity of this lap joint., assuming A36 steel with E60XX electrodes.



525 k

350 k

60 ft-kips

This is **NOT OK.** (and outside error tolerance). The section should be larger.

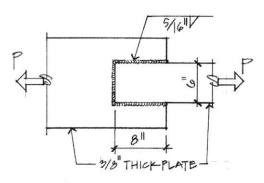
10.7 Determine the capacity of the connection in Figure 10.44 assuming A36 steel with E70XX electrodes.

Solution:

Capacity of weld:

For a $\frac{5}{16}$ " fillet weld, $\phi S = 6.96$ k/in

Weld length = 8 in + 6 in + 8 in = 22 in.


Weld capacity = $22'' \times 6.96$ k/in = 153.1 k

Capacity of plate:

$$\phi P_n = \phi F_y A_g \quad \phi = 0.9$$

Plate capacity = $0.9 \times 36 \text{ k/in}^2 \times 3/8'' \times 6'' = 72.9 \text{ k}$

∴ Plate capacity governs, $P_{\text{allow}} = 72.9 \text{ k}$

The weld size used is obviously too strong. What size, then, can the weld be reduced to so that the weld strength is more compatible to the plate capacity? To make the weld capacity \approx plate capacity:

 $22'' \times \text{(weld capacity per in.)} = 72.9 \text{ k}$

Weld capacity per inch = $\frac{72.9 \text{ k}}{22 \text{ in}}$ - $\frac{3.31 \text{ k/in}}{3.31 \text{ k/in}}$

From Available Strength table, use 3/16'' weld $(\phi S = 4.18 \text{ k/in.})$

Minimum size fillet = $\frac{3}{16}$ " based on a $\frac{3}{8}$ " thick plate.

Example 17

10.5 Using the AISC framed beam connection bolt shear in Table 7-1, determine the shear adequacy of the connection shown in Figure 10.28. What thickness and angle length are

required? Also determine the bearing capacity of the wide flange sections.

Factored end beam reaction = 90 k.

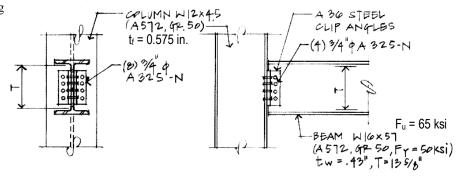
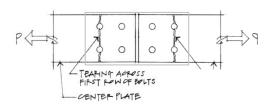



Figure 10.28 Typical beam-column connection.

10.2 The butt splice shown in Figure 10.22 uses two $8 \times 3\%$ " plates to "sandwich" in the $8 \times 1\%$ " plates being joined. Four 7% % A325-SC bolts are used on both sides of the splice. Assuming A36 steel and standard round holes, determine the allowable capacity of the connection.

SOLUTION:

Shear, bearing and net tension will be checked to determine the critical conditions that governs the capacity of the connection.

Shear: Using the AISC available shear in Table 7-3 (Group A):

$$\phi R_n = 26.4 \text{ k/bolt x 4 bolts} = 105.6 \text{ k}$$

Bearing: Using the AISC available bearing in Table 7-4:

There are 4 bolts bearing on the center (1/2") plate, while there are 4 bolts bearing on a total width of two sandwich plates (3/4" total). The thinner bearing width will govern. Assume 3 in. spacing (center to center) of bolts. For A36 steel, $F_u = 58$ ksi.

$$\phi R_n = 91.4 \text{ k/bolt/in. x } 0.5 \text{ in. x } 4 \text{ bolts} = 182.8 \text{ k} \text{ (Table 7-4)}$$

With the edge distance of 2 in., the bearing capacity might be smaller from Table 7-5 which says the distance should be $2\frac{1}{4}$ in for full bearing (and we have 2 in.).

$$\phi R_0 = 79.9 \text{ k/bolt/in. x } 0.5 \text{ in. x } 4 \text{ bolts} = 159.8 \text{ k}$$

Tension: The center plate is critical, again, because its thickness is less than the combined thicknesses of the two outer plates. We must consider tension yielding and tension rupture:

$$\phi R_n = \phi F_v A_q$$
 and $\phi R_n = \phi F_u A_e$ where $A_e = A_{net} U$

$$A_g = 8 \text{ in. } x \frac{1}{2} \text{ in.} = 4 \text{ in}^2$$

The holes are considered 1/8 in. larger than the bolt hole diameter = (7/8 + 1/8) = 1.0 in.

$$A_0 = (8 \text{ in.} - 2 \text{ holes } x 1.0 \text{ in.}) x \frac{1}{2} \text{ in.} = 3.0 \text{ in}^2$$

The whole cross section sees tension, so the shear lag factor U = 1

$$\phi F_v A_q = 0.9 \text{ x } 36 \text{ ksi x } 4 \text{ in}^2 = 129.6 \text{ k}$$

$$\phi F_u A_e = 0.75 \times 58 \text{ ksi } \times (1) \times 3.0 \text{ in}^2 = 130.5 \text{ k}$$

The maximum connection capacity (smallest value) so far is governed by bolt shear: $\phi R_n = 105.6 \text{ k}$

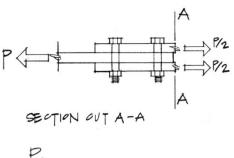
Block Shear Rupture: It is possible for the center plate to rip away from the sandwich plates leaving the block (shown hatched) behind:

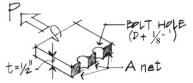
$$\phi R_n = \phi (0.6F_u A_{nv} + U_{bs} F_u A_{nt}) \le \phi (0.6F_v A_{gv} + U_{bs} F_u A_{nt})$$

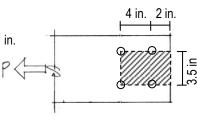
where A_{nv} is the area resisting shear, A_{nt} is the area resisting tension, A_{gv} is the gross area resisting shear, and $U_{bs} = 1$ when the tensile stress is uniform.

$$A_{gv} = 2 \times (4 + 2 \text{ in.}) \times \frac{1}{2} \text{ in.} = 6 \text{ in}^2$$

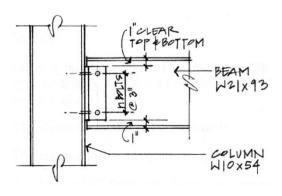
$$A_{nv} = A_{gv} - 1 \frac{1}{2}$$
 holes areas = 6 in² - 1.5 x 1 in. x $\frac{1}{2}$ in. = 5.25 in²


$$A_{nt} = 3.5 \text{ in. } x \text{ t} - 2(\frac{1}{2} \text{ hole areas}) = 3.5 \text{ in. } x \frac{1}{2} \text{ in} - 1 \text{ x} 1 \text{ in. } x \frac{1}{2} \text{ in.} = 1.25 \text{ in}^2$$


$$\phi(0.6F_uA_{nv} + U_{bs}F_uA_{nt}) = 0.75 \text{ x} (0.6 \text{ x} 58 \text{ ksi x} 5.25 \text{ in}^2 + 1 \text{ x} 58 \text{ ksi x} 1.25 \text{ in}^2) = 191.4 \text{ k}$$


$$\phi(0.6F_vA_{qv} + U_{bs}F_vA_{nt}) = 0.75 \text{ x} (0.6 \text{ x} 36 \text{ ksi x} 6 \text{ in}^2 + 1 \text{ x} 58 \text{ ksi x} 1.25 \text{ in}^2) = 151.6 \text{ k}$$

The maximum connection capacity (*smallest value*) is governed by block shear rupture:



The steel used in the connection and beams is A992 with $F_y = 50$ ksi, and $F_u = 65$ ksi. Using A490-N bolt material, determine the maximum capacity of the connection based on shear in the bolts, bearing in all materials and pick the number of bolts and angle length (not staggered). Use A36 steel for the angles.

W21x93: d = 21.62 in, $t_w = 0.58$ in, $t_f = 0.93$ in

W10x54: $t_f = 0.615$ in

SOLUTION:

The maximum length the angles can be depends on how it fits between the top and bottom flange with some clearance allowed for the fillet to the flange, and getting an air wrench in to tighten the bolts. This example uses 1" of clearance:

Available length = beam depth – both flange thicknesses – 1" clearance at top & 1" at bottom

$$= 21.62 \text{ in} - 2(0.93 \text{ in}) - 2(1 \text{ in}) = 17.76 \text{ in}.$$

With the spaced at 3 in. and 1 1/4 in. end lengths (each end), the maximum number of bolts can be determined:

Available length ≥ 1.25 in. + 1.25 in. + 3 in. x (number of bolts – 1)

number of bolts \leq (17.76 in -2.5 in. -(-3 in.))/3 in. =6.1, so 6 bolts.

It is helpful to have the All-bolted Double-Angle Connection Tables 10-1. They are available for ¾", 7/8", and 1" bolt diameters and list angle thicknesses of ¼", 5/16", 3/8", and ½". Increasing the angle thickness is likely to increase the angle strength, although the limit states include shear yielding of the angles, shear rupture of the angles, and block shear rupture of the angles.

For these diameters, the available **shear** (double) from Table 7-1 for 6 bolts is (6)45.1 k/bolt = 270.6 kips, (6)61.3 k/bolt = 367.8 kips, and (6)80.1 k/bolt = 480.6 kips.

Tables 10-1 (not all provided here) list a bolt and angle available strength of 271 kips for the ¾" bolts, 296 kips for the 7/8" bolts, and 281 kips for the 1" bolts. It appears that increasing the bolt diameter to 1" will not gain additional load. <u>Use 7/8" bolts.</u>

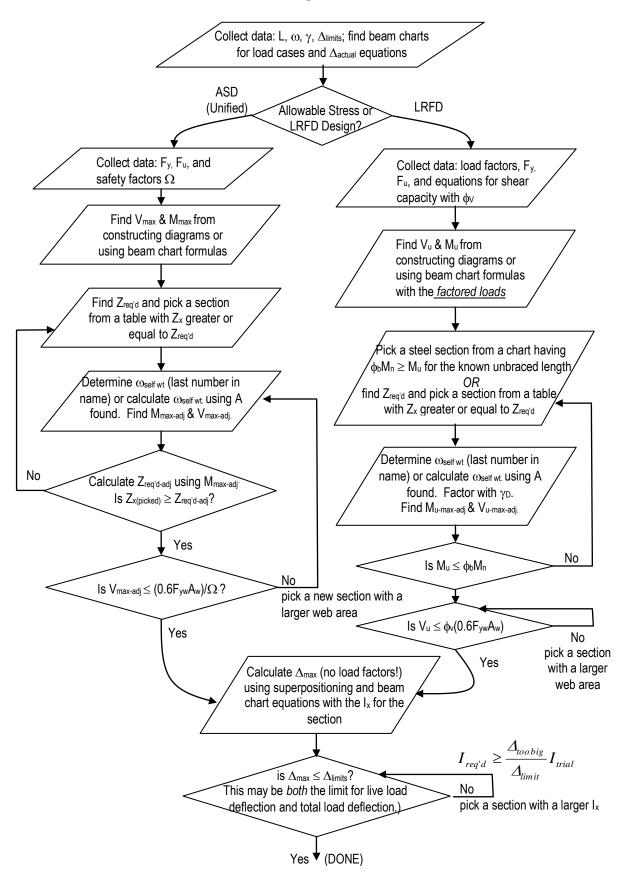
Beam	<i>F_y</i> = 50 ksi <i>F_u</i> = 65 ksi	010	Ta All-B	ble 10 olted	•			•	jle		⁷ /8	-in.
Angle	<i>F_y</i> = 36 ksi <i>F_u</i> = 58 ksi	50 m d	17.07) Mg. 384.00	Coni	nec			ngth, k	ips	3	Bol	ts :
	6 Rows	20.5	1 1	11-1-			An	gle Thi	ckness	, in.	entil i	
W4	0, 36, 33, 30, 27,	Bolt Group	Thread Cond.	Hole Type	1	/4	5	16	3	/8	30.01	/2
	24, 21	Стопр	Collu.	турс	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	\$200		N	STD	98.6	148	123	185	148	222	195	292
			X	STD	98.6	148	123	185	148	222	197	296
			SC	STD	98.6	148	106	159	106	159	106	159
	Varies	Group	Class A	OVS	90.1	135	90.1	135	90.1	135	90.1	135
F	nch + h	Α	Class A	SSLT	97.3	146	106	159	106	159	106	159
	90 - 16		SC	STD	98.6	148	123	185	148	222	176	264
				OVS	93.5	140	117	175	140	210	150	225
	3 max.		Class B	SSLT	97.3	146	122	182	146	219	176	264
.¥I	TT**	357 -	N	STD	98.6	148	123	185	148	222	197	296
1	¥ 7 7 5 5	1.7	X	STD	98.6	148	123	185	148	222	197	296
183 = 15	1	881	SC	STD	98.6	148	123	185	133	199	133	199
36	H to find	Group		OVS	93.5	140	113	169	113	169	113	169
18	15	В	Class A	SSLT	97.3	146	122	182	133	199	133	199
		[SC	STD	98.6	148	123	185	148	222	197	296
				OVS	93.5	140	117	175	140	210	187	281
			Class B	SSLT	97.3	146	122	182	146	219	195	292

 $\phi R_n = 367.8$ kips for double shear of 7/8" bolts

 $\phi R_n = 296$ kips for limit state in angles

We also need to evaluate **bearing** of bolts on the beam web, and column flange where there are bolt holes. Table 7-4 provides available bearing strength for the material type, bolt diameter, hole type, and spacing per inch of material thicknesses.

a) Bearing for beam web: There are 6 bolt holes through the beam web. This is typically the critical bearing limit value because there are two angle legs that resist bolt bearing and twice as many bolt holes to the column. The material is A992 (F_u = 65 ksi), 0.58" thick, with 7/8" bolt diameters at 3 in. spacing.


 $\phi R_n = 6 \text{ bolts} \cdot (102 \text{ k/bolt/inch}) \cdot (0.58 \text{ in}) = 355.0 \text{ kips}$

b) Bearing for column flange: There are 12 bolt holes through the column. The material is A992 (F_u = 65 ksi), 0.615" thick, with 1" bolt diameters.

 $\phi R_n = 12 \text{ bolts} \cdot (102 \text{ k/bolt/inch}) \cdot (0.615 \text{ in}) = 752.8 \text{ kips}$

Although, the bearing in the beam web is the smallest at 355 kips, with the shear on the bolts even smaller at 324.6 kips, the maximum capacity for the simple-shear connector is 296 kips limited by the critical capacity of the angles.

Beam Design Flow Chart

Listing of W Shapes in Descending order of Z_x for Beam Design

$Z_x - US$ (in. ³)	$I_x - US$ (in. ⁴)	Section	$I_{x} - SI$ (10^{6}mm.^{4})	$\frac{Z_x - SI}{(10^3 \text{mm.3})}$	$Z_x - US$ (in. ³)	$I_x - US$ (in. ⁴)	Section	$\frac{I_x - SI}{(10^6 \text{mm.}^4)}$	$\frac{Z_{x} - SI}{(10^{3} \text{mm.3})}$
514	7450	W33X141	3100	8420	289	3100	W24X104	1290	4740
511	5680	W24X176	2360	8370	287	1900	W14X159	791	4700
509	7800	W36X135	3250	8340	283	3610	W30X90	1500	4640
500	6680	W30X148	2780	8190	280	3000	W24X103	1250	4590
490	4330	W18X211	1800	8030	279	2670	W21X111	1110	4570
487	3400	W14X257	1420	7980	278	3270	W27X94	1360	4560
481	3110	W12X279	1290	7880	275	1650	W12X170	687	4510
476	4730	W21X182	1970	7800	262	2190	W18X119	912	4290
468	5170	W24X162	2150	7670	260	1710	W14X145	712	4260
467	6710	W33X130	2790	7650	254	2700	W24X94	1120	4160
464	5660	W27X146	2360	7600	253	2420	W21X101	1010	4150
442	3870	W18X192	1610	7240	244	2850	W27X84	1190	4000
437	5770	W30X132	2400	7160	243	1430	W12X152	595	3980
436	3010	W14X233	1250	7140	234	1530	W14X132	637	3830
432	4280	W21X166	1780	7080	230	1910	W18X106	795	3770
428	2720	W12X252	1130	7010	224	2370	W24X84	986	3670
418	4580	W24X146	1910	6850	221	2070	W21X93	862	3620
415	5900	W33X118	2460	6800	214	1240	W12X136	516	3510
408	5360	W30X124	2230	6690	212	1380	W14X120	574	3470
398	3450	W18X175	1440	6520	211	1750	W18X97	728	3460
395	4760	W27X129	1980	6470	200	2100	W24X76	874	3280
390	2660	W14X211	1110	6390	198	1490	W16X100	620	3240
386	2420	W12X230	1010	6330	196	1830	W21X83	762	3210
378	4930	W30X116	2050	6190	192	1240	W14X109	516	3150
373	3630	W21X147	1510	6110	186	1530	W18X86	637	3050
370	4020	W24X131	1670	6060	186	1070	W12X120	445	3050
356	3060	W18X158	1270	5830	177	1830	W24X68	762	2900
355	2400	W14X193	999	5820	175	1300	W16X89	541	2870
348	2140	W12X210	891	5700	173	1110	W14X99	462	2830
346	4470	W30X108	1860	5670	172	1600	W21X73	666	2820
343	4080	W27X114	1700	5620	164	933	W12X106	388	2690
333	3220	W21X132	1340	5460	163	1330	W18X76	554	2670
327	3540	W24X117	1470	5360	160	1480	W21X68	616	2620
322	2750	W18X143	1140	5280	157	999	W14X90	416	2570
320	2140	W14X176	891	5240	153	1550	W24X62	645	2510
312	3990	W30X99	1660	5110	150	1110	W16X77	462	2460
311	1890	W12X190	787	5100	147	833	W12X96	347	2410
307	2960	W21X122	1230	5030	147	716	W10X112	298	2410
305	3620	W27X102	1510	5000	146	1170	W18X71	487	2390
290	2460	W18X130	1020	4750				((continued)

Listing of W Shapes in Descending order of Z_x for Beam Design (Continued)

$Z_x - US$ (in. ³)	$I_x - US$ (in. ⁴)	Section	$I_{x} - SI$ (10^{6}mm.^{4})	$\frac{Z_x - SI}{(10^3 \text{mm.3})}$	$Z_x - US$ (in. ³)	$I_x - US$ (in. ⁴)	Section	$\frac{I_x - SI}{(10^6 \text{mm.}^4)}$	$Z_{x} - SI$ (10^{3}mm.3)
144	1330	W21X62	554	2360	66.5	510	W18X35	212	1090
139	881	W14X82	367	2280	64.2	348	W12X45	145	1050
134	1350	W24X55	562	2200	64.0	448	W16X36	186	1050
133	1070	W18X65	445	2180	61.5	385	W14X38	160	1010
132	740	W12X87	308	2160	60.4	272	W10X49	113	990
130	954	W16X67	397	2130	59.8	228	W8X58	94.9	980
130	623	W10X100	259	2130	57.0	307	W12X40	128	934
129	1170	W21X57	487	2110	54.9	248	W10X45	103	900
126	1140	W21X55	475	2060	54.6	340	W14X34	142	895
126	795	W14X74	331	2060	54.0	375	W16X31	156	885
123	984	W18X60	410	2020	51.2	285	W12X35	119	839
119	662	W12X79	276	1950	49.0	184	W8X48	76.6	803
115	722	W14X68	301	1880	47.3	291	W14X30	121	775
113	534	W10X88	222	1850	46.8	209	W10X39	87.0	767
112	890	W18X55	370	1840	44.2	301	W16X26	125	724
110	984	W21X50	410	1800	43.1	238	W12X30	99.1	706
108	597	W12X72	248	1770	40.2	245	W14X26	102	659
107	959	W21X48	399	1750	39.8	146	W8X40	60.8	652
105	758	W16X57	316	1720	38.8	171	W10X33	71.2	636
102	640	W14X61	266	1670	37.2	204	W12X26	84.9	610
101	800	W18X50	333	1660	36.6	170	W10X30	70.8	600
97.6	455	W10X77	189	1600	34.7	127	W8X35	52.9	569
96.8	533	W12X65	222	1590	33.2	199	W14X22	82.8	544
95.4	843	W21X44	351	1560	31.3	144	W10X26	59.9	513
92.0	659	W16X50	274	1510	30.4	110	W8X31	45.8	498
90.7	712	W18X46	296	1490	29.3	156	W12X22	64.9	480
87.1	541	W14X53	225	1430	27.2	98.0	W8X28	40.8	446
86.4	475	W12X58	198	1420	26.0	118	W10X22	49.1	426
85.3	394	W10X68	164	1400	24.7	130	W12X19	54.1	405
82.3	586	W16X45	244	1350	23.1	82.7	W8X24	34.4	379
78.4	612	W18X40	255	1280	21.6	96.3	W10X19	40.1	354
78.4	484	W14X48	201	1280	20.4	75.3	W8X21	31.3	334
77.9	425	W12X53	177	1280	20.1	103	W12x16	42.9	329
74.6	341	W10X60	142	1220	18.7	81.9	W10X17	34.1	306
73.0	518	W16X40	216	1200	17.4	88.6	W12X14	36.9	285
71.9	391	W12X50	163	1180	17.4 17.0	61.9	W8X18	25.8	279
70.1	272	W8X67	113	1150	16.0	68.9	W10X15	28.7	262
69.6	428	W14X43	178	1140	13.6	48.0	W8X15	20.0	223
66.6	303	W10X54	126	1090	12.6	53.8	W10X12	22.4	206
					11.4	39.6	W8X13	16.5	187
					8.87	30.8	W8X10	12.8	145

Available Critical Stress, $\phi_c F_{cr}$, for Compression Members, ksi ($F_y = 36$ ksi and $\phi_c = 0.90$)

KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$
1	$\frac{\varphi_{c} \Gamma_{cr}}{32.4}$	41	<u>φ_c r _{cr}</u> 29.7	81	<u>φ_c r _{cr}</u> 22.9	121	<u>Ψ_c Γ _{cr}</u> 15.0	161	<i>Ψ_c τ _{cr}</i> 8.72
2	32.4	42	29.5	82	22.7	122	14.8		8.61
3	32.4	43	29.4	83	22.5	123	14.6	163	8.50
4	32.4	44	29.3	84	22.3	124	14.4	164	8.40
5	32.4	45	29.1	85	22.1	125	14.2	165	8.30
6	32.3	46	29.0	86	22.0	126	14.0	166	8.20
7	32.3	47	28.8	87	21.8	127	13.9	167	8.10
8	32.3	48	28.7	88	21.6	128	13.7	168	8.00
9	32.3	49	28.6	89	21.4	129	13.5	169	7.91
10	32.2	50	28.4	90	21.2	130	13.3	170	7.82
11	32.2	51	28.3	91	21.0	131	13.1	171	7.73
12	32.2	52	28.1	92	20.8	132	12.9	172	7.64
13	32.1	53	27.9	93	20.5	133	12.8	173	7.55
14	32.1	54	27.8	94	20.3	134	12.6	174	7.46
15	32.0	55	27.6	95	20.1	135	12.4	175	7.38
16	32.0	56	27.5	96	19.9	136	12.2	176	7.29
17	31.9	57	27.3	97	19.7	137	12.0	177	7.21
18	31.9	58	27.1	98	19.5	138	11.9	178	7.13
19	31.8	59	27.0	99	19.3	139	11.7	179	7.05
20	31.7	60	26.8	100	19.1	140	11.5	180	6.97
21	31.7	61	26.6	101	18.9	141	11.4	181	6.90
22	31.6	62	26.5	102	18.7		11.2	182	6.82
23	31.5	63	26.3	103	18.5	143	11.0	183	6.75
24	31.4	64	26.1	104	18.3	144	10.9	184	6.67
25	31.4	65	25.9	105	18.1	145	10.7	185	6.60
26	31.3	66	25.8	106	17.9	146	10.6	186	6.53
27	31.2	67	25.6	107	17.7	147	10.5	187	6.46
28	31.1	68	25.4	108	17.5	148	10.3	188	6.39
29	31.0	69	25.2	109	17.3	149	10.2	189	6.32
30	30.9	70	25.0	110	17.1	150	10.0	190	6.26
31	30.8	71	24.8	111	16.9	151	9.91		6.19
32	30.7	72	24.7	112	16.7	152	9.78	192	6.13
33	30.6	73	24.5	113	16.5	153	9.65	193	6.06
34	30.5	74	24.3	114	16.3	154	9.53	194	6.00
35	30.4	75	24.1	115	16.2	155	9.40	195	5.94
36	30.3	76	23.9	116	16.0	156	9.28	196	5.88
37	30.1	77	23.7	117	15.8	157	9.17	197	5.82
38	30.0	78	23.5	118	15.6	158	9.05	198	5.76
39	29.9	79	23.3	119	15.4	159	8.94	199	5.70
40	29.8	80	23.1	120	15.2	160	8.82	200	5.65

Available Critical Stress, $\phi_c F_{cr}$, for Compression Members, ksi (F_y = 50 ksi and ϕ_c = 0.90)

KL/r	$\phi_c F_{cr}$								
1	45.0	41	39.8	81	27.9	121	15.4	161	8.72
2	45.0	42	39.6	82	27.5	122	15.2	162	8.61
3	45.0	43	39.3	83	27.2	123	14.9	163	8.50
4	44.9	44	39.1	84	26.9	124	14.7	164	8.40
5	44.9	45	38.8	85	26.5	125	14.5	165	8.30
6	44.9	46	38.5	86	26.2	126	14.2	166	8.20
7	44.8	47	38.3	87	25.9	127	14.0	167	8.10
8	44.8	48	38.0	88	25.5	128	13.8	168	8.00
9	44.7	49	37.8	89	25.2	129	13.6	169	7.91
10	44.7	50	37.5	90	24.9	130	13.4	170	7.82
11	44.6	51	37.2	91	24.6	131	13.2	171	7.73
12	44.5	52	36.9	92	24.2	132	13.0	172	7.64
13	44.4	53	36.6	93	23.9	133	12.8	173	7.55
14	44.4	54	36.4	94	23.6	134	12.6	174	7.46
15	44.3	55	36.1	95	23.3	135	12.4	175	7.38
16	44.2	56	35.8	96	22.9	136	12.2	176	7.29
17	44.1	57	35.5	97	22.6	137	12.0	177	7.21
18	43.9	58	35.2	98	22.3	138	11.9	178	7.13
19	43.8	59	34.9	99	22.0	139	11.7	179	7.05
20	43.7	60	34.6	100	21.7	140	11.5	180	6.97
21	43.6	61	34.3	101	21.3	141	11.4	181	6.90
22	43.4	62	34.0	102	21.0	142	11.2	182	6.82
23	43.3	63	33.7	103	20.7	143	11.0	183	6.75
24	43.1	64	33.4	104	20.4	144	10.9	184	6.67
25	43.0	65	33.0	105	20.1	145	10.7	185	6.60
26	42.8	66	32.7	106	19.8	146	10.6	186	6.53
27	42.7	67	32.4	107	19.5	147	10.5	187	6.46
28	42.5	68	32.1	108	19.2	148	10.3	188	6.39
29	42.3	69	31.8	109	18.9	149	10.2	189	6.32
30	42.1	70	31.4	110	18.6	150	10.0	190	6.26
31	41.9	71	31.1	111	18.3	151	9.91	191	6.19
32	41.8	72	30.8	112	18.0	152	9.78	192	6.13
33	41.6	73	30.5	113	17.7	153	9.65	193	6.06
34	41.4	74	30.2	114	17.4	154	9.53	194	6.00
35	41.1	75	29.8	115	17.1	155	9.40	195	5.94
36	40.9	76	29.5	116	16.8	156	9.28	196	5.88
37	40.7	77	29.2	117	16.5	157	9.17	197	5.82
38	40.5	78	28.8	118	16.2	158	9.05	198	5.76
39	40.3	79	28.5	119	16.0	159	8.94	199	5.70
40	40.0	80	28.2	120	15.7	160	8.82	200	5.65

Bolt Strength Tables

Table 7-1 Available Shear Strength of Bolts, kips

No	minal Bolt	Diamete	r, <i>d</i> , in.		5	/8	3	/4	7	/8	ohusi	1
	Nominal B	olt Area	in. ²	2 10	0.3	807	0.4	142	0.6	601	0.	785
ASTM	Thread	F_{nv}/Ω (ksi)	φ <i>F_{nv}</i> (ksi)	Load-	r _n /Ω	φ r _n	r _n /Ω	φ r n	r _n /Ω	φr _n	r _n /Ω	φrn
Desig.	Cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRF
Group	Chigago	27.0	40.5	S	8.29 16.6	12.4 24.9	11.9 23.9	17.9 35.8	16.2 32.5	24.3 48.7	21.2 42.4	31.8 63.6
18 4 , E–8	∂∔, X gq	34.0	51.0	S D	10.4 20.9	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0 80.1
Group	IIS, /3/2 N	34.0	51.0	S	10.4 20.9	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0 80.1
om 8) mg	ers, Desi X	42.0	63.0	S D	12.9 25.8	19.3 38.7	18.6 37.1	27.8 55.7	25.2 50.5	37.9 75.7	33.0 65.9	49.5 98.9
A307	tin <u>g,</u> " J	13.5	20.3	S D	4.14 8.29	6.23 12.5	5.97 11.9	8.97 17.9	8.11 16.2	12.2 24.4	10.6 21.2	15.9 31.9
No.	minal Bolt	Diamete	er, <i>d</i> , in.	ons to	nnect	/8 gni	Fran	y graid	" .(H	3/8	.a .a	1/2
	Nominal B	olt Area	in. ²	1-08	0.9	94	asside	23	3131 A	48	nat S	.77
ASTM	Thread	F _{nv} /Ω (ksi)	φ <i>F_{nv}</i> (ksi)	Load-	r_n/Ω	φ r _n	r_n/Ω	φ r _n	r _n /Ω	φr _n	r _n /Ω	φr _n
Desig.	Cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRF
Group	N	27.0	40.5	S D	26.8 53.7	40.3 80.5	33.2 66.4	49.8 99.6	40.0 79.9	59.9 120	47.8 95.6	71.7 143
A	X	34.0	51.0	S D	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181
Group	N	34.0	51.0	S D	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181
В	. X	42.0	63.0	S D	41.7 83.5	62.6 125	51.7 103	77.5 155	62.2 124	93.2 186	74.3 149	112 223
A307	-	13.5	20.3	S D	13.4 26.8	20.2 40.4	16.6 33.2	25.0 49.9	20.0 40.0	30.0 60.1	23.9 47.8	35.9 71.9
ASD	LRFD	For end	loaded co	onnections	greater t	han 38 in	., see AISO	Specification Specification	ation Table	e J3.2 foo	otnote b.	
$\Omega = 2.00$	o = 0.75											

Table 7-2 Available Tensile Strength of Bolts, kips

Nominal Bo	It Diameter,	d, in.	5	8	3	/4	7	/8		1
Nominal	Bolt Area, in	.2	0.3	107	0.	442	0.0	501	0.7	785
ASTM Desig	F_{nt}/Ω (ksi)	φ <i>F_{nt}</i> (ksi)	r_n/Ω	φ r _n	r_n/Ω	φ r _n	r_n/Ω	φ r _n	r_n/Ω	φ r _n
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	45.0	67.5	13.8	20.7	19.9	29.8	27.1	40.6	35.3	53.0
Group B	56.5	84.8	17.3	26.0	25.0	37.4	34.0	51.0	44.4	66.6
A307	22.5	33.8	6.90	10.4	9.94	14.9	13.5	20.3	17.7	26.5
Nominal Bo	olt Diameter,	d, in.	8.4	/8	91 1	1/4	1	3/8	14.5	1/2
Nominal	Bolt Area, in	1.2	0.9	994	1	.23	1.	.48	1.	.77
ASTM Desig	F _{nt} /Ω (ksi)	φ <i>F_{nt}</i> (ksi)	r_n/Ω	φ r _n	r _n /Ω	φ r _n	r _n /Ω	φ r _n	r _n /Ω	φ r _n
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	45.0	67.5	44.7	67.1	55.2	82.8	66.8	100	79.5	119
Group B	56.5	84.8	56.2	84.2	69.3	104	83.9	126	99.8	150
A307	22.5	33.8	22.4	33.5	27.6	41.4	33.4	50.1	39.8	59.6
ASD	LRFD	64103131.3	HOW H. QL	Auto man	The same of			pailasau	9.9	Hole Ty
$\Omega = 2.00$	$\phi = 0.75$	85								

	S	Slip-Critical Connections	ble 7- ritic	္ <mark>ဒ</mark>	Table 7-3 (continued) Critical Connec	octio	ns	Group	roup B Bolts
	4 <u>5</u>	Available Shear Strength, kips (Class A Faying Surface, μ = 0.30)	le Sh Fayin	ear S	trengi face,	th, kip μ = 0.		A490, A490M F2280 A354 Grade BD	90M ide BE
-	100		5	Group B Bolts	lts			Bott	-31
TO ARE TO		Market I	of other	Non	inal Bolt	Nominal Bolt Diameter, d, in.	d, in.	01.2	Supplement of the supplement o
8		9/9	.80	3	3/4	201800	8/2	ij	-
.00		19 March	0,25.0	Minimum	Group B	Minimum Group B Bolt Pretension, kips	nsion, kip	S	
Hole Type	Loading	24	4		35	7	49		64
		Ω/"	φŁ	Ω/us	φŁ	Ω/uJ	φŁ	Ω/″	φľ
- liq		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	s c	5.42	8.14	7.91	11.9	11.1	16.6	14.5	21.7
		0.0	0.0	0.01	107	26.1	33.6	20.5	40.4
OVS/SSLP	, 0	9.25	13.8	13.5	20.2	18.9	28.2	24.7	36.9
ISI	s	3.80	5.70	5.54	8.31	7.76	11.6	10.1	15.2
	0	7.60	11.4	11.1	16.6	15.5	23.3	20.3	30.4
22			11/8	Non	minal Bolt 11/4	11/4 13/8	13/8	62	11/2
The S		2.08		Minimum	Group B	Minimum Group B Bolt Pretension, kips	nsion, kip	S	
Hole Type	Loading	80	0	5 20 20 20 20 20 20 20 20 20 20 20 20 20	102	100	121	Ī	148
2 (2)		Ω/″J	φŁu	Ω/″J	or _n	Γη/Ω	of,	Ω/nJ	φĽ
9.0		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
CTD/GGIT	s	18.1	27.1	23.1	34.6	27.3	41.0	33.4	50.2
100000	O	36.2	54.2	46.1	69.2	54.7	82.0	6.99	9
OVS/SSLP	S	15.4	23.1	19.6	29.4	23.3	34.9	28.5	42.6
2115	9	30.8	46.1	39.3	200.0	40.0	1.60	57.0	80.3
TST	, 0	12.7	38.0	32.3	48.4	38.3	57.4	46.9	70.2
STD = standard hole 0VS = oversized hole SSLT = short-slotted h SSLP = short-slotted h	= standard hole = oversized hole = short-slotted hole transverse to the line of force = short-slotted hole parallel to the line of force in a short-slotted hole parallel to the line of force	sverse to th	e line of force	orce		S = single shear D = double shea	= single shear = double shear	Parlande	THE THE PERSON NAMED IN
-	ASD	LRFD	Note: Slip	o-critical bol	t values ass	ume no mor	e than one	ire to the life of roice. Note: Slip-critical bolt values assume no more than one filler has been provided	n provide
STD and SSLT	$\Omega = 1.50$	φ = 1.00	See AISC	Specification	aded to distr in Sections ,	13.8 and J5	n me miler; for provisio	or boits have been added to distribute loads in the fillers. See AISC Specification Sections J3.8 and J5 for provisions when fillers	2
OVS and SSLP	$\Omega = 1.76$	$\phi = 0.85$	are present For Class B	ant.	rfaces, mult	inly the tabu	lated avails	are present. For Class B faving surfaces multiply the fabulated available strength by 1.67.	by 1.67.
S	0=214	$\phi = 0.70$	1 VI SIGNA	D idying on	Harco, Illan	thy ure con-	Idiou avan	IDIo on ough	Dy I've

Bolts	Group A		ř	Table 7-3	ဗု				
		Slip-Critical Connections	ritiç	a C	onne	ctio	Suc		
A325, A325M F1858 A354 Grade BC		Available Shear Strength, kips (Class A Faying Surface, μ = 0.30)	ole Sh Fayir	ear S ng Sur	treng face,	th, kip	.30)		
A449	All the state of t	THE PERSON	-g	Group A Bolts	olts				
E81 D	POST ROLL NOS	2 11 9	O.AA.2	Non	Nominal Bolt Diameter, d, in.	Diameter,	ď, in.		
ALC: CIX		6	5/8		3/4		8/,		-
Holo Tuno	i i	184		Minimum	Group A	Bolt Prete	Minimum Group A Bolt Pretension, kips	s	
adkı alou	Loading	Tuesday.	19		28		39		51
0.00		Ω/uJ	φŁ	Ω/u ₁	φŁu	Ω/"	φŁ	Ω/uJ	φr,
4	2021	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	SO	4.29	6.44	6.33	9.49	17.6	13.2	11.5	17.3
OVS/SSLP	s	3.66	5.47	5.39	8.07	7.51	11.2	9.82	14.7
TST	s	3.01	4.51	4.44	6.64	6.18	9.25	8.08	12.1
				Non	=	15	o,		
20			11/8	-	11/4	22	13/8		11/2
		0.350		Minimum	Group A	Bolt Prete	Minimum Group A Bolt Pretension, kips	8	
riole lype	Loading	26	9		14	-	82	_	103
The state of		Ω/ "	φľn	Ω/″	φĽ	Ω/″	φŁ	Ω/uJ	φŁ
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	s o	12.7	19.0	16.0	24.1	19.2	28.8	23.3	34.9
OVS/SSLP	s a	10.8	16.1	13.7	20.5	16.4	24.5	19.8	29.7
rsı	s a	8.87	13.3	11.2	16.8	13.5	20.2	16.3	24.4
STD = standard hole OVS = oversized hole SSLT = short-slotted h SSLP = short-slotted h LSL = long-slotted hc	= standard hole = oversized hole = short-slotted hole = short-slotted hole transverse to the line of force = short-slotted hole parallel to the line of force = long-slotted hole transverse or parallel to the line of force	isverse to the	e line of fo ne of force allel to the	orce	92	S = single shear D = double shear	s shear le shear		818-1
Hole Type	ASD	LRFD	Note: Slip	-critical bolt	values assu	ume no mor	Note: Slip-critical bolt values assume no more than one filler has been provided	ller has beer	n provided
STD and SSLT	$\Omega = 1.50$	φ = 1.00	See AISC	ave been ac Specificatio	need to distr	3.8 and J5	or botts have been added to distribute loads in the fillers. See AISC <i>Specification</i> Sections J3.8 and J5 for provisions when fillers	s when fillers	S
OVS and SSLP	$\Omega = 1.76$	$\phi = 0.85$	are present	nt. D fouing our	focos multi	and the share	to to to	- Herman	62
TST	$\Omega = 2.14$	φ = 0.70	Loi Class	b laying su	races, mun	ріў ше тали	ror class o taying surfaces, muruply the tabulated available strength by 1.67.	ole strengtii t	Jy 1.67.

F _B kSi 11/B 11/A 13/B 14/B	Both spin. F _u ksi 11/s 11/s 11/s 11/s 11/s 11/s 11/s 11/s 11/s 11/s r_{α}/Ω s_{α}/Ω	Spacing, spin. F _n ksi 11/s 11/s 11/s 11/s 11/s 11/s 11/s 11/s 11/s $\alpha_n \Gamma_n / \Omega$ $\phi_n \Gamma_n / \Omega$ <th< th=""><th></th><th></th><th>1. Nath</th><th>Held Ness</th><th>Remmal</th><th>Nomi</th><th>nal Bolt D</th><th>Nominal Bolt Diameter, d, in.</th><th>d, in.</th><th></th><th>1</th></th<>			1. Nath	Held Ness	Remmal	Nomi	nal Bolt D	Nominal Bolt Diameter, d, in.	d, in.		1
Spacing, f_{a} Kas f_{a}/f_{b} ϕ_{rh} ϕ_{rh	Spacing, r_{tot} Kin r_{tot} ϕ_{tr} ϕ_{tr} r_{tot} ϕ_{tr} r_{tot} ϕ_{tr} r_{tot} ϕ_{tr} r_{tot} ϕ_{tr} ϕ_{tr} ϕ_{tr} r_{tot} ϕ_{tr}	Spacing, Spacing, S, in. 22/3 d_b 3 in. 3 in. 22/3 d_b 3 in.	-	Bolt	3		11/8		11/4		13/8	100	11/2
22/3 db 656 63.1 94.6 70.3 105 77.6 116 130 131 656 63.1 94.6 70.3 105 77.6 116 140 140 140 140 140 140 140 140 140 140	22/3 db 658 63.1 94.6 70.3 105 77.6 116 84.8 310. 65 70.7 106 78.8 118 86.9 130 95.1 22/3 db 65 70.7 106 78.8 118 86.9 130 95.1 22/3 db 65 58.5 87.8	22/3 db 3 in. 5 ≥ Shull strength 1, in. pacing = 22/1, in. carbon deard hole 1-slotted hole considered hole of sistered ho	Hole Type	Spacing,	F _u , KSI	r,/Ω	or,	Ω/uJ	φŁ	Ω/"	φr _n	Ω/uJ	-
22/3 db 58 63.1 94.6 70.3 105 77.6 117 116 117 118 117 118 117 118 118 118 118 118 118 118 118 118 118 <	22/9 db 58 63.1 94.6 70.3 105 77.6 116 94.8 3 in. 58 68.1 94.6 —	22/3 db 3 in. 4 in. 5 ≥ Shull strength 1, in. 1-stotted hole considered h	188	ORA GE	8	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	
3 in. 56 63.1 94.6 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —	3in. 58 63.1 94.6 — <t< td=""><td>$2^{2/3} d_b$ 3 in. $2^{2/3} d_b$ 3 in. $2^{2/3} d_b$ 3 in. $2^{2/3} d_b$ 3 in. 3 in. $5 \ge s_{tull}$ $s \ge s_{tull}$ $s \ge s_{tull}$ for full strength in. For full strength in.</td><td>cTD</td><td>22/3 db</td><td>58</td><td>63.1</td><td>94.6 106</td><td>70.3</td><td>105 118</td><td>77.6 86.9</td><td>116</td><td>84.8 95.1</td><td></td></t<>	$2^{2/3} d_b$ 3 in. 3 in. $5 \ge s_{tull}$ $s \ge s_{tull}$ $s \ge s_{tull}$ for full strength in.	cTD	22/3 db	58	63.1	94.6 106	70.3	105 118	77.6 86.9	116	84.8 95.1	
$22/3$ db 56 52.2 78.3 59.5 89.2 66.7 100 3 in. 56 58.5 87.8 66.6 99.9 74.8 112 $2^2/3$ db 66 58.5 87.8 — — — — — $2^2/3$ db 66 50.9 91.4 61.6 92.4 68.9 102 $2^2/3$ db 66 60.9 91.4 — — — — $2^2/3$ db 66 60.9 91.4 — — — — $2^2/3$ db 66 60.9 91.4 — — — — $2^2/3$ db 66 60.9 91.4 — — — — $2^2/3$ db 66 60.9 91.4 — — — — $2^2/3$ db 66 63.3 97.9 7.26 10.9 7.98 13.0 $2^2/3$ db 66 58.9 88.4 —<	$22/3$ dp 56 52.2 78.3 59.5 66.7 100 74.0 3 in. 56 58.5 87.8 66.6 99.9 74.8 112 82.9 $2^2/3$ dp 66 58.5 87.8 — — — — — $2^2/3$ dp 66 58.5 87.8 —	22/3 db 3 in. 5 ≥ \$full strength 3 in. s > \$full strength 1, in. tor full strength 1, in. Lariotted hole 1-slotted hole 1-slotte	SSLT	3 in.	58	63.1	94.6 106	11	TI	11	11	11	
3in. 56 52.2 78.3 — <t< th=""><td>3in. 56 52.2 78.3 — <t< td=""><td>3 in. $2^{2}/3$ d_b 3 in. $2^{2}/3$ d_b 3 in. $2^{2}/3$ d_b 3 in. $2^{2}/3$ d_b 3 in. 3 in. 3 in. $5 \ge s_{full}$ for full strength strength s, in. s in. s in the dard hole s is sized hole of 1-slotted hole s is sized hole s is here.</td><td></td><td>2²/₃ d_b</td><td>58</td><td>52.2</td><td>78.3 87.8</td><td>59.5</td><td>89.2 99.9</td><td>66.7</td><td>100</td><td>74.0</td><td></td></t<></td></t<>	3in. 56 52.2 78.3 — <t< td=""><td>3 in. $2^{2}/3$ d_b 3 in. $2^{2}/3$ d_b 3 in. $2^{2}/3$ d_b 3 in. $2^{2}/3$ d_b 3 in. 3 in. 3 in. $5 \ge s_{full}$ for full strength strength s, in. s in. s in the dard hole s is sized hole of 1-slotted hole s is sized hole s is here.</td><td></td><td>2²/₃ d_b</td><td>58</td><td>52.2</td><td>78.3 87.8</td><td>59.5</td><td>89.2 99.9</td><td>66.7</td><td>100</td><td>74.0</td><td></td></t<>	3 in. $2^{2}/3$ d_b 3 in. $2^{2}/3$ d_b 3 in. $2^{2}/3$ d_b 3 in. $2^{2}/3$ d_b 3 in. 3 in. 3 in. $5 \ge s_{full}$ for full strength strength s , in. s in. s in the dard hole s is sized hole of 1-slotted hole s is sized hole s is here.		2 ² / ₃ d _b	58	52.2	78.3 87.8	59.5	89.2 99.9	66.7	100	74.0	
22_{13} ab_0 56 54.4 81.6 61.6 92.4 68.9 103 3 in. 66 60.9 91.4 $ -$	$2 \ell_{13} d_b$ 56 54.4 81.6 61.6 92.4 68.9 103 76.1 3 in. 56 50.9 91.4 $ -$ <td>$2^{2}/3 \ d_b$ $3 \ in.$ $2^{2}/3 \ d_b$ $3 \ in.$ $2^{2}/3 \ d_b$ $3 \ in.$ $s \ge s_{full}$ $s \ge s_{full}$ for full strength $s \ge s_{full}$ $s \ge s_{full}$</td> <td>SSLP</td> <td>3 in.</td> <td>58</td> <td>52.2</td> <td>78.3</td> <td>1.1</td> <td>LI</td> <td>1.1</td> <td>11</td> <td>11</td> <td></td>	$2^{2}/3 \ d_b$ $3 \ in.$ $2^{2}/3 \ d_b$ $3 \ in.$ $2^{2}/3 \ d_b$ $3 \ in.$ $s \ge s_{full}$ $s \ge s_{full}$ for full strength $s \ge s_{full}$	SSLP	3 in.	58	52.2	78.3	1.1	LI	1.1	11	11	
3 in. 58 54.4 81.6 — <	3 in. 58 54.4 81.6 — <	3 in. $2^{2/3} d_b$ 3 in. $5 \ge s_{full}$ for full strength i, in. $s \ge s_{full}$	2	22/3 db	58 65	54.4	81.6 91.4	61.6	92.4 104	68.9	103 116	76.1	
$2\ell_{13}$ d_b 66 6.53 9.79 7.25 10.9 7.98 12.0 $31n$. 66 7.31 11.0 8.13 12.2 8.94 13.4 $2^{2}/_{13}$ d_b 66 5.31 11.0 $ -$ <	$22/3$ ob 56 6.53 9.79 7.25 10.9 7.98 12.0 8.7 3 in. 66 7.31 11.0 8.13 12.2 8.94 13.4 9.7 $2^2/3$ ob 66 7.31 11.0 8.13 12.2 8.94 13.4 9.7 $2^2/3$ ob 66 5.8.9 8.8.4 65.7 98.5 72.4 109 79.2 $3^2/3$ ob 66 58.9 88.4 65.7 98.5 72.4 109 79.2 $3^2/3$ ob 3	22/3 db 3 in. 22/3 db 3 in. 3 in. 3 in. 5 ≥ stull strength 1 in. 1 in. 9acing ^a = 2²/₁ adard hole 1-slotted hole consisted hole consistency.	SAO	3 in.	82 93	54.4	91.6	11	H	11	П	11	100
3 in. 58 6.53 9.79 — <	3 in. 58 6.53 9.79 — <	3 in. 22/3 db 3 in. 5 ≥ S _{full} for full strength 1, in. pacing = 22f, dard hole 1-slotted hole considered hole considered hole 1-slotted hole considered	3	22/3 db	58 65	6.53	9.79	7.25	10.9	7.98	12.0	8.70	
$2^2/3$ db 58 52.6 78.8 58.6 87.9 64.6 97.0 3 in. 56 58.9 88.4 65.7 98.5 72.4 109 s in. 66 58.9 88.4 65.7 98.5 72.4 109 s in. 66 58.9 88.4 6.7 98.5 72.4 109 s in. 66 58.9 98.4 6.7 144 1 s in. 58 65.3 97.9 72.5 109 79.8 120 strength in. SSLT, SS	22/3 db 65 58.9 78.8 58.6 87.9 64.6 97.0 70.7 8.1 8.1 8.5 58.9 88.4 65.7 98.5 72.4 109 79.2 31n. 65 58.9 88.4 65.7 98.5 72.4 109 79.2 9.5 58.9 88.4 65.7 98.5 72.4 109 79.2 9.5 58.9 88.4 65.7 98.5 72.4 109 79.2 97.5 146 107 161 1104 97.5 97.5 146 107 161 1104 97.5 97.5 146 107 161 1104 97.5 97.5 146 107 161 1104 97.5 97.5 146 107 161 1104 97.5 97.5 146 107 161 1104 97.5 97.5 146 107 161 1104 97.5 97.5 146 107 161 1104 97.5 97.5 146 107 161 1104 97.5 97.5 146 107 161 1104 97.5 97.5 146 107 161 1104 97.5 97.5 109 79.8 120 97.5 109 79.5 10	3 in. 3 in. 5 ≥ s _{full} for full strength i, in. pacing ^a = 2 ² / ₁ tr-slotted hole -slotted hole co-slotted hole co-slotted hole -slotted hole co-slotted hole co-slo	ראב	3 in.	82 93	6.53	9.79	11	1 L	11	1-1	11	
3 in. 58 52.6 78.8 — — — — — s > shull 58 78.3 117 87.0 131 95.7 144 1 s > shull 58 65.3 97.9 72.5 146 107 161 1 s > shull 66 73.1 110 81.3 122 89.4 134 strength SSLT, 37/16 4/16 4/16 4/16 i in. SSLP 3/14 4/16 4/16 pacing* = 2²/2d, in. 3 3/5/16 5/16 6/3/16	3 in. 58 52.6 78.8 — —	3 in. \$\int \int \text{S} \int \text{Full} \text{full} \text{S} \int \text{S} \text{full} \text{S} \text{S} \text{full} \text{S} \text{S} \text{full} \text{S} \text{S} \text{S} \text{full} \text{S} \	1	22/3 db	58 65	52.6	78.8	58.6	87.9 98.5	64.6	97.0	70.7	121-00
$s \ge s_{hull}$ 58 78.3 117 87.0 131 95.7 144 1 $s \ge s_{hull}$ 65 87.8 132 97.5 146 107 161 1 spength 65 73.1 110 81.3 72.5 109 79.8 120 strongth SSLI, 37/16 47/16 43/16 43/16 strongth OVS 311/16 41/16 47/16 pacing* = 22/26, in. 3 35/16 55/16 55/16 33/16	\$ ≥ \$ s_{bull}\$ \$58 78.3 117 87.0 131 95.7 144 104 117 87.8 132 97.5 146 107 161 117 117 87.8 132 97.5 146 107 161 117 117 110 81.3 122 89.4 134 97.5 109 79.8 120 87.6 134 97.5	s ≥ s _{full} for full strength , in. pacing ^a = 2 ² f ₁ dard hole 1-slotted hole of sized hole c-slotted hole c-slotted hole c-slotted hole c-slotted hole c-slotted hole c	3	3 in.	65 65	52.6 58.9	78.8 88.4	11	11	11	11	11	1
65.3 97.9 72.5 109 79.8 120 73.1 110 81.3 122 89.4 134 37/16 313/16 43/16 43/16 33/4 41/16 47/16 51/16 55/16 63/16 3 35/16 31/16	313/16 43/16 87.6 41/16 47/16 47/16 87.5 55/16 63/16 63/16 63/16 63/16	Spacing for full SSLT, SS Full SSLT,	STD, SSLT, SSLP, OVS, LSLP		65.8	78.3 87.8	117	87.0 97.5	131 146	95.7 107	144	104	
37/16 31 ³ /16 31 ¹ / ₁₆ 4 ¹ / ₁₆ 3 ³ / ₄ 4 ¹ / ₁₈ 5 ⁵ / ₁₆ 5 ¹ / ₁₆ 5 ⁵ / ₈	313/16 43/16 41/16 47/16 41/2 41/2 55/6 53/16 35/16 311/16	Spacing for full bearing strength strangth strength SSLT, LSLT 37/16 41/16 47/16	LSLT	S ≥ Sfull	28 65	65.3	97.9	72.5	109	79.8	120	87.0	114
33/4 41/6 33/4 41/8 51/16 55/8 3 35/16	41/16 47/16 41/6 41/2 55/6 63/16 35/16 311/16	Searing strength OVS 3¹¹¹₁6 4¹¹/16 4²¹/16 4¹¹/16 4¹¹/16 4¹¹/16 4¹¹/16 4¹¹/16 4¹¹/16 4¹¹/16 4¹¹/16 4¹¹/16 4³	Spacing	g for full	SSLT, LSLT	37	/16	31	3/16	43	/16	48	00
33/4 41/8 51/16 55/8 3 35/16	41/8 41/2 55/8 63/46 35/46 311/46	Stulf*, ITh. SSLP 33/4 41/8 41/2	bearing	strength	SAO	31	1/16	4	/16	47	/16	4	-
5 ¹ / ₁₆ 5 ⁵ / ₈ 3 ⁵ / ₁₆	55/ ₆ 63/ ₁₆ 31/ ₁₆ ce	LSLP 5½6 55/6 63/16	Sfull	'a, <u>ii</u>	SSLP	33	3/4	41	8/	41	12	4	-
3 35/16	3 ⁵ / ₁₆ 3 ¹¹ / ₁₆ ce	Minimum Spacing* = 22/3d*, in. 3 35/16 311/16 4			LSLP	51	/16	52	8/	63	/16	9	3
	STD = standard hole SSLT = short-slotted hole oriented transverse to the line of force SSLP = short-slotted hole oriented parallel to the line of force OVS = oversized hole LSLP = into positive the oriented parallel to the line of force LSLP = into closted hole LSLP = into positive the oriented parallel to the line of force	STD = standard hole SSLT = short-slotted hole oriented transverse to the line of force SSLP = short-slotted hole oriented parallel to the line of force OVS = oversized hole USLP = long-slotted hole oriented parallel to the line of force LSLP = long-slotted hole oriented transverse to the line of force ASD	Minimum S	Spacing ^a = 2	2/3d, in.	က		38	1/16	31	1/16	4	-

Phi			0.80	7 7 1			2				
Spacing, for kei $5 g$ $3 f$ $7 g$ $7 g$ $7 g$ $7 g$ $7 f$ <th></th> <th></th> <th></th> <th></th> <th></th> <th>Nom</th> <th>inal Bolt [</th> <th>Diameter,</th> <th>d, in.</th> <th></th> <th></th>						Nom	inal Bolt [Diameter,	d, in.		
Spin. ASD LRFD ASD ASD ASD ASD ASD ASD ASD ASD ASD ASD<	Holo Tyno	Snacing	F. Kei			B. qsorg	3/4		8/2		-
22/3 d _b 56 34.1 51.1 41.3 62.0 48.6 72.9 55.8 8 3 in. 66 38.2 57.3 46.3 69.5 54.4 81.7 62.6 9 3 in. 66 48.8 73.1 58.5 87.8 68.3 102 75.6 11 22/3 d _b 66 32.9 46.3 39.0 58.2 47.1 63.1 47.1 7 3 in. 66 48.8 73.1 58.5 87.8 68.3 102 75.8 9 3 in. 66 48.8 73.1 58.5 87.8 68.3 102 65.8 9 3 in. 66 48.8 73.1 58.5 87.8 68.3 102 65.8 9 3 in. 65 48.8 73.1 58.5 87.8 68.3 102 65.8 9 3 in. 65 48.8 73.1 58.5 87.8 68.3 102 65.8 9 3 in. 65 48.8 73.1 58.5 87.8 65.9 91.4 60.9 9 3 in. 65 48.8 73.1 58.5 87.8 65.3 50.8 76.1 58.0 65.0 9 3 in. 65 48.8 73.1 58.5 87.3 60.9 91.4 60.9 9 3 in. 65 48.8 73.1 58.5 65.3 50.8 76.1 56.0 9 3 in. 65 48.8 73.1 58.5 65.3 50.8 76.1 56.0 9 3 in. 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 65.0 9 3 in. 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 65.0 9 3 in. 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 48.8 73.1 58.5 65.3 50.8 76.1 56.0 9 5 $s > s_{hull}$ 65 48.8 73.1 58.5 65.3 50.8 76.1 58.0 9 5 $s > s_{hull}$ 65 48.8 73.1 58.5 65.3 50.8 76.1 58.0 9 5 $s > s_{hull}$ 65 48.8 73.1 58.5 65.3 50.8 76.1 58.0 9 5 $s > s_{hull}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 40.6 80.9 48.8 73.1 56.9 85.3 63.0 9 5 $s > s_{hull}$ 65 40.6 80.9 48.8 73.1 56.9 85.3 63.0 85.3 63.0 85.3 63.0 85.3 63.0 85.3 63.0 85.3 63.0 85.3 63.0 85.3 63.0 85.3 63.0 85.3 63.0 85.3 63.0 85	noie iybe	s, in.	ion si	Ω/uJ	ofn	ς/Ω	φľ	r _n /Ω	φr _n	r _n /Ω	or.
			18	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
3 in. 65 48.8 73.1 56.5 87.8 60.9 91.4 67.1 52.8 3 in. 65 48.8 73.1 56.5 87.8 60.3 102 75.6 11 70.7 52.8 75.4 11 8 in. 65 48.8 73.1 56.5 87.8 60.3 102 75.6 11 70.7 52.8 73 60.9 91.4 67.1 70.7 52.8 73 60.9 91.4 68.3 102 65.3 10	cTD	22/3 db	58	34.1	57.3	41.3	62.0	48.6	72.9	55.8	83.7
2 ² / ₁₃ d _b 65 48.8 73.1 58.5 87.8 68.3 102 75.6 11 2 ² / ₁₃ d _b 65 30.9 46.3 34.8 52.2 42.1 63.1 47.1 7 3 in. 65 48.8 73.1 58.5 87.8 68.3 102 55.8 9 2 ² / ₁₃ d _b 65 33.3 50.0 41.4 62.2 49.6 74.3 55.3 8 3 in. 65 48.8 73.1 58.5 87.8 68.3 102 68.3 10 2 ² / ₁₃ d _b 65 33.3 50.0 41.4 62.2 49.6 74.3 55.3 8 3 in. 65 48.8 73.1 58.5 87.8 68.3 10.2 68.3 10 2 ² / ₁₃ d _b 65 34.4 43.5 65.3 50.8 76.1 58.0 8 3 in. 65 48.8 73.1 38.6 57.9 45.4 60.0 52.1 3 3 in. 65 48.8 73.1 58.5 65.3 50.8 76.1 56.0 8 3 in. 65 48.8 73.1 58.5 65.3 50.8 76.1 56.0 8 3 in. 65 48.8 73.1 58.5 65.3 50.8 76.1 56.0 8 3 in. 65 48.8 73.1 58.5 65.3 50.8 76.1 56.0 8 3 in. 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 85.1 10 5 s s hull 65 48.8 73.1 58.5 65.3 50.8 76.1 56.0 8 5 s s hull 65 48.8 73.1 58.5 65.3 50.8 76.1 56.0 8 5 s s hull 65 40.6 60.9 48.8 73.1 56.9 85.3 65.0 8 5 s s hull 65 40.6 60.9 48.8 73.1 56.9 85.3 65.0 8 5 s s hull 65 40.6 60.9 48.8 73.1 56.9 85.3 65.0 8 5 s s hull 65 40.6 60.9 48.8 73.1 56.9 85.3 65.0 8 5 s s hull 65 40.6 60.9 48.8 73.1 56.9 85.3 65.0 8 5 s s hull 65 40.6 60.9 48.8 73.1 56.9 85.3 65.0 8 5 s s hull 85 73.1 58.5 65.3 50.8 76.1 58.0 8 5 s s hull 85 73.1 56.9 85.3 65.0 8 5 s s hull 85 73.1 56.0 8	SSLT		28	43.5	65.3	52.2	78.3	6.09	91.4	67.4	101
2 ² / ₁₃ d _b 658 276 413 348 52.2 42.1 63.1 47.1 70.7 52.8 31.0 6.6 30.9 10.4 65.3 39.0 58.5 47.1 70.7 52.8 7 3 10.2 65.8 9 10.4 65.4 8.8 73.1 58.5 87.8 68.3 102 55.3 99.3 7 22/3 d _b 65 33.3 50.0 41.4 62.2 49.6 74.3 55.3 8 9 10.4 60.9 9 10.2 73.1 56.9 85.3 65.0 9 10.2 78.0 11.5 65.9 85.3 65.0 9 10.2 78.0 11.5 65.9 85.3 65.0 9 10.2 78.0 11.5 65.9 85.3 65.0 9 10.2 78.0 11.5 65.9 85.3 65.0 9 10.2 78.0 11.5 65.9 85.3 65.0 9 10.2 78.0 11.5 65.9 85.3 65.0 9 10.2 78.0 11.5 65.9 85.3 65.0 9 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0 8 10.2 78.0 11.5 65.0 8 10.2 78.0		3 III.	65	48.8	73.1	58.5	87.8	68.3	102	75.6	113
2 ℓ_{13} db 58 43.5 65.3 52.2 78.3 60.9 91.4 58.7 8 2 ℓ_{13} db 66 48.8 73.1 58.5 87.8 68.3 102 65.8 9 3 in. 65 48.8 73.1 58.5 78.3 60.9 91.4 60.9 9 2 ℓ_{13} db 65 48.8 73.1 58.5 87.8 60.9 91.4 60.9 9 2 ℓ_{13} db 65 48.8 73.1 58.5 87.8 60.9 91.4 60.9 90.9 60.9 90.9 60.9 90.4 60.9 90.9 60.9 90.9 60.9 90.4 60.9 90.4 60.9 90.4 60.9 90.4 60.9 90.4 60.9 90.4 60.9 90.4 60.9 90.4 60.9 90.4 60.9 90.4 60.9 90.4 60.9 90.4 60.9 90.4 60.9 90.4 60.9 90.4	5	22/3 db	8 8	30.9	41.3	34.8	52.2	42.1	63.1	47.1 52.8	70.7
	995	3 in.	82 99	43.5	65.3	52.2	78.3	60.9	91.4	58.7	88.1
3 in. 58 43.5 65.3 52.2 78.3 60.9 91.4 60.9 9 $2^{2/3} d_b$ 56 48.8 73.1 58.5 87.8 68.3 102 68.3 10 $2^{2/3} d_b$ 66 4.08 7.31 5.69 7.51 5.80 5.50 3 in. 65 48.8 7.31 5.69 7.51 5.80 5.50 7.51 5.80 5.50 7.51 5.80 5.50 8.53 6.53 10.7 40.5 6.50 9.7 40.5 6.50 9.7 40.5 6.50 9.7 40.5 6.50 7.5 40.5 60.7 40.5 60.7 40.5 60.7 40.5 60.7 40.5 60.7 40.5 60.7 40.5 60.7 40.5 60.7 40.5 60.9 91.4 60.0 91.0 91.0 92.0 60.0 91.0 92.0 60.0 92.0 60.0 92.0 60.0 92.0 60.	-	22/3 db	58	29.7	44.6	37.0	55.5	44.2	66.3	49.3	74.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S	3 in.	58	43.5	65.3	52.2	78.3	60.9	91.4	60.9	91.4
3 in. 58 43.5 65.3 39.2 58.7 28.3 42.4 17.4 2 $2^{2/3} d_b$ 56 48.8 73.1 43.9 65.8 31.7 47.5 19.5 2 $2^{2/3} d_b$ 56 28.4 42.6 34.4 51.7 40.5 60.7 46.5 6 3 in. 56 36.3 54.4 43.5 65.3 50.8 76.1 56.2 8 5 s $_{hull}$ 58 43.5 65.3 52.2 78.3 60.9 91.4 69.6 10 5 s $_{hull}$ 65 48.8 73.1 58.5 87.8 60.9 91.4 69.6 10 5 s $_{hull}$ 65 48.8 73.1 58.5 87.8 68.3 78.0 11 5 s $_{hull}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 55.0 8 5 s $_{hull}$ 65 40.6 60.9 48.8		22/3 db	58	3.62	5.44 6.09	4.35	6.53	5.08	7.61	5.80	8.70
	LSLP	3 in.	58	43.5	65.3	39.2	58.7	28.3	42.4	17.4	26.1
3 in. 58 36.3 54.4 43.5 65.3 50.8 76.1 56.2 s $\geq s_{full}$ 65 40.6 60.9 48.8 73.1 56.9 85.3 63.0 s $\geq s_{full}$ 58 43.5 65.2 78.3 60.9 91.4 69.6 1 s $\geq s_{full}$ 58 73.1 58.5 87.8 68.3 10.2 78.0 1 s $\geq s_{full}$ 58 36.3 54.4 43.5 65.3 50.8 76.1 58.0 strength Ovs 21/16 25/16 25/16 21/16 31/46 in. SSLP 21/16 21/16 21/2 27/16 35/16 nin. SSLP 21/16 33/6 31/16 41/16 LSLP 21/16 33/6 35/16 41/16 30/16 31/16 35/16 41/16	Ė	22/3 db		28.4	42.6	34.4	51.7	40.5	68.0	46.5	69.8
$S \ge S_{hull}$ 58 43.5 65.3 52.2 78.3 60.9 91.4 69.6 1 $S \ge S_{hull}$ 65 48.8 73.1 58.5 87.8 68.3 102 78.0 1 $S \ge S_{hull}$ 58 36.3 54.4 43.5 65.3 50.8 76.1 58.0 78.0	1361	3 in.	65	36.3	54.4	43.5	65.3	50.8	76.1	56.2	84.3 94.5
58 36.3 54.4 43.5 65.3 50.8 76.1 58.0 570, 580, 73.1 56.9 85.3 55.0 580, 48,8 73.1 56.9 85.3 55.0 580, 781, 781, 781, 580, 781, 580, 580, 781, 781, 781, 781, 580, 781, 781, 781, 580, 781, 781, 781, 580, 781, 781, 580, 781, 781, 580, 781, 781, 580, 781, 781, 580, 781, 781, 580, 781, 781, 580, 781,	STD, SSLT, SSLP, OVS, LSLP		58	43.5	65.3	52.2	78.3	60.9	91.4	69.6	104
STD, SSLT, LSLT 115/16 25/16 211/16 ONS 21/16 27/16 21/3/16 SSLP 21/16 27/16 21/2 SSLP 21/2 21/2 27/16 SALP 21/3 21/2 27/16 SALP 21/16 33/16 315/16 SALP 21/16 33/16 315/16	LSLT	\Al	58	36.3	54.4	43.5	65.3	50.8	76.1	58.0 65.0	87.0
OVS 21/16 27/16 21/3/16 SSLP 21/8 21/2 27/8 LSLP 21/3/16 33/8 31/5/16 22/4 33/8 31/5/16 31/5/16	Spacing	for full	STD, SSLT, LSLT		5/16		/16	211	91/	31	/16
SSLP 21/8 21/2 27/8 ms. 22/12 27/8 ms. 22/14 219/16 33/8 31/6 ms. 22/14 22/14 2 22/14 2 22/14 2 22/14 2 22/14 2 2 22/14 2 22/14 2 2 22/14 2 2 22/14 2 2 22/14 2 2 22/14 2 2 22/14 2 2 2 22/14 2 2 2 22/14 2 2 2 22/14 2 2 2 22/14 2 2 2 22/14 2 2 2 22/14 2 2 2 22/14 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	bearing s	strength	OVS	21	1/16	27	/16	213	3/16	3	1/4
LSLP 213/16 33/8 315/16 22/46 22/46 2	Sfull	Ę,	SSLP	2	1/8	2	1/2	27	1/8	35	/16
22/2d in. 111/16 2			LSLP	21	3/16	3.	3/8	316	5/16	4	1/2
01/1	Minimum Sp	$acing^a = 2^2$	22/3d, in.	11	1/16	DE LEGIS	2	25	/16	21	1/16
		LRFD	Note: Spac	ing indicate	ed is from t	he center of	the hole or	slot to the	center of the	adjacent f	nole of
	0 - 2 00	A _ 0.75	see AISC S	stot III tite IIIte of force; nore deformation is considered, writer from de- see AISC Specification Section J3.10.	n Section JS	3.10.	Ulisidorad	Which hore	Jeromano	IS IIU con	

			<u> </u>	os/in.	kips/in. thickness	SSOUTH BOIL	iomotor	, ,	Afterna A	
	Edge	2	Wall v Ind	11%	NOM	Nominal Boit Diameter, d, in.	Diameter,	d, In.		11/2
Hole Type	Distance	F _u , ksi	ς/Ω	ør.	Ω/uJ	₽/. ⊕Fn	Ω/uJ	₽/-	Ω/uJ	\$\langle \text{1.7}
1	7e III.		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
GE C	11/4	8 28	22.8	34.3	20.7	31.0	18.5	27.7	16.3	24.5
SSLT	2	82 83	48.9	73.4	46.8	70.1	44.6	66.9	42.4	63.6
	11/4	88 88	17.4	26.1	15.2	22.8	13.1	19.6	10.9	16.3
SSLP	2	8 8	43.5	65.3	41.3	62.0	39.2	58.7	37.0	55.5
	11/4	85 58	18.5	31.1	16.3	24.5	14.1	21.2	12.0	17.9
SAO	2	8 28	44.6	66.9	42.4	63.6	40.2	60.4	38.1	57.1
č	11/4	85 85	t.t		1.1	11	11	11	11	
LSLP	2	58	20.7	31.0	15.2	22.8	9.79	14.7	4.35	6.53
-	11/4	58	19.0	28.5	17.2	25.8	15.4	23.1	13.6	20.4
1361	2	58	40.8	61.2	39.0	58.5	37.2	55.7	35.3	53.0
STD, SSLT, SSLP, OVS, LSLP	$L_{\theta} \ge L_{\theta}$ full	58	78.3	117	87.0 97.5	131	95.7	144	104	157
LSLT	Le ≥ Le full	58	65.3	97.9	72.5	109	79.8	120	87.0 97.5	131
Edge distance for full bearing	Edge distance for full bearing	STD, SSLT, LSLT	27/8	. 8/	e,	33/16	31	31/2	31:	313/16
strength	igth .	OVS	3	100	m	35/16	35	35/8	31	315/16
$r_{\theta} \geq r_{\theta}$	$L_{\theta} \geq L_{\theta} tulr^{3}$, in.	SSLP	3	2882	6	35/16	35	35/8	31	315/16
	= standard hole = short-slotted hole oriented transverse to the line of force = short-slotted hole oriented parallel to the line of force	LSLP oriented to	31 transverse	3 ¹¹ / ₁₆ erse to the lin I to the line o	ne of force	41/16 e	4	41/2	47/8	
UVS = over LSLP = long LSLT = long	 oversized hole long-slotted hole oriented parallel to the line of force long-slotted hole oriented transverse to the line of force 	oriented p	arallel to	the line of to the line	f force e of force					
ASD	LRFD	- indicati	es spacing	less than n	ninimum sp	- indicates spacing less than minimum spacing required per AISC Specification Section J3.3.	ed per AISC	Specificati	on Section J	3.3.
Ω=2.00	φ=0.75	Note: Spac	ing indicat line of forc	ed is from the Hole defe	Note: Spacing indicated is from the center of the hole or slot to the center of the adjacent hole or slot in the line of force. Hole deformation is considered. When hole deformation is not considered,	Note: Spacing indicated is from the center of the hole or slot to the center of the adjacent hole or slot in the line of force. Hole deformation is considered. When hole deformation is not considered,	r slot to the When hole	center of the	ne adjacent n is not cons	o alor iderec

Felge bistance f _{ro} ksi 56 3/4 76 76 1 SSLP LSLD 4 ksi 5 ksi 5 ksi 5 ksi 7 ksi 6 ksi 7 ksi 6 ksi 1 ksi				ki	kips/in. thickness	thick	ness				
Edge Loistance F _{In} ksi 9_{In} 9_{In} 7_{IB} <th></th> <th></th> <th>II, b., 18thi</th> <th>Bolt Dian</th> <th>1smmo#</th> <th>Nom</th> <th>inal Bolt</th> <th>Diameter,</th> <th>d, in.</th> <th></th> <th></th>			II, b., 18thi	Bolt Dian	1smmo#	Nom	inal Bolt	Diameter,	d, in.		
Les in. ASD LRFD A	Holo Tuno	Edge	103		8/9		3/4	1	8/2	100	-
11/4 58 31.5 47.3 29.4 44.0 27.2 40.8 25.0 25.0 25.3 25.3 32.9 49.4 30.5 45.7 28.0 25.0 25.3 25.3 32.9 49.4 30.5 45.7 28.0 25.0 25.3 25.3 25.2 78.3 53.3 79.9 57.3 25.0 2	noie iype	L_{θ} , in.	S S	Γ_n/Ω	orn o	r _n /Ω	φŁu	1	φľn	r _n /Ω	orn
11/4 656 35.3 29.4 44.0 27.2 40.8 25.0 2 65 48.8 73.1 58.5 87.8 59.7 89.6 57.3 2 65 48.8 73.1 58.5 87.8 59.7 89.6 57.3 2 65 48.8 73.1 58.5 87.8 56.1 84.1 52.4 11/4 65 32.9 49.4 30.5 46.8 57.3 80.0 2 65 48.8 73.1 58.5 87.8 56.1 84.1 52.4 11/4 65 32.9 49.4 30.5 46.7 28.0 37.5 21.8 2 65 48.8 73.1 58.5 87.8 56.1 84.1 52.4 11/4 65 29.5 44.2 63.6 77.3 67.3 67.9 91.4 2 65 47.5 77.3 41.4 62.2 34.0 29.3 11/4 65 29.5 44.4 43.5 65.3 35.3 59.0 89.6 14 2 65 47.5 77.3 41.4 62.2 34.3 50.0 89.1 2 65 47.5 77.3 41.4 62.2 34.3 50.0 89.1 11/4 65 29.5 44.2 43.5 65.3 35.3 59.8 39.1 2 65 47.5 77.3 41.4 62.2 34.3 59.0 11/4 65 29.5 44.4 43.5 65.3 34.3 60.9 91.4 69.6 1 12 65 40.6 60.9 48.8 73.1 49.8 74.6 47.7 12 65 40.6 60.9 48.8 73.1 56.9 85.3 65.0 13 65 40.6 60.9 48.8 73.1 56.9 85.3 65.0 14 65 29.5 44.4 43.5 65.3 50.8 76.1 58.0 15 65 40.6 60.9 48.8 73.1 56.9 85.3 65.0 16 274 28 38.3 54.4 43.5 65.3 50.8 76.1 58.0 29 38.4 56.0 60.9 48.8 73.1 56.9 85.3 65.0 20 38.4 56.0 60.9 48.8 73.1 56.9 85.3 65.0 20 38.4 56.0 60.9 48.8 73.1 56.9 85.3 65.0 20 38.4 56.0 60.9 48.8 73.1 56.9 85.3 65.0 20 38.4 56.0 60.9 87.8 68.3 70.1 74.4 65.0 85.3 65.0 20 38.4 56.0 60.9 87.8 68.3 70.1 74.4 65.0 85.3 65.0 8 20 38.4 56.0 60.9 87.8 65.3 50.8 76.1 58.0 20 38.4 56.0 60.9 87.8 67.3 50.8 76.1 58.0 20 38.4 56.0 60.9 87.8 67.3 50.8 76.1 58.0 20 38.4 56.0 60.9 87.8 67.3 50.8 76.1 58.0 20 38.4 56.0 60.9 87.8 67.3 50.8 76.1 58.0 20 38.4 56.0 60.9 87.8 67.3 50.8 76.1 58.0 20 38.4 56.0 60.9 87.8 67.3 50.8 76.1 58.0 20 38.4 56.0 60.9 87.8 67.3 50.8 76.1 58.0 20 38.4 56.0 60.9 87.8 67.3 50.8 76.8 50.0 8 77.1 58.0 20 50 50 50 50 50 50 50 50 50 50 50 50 50		5	CES	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	GRED
2 58 43.5 65.3 52.2 78.3 53.3 79.9 51.1 17,4 58 28.3 42.4 26.1 39.2 23.9 35.9 20.7 46.8 28.3 17.7 47.5 29.3 43.9 26.8 40.2 23.2 56.8 31.7 47.5 29.3 43.9 26.8 40.2 23.2 56.8 43.5 65.3 52.2 78.3 50.0 75.0 46.8 73.1 58.5 87.8 56.1 84.1 52.4 42.0 72.2 40.8 56.1 87.5 12.8 43.5 65.3 52.2 78.3 51.1 76.7 47.9 2.8 43.5 65.3 52.2 78.3 51.1 76.7 47.9 2.8 43.5 65.3 52.2 78.3 51.1 76.7 47.9 2.8 43.5 65.3 52.2 78.3 51.1 76.7 47.9 2.8 43.5 65.3 32.4 44.4 62.5 31.5 47.3 26.1 22.4 44.2 27.4 41.1 25.4 38.1 23.4 41.7 65.5 29.5 44.2 27.4 41.1 25.4 38.1 23.4 41.7 65.8 36.3 54.4 43.5 65.3 35.0 91.4 69.6 17.9 65.2 65.8 36.3 54.4 43.5 65.3 36.9 91.4 69.6 17.9 65.2 65.4 43.5 65.3 56.3 36.9 91.4 69.6 17.9 65.2 65.4 43.5 65.3 56.3 50.8 76.1 88.0 50.9 91.4 69.6 17.9 65.2 65.4 43.5 65.3 56.8 78.8 68.3 10.2 78.0 11.5 65.9 85.3 65.0 91.4 69.6 17.5 65.0 81.8 73.1 58.5 65.3 50.8 76.1 88.0 50.9 91.4 69.6 17.9 60.5 60.9 48.8 73.1 56.9 85.3 65.0 85.0 60.9 85.3 65.0 85.3 65.0 85.3 65.0 85.1 65.0	E	11/4	85 58	31.5	47.3	29.4	44.0	27.2	40.8	25.0	37.5
11/4 58 28.3 42.4 26.1 39.2 23.9 35.9 20.7 2 58 28.3 42.4 26.1 39.2 23.9 35.9 20.7 2 58 43.5 65.3 52.2 78.3 50.0 75.0 46.8 11/4 58 29.4 44.0 27.2 40.8 25.0 37.5 21.8 2 48.8 73.1 58.5 87.8 56.1 84.1 52.4 11/4 58 29.4 44.0 27.2 40.8 25.0 37.5 21.8 11/4 58 43.5 65.3 52.2 78.3 51.1 76.7 47.9 2 58 42.4 63.6 73.1 58.5 87.8 56.9 33.0 29.3 11/4 58 29.4 44.0 27.2 40.8 25.0 37.5 21.8 2 58 42.4 63.6 73.1 62.2 35.3 53.0 29.3 11/4 58 26.3 39.4 24.5 36.7 22.7 34.0 20.8 4 5 5 5 44.2 27.4 41.1 25.4 38.1 23.4 5 5 40.6 60.9 48.8 73.1 56.9 31.4 6 5 29.5 44.2 27.4 41.1 25.4 38.1 23.4 6 5 40.6 60.9 48.8 73.1 56.9 31.4 6 5 40.6 60.9 48.8 73.1 56.9 85.3 65.0 6 5 40.6 60.9 48.8 73.1 56.9 85.3 65.0 6 5 40.6 60.9 48.8 73.1 56.9 85.3 65.0 7 6 5 40.6 60.9 48.8 73.1 56.9 8 5 5 5 5 5 5 5 8 5 5 5 5 5 8 5 5 5 5 5 8 6 71/16 5 5 8 73/16 73/16 73/16 73/14 11/4 5 5 5 5 5 11/4 5 5 5 5 11/4 5 5 5 5 11/4 5 5 5 5 11/4 5 5 11/4 5 5 11/4 5	SSLT	2	82.5	43.5	65.3	52.2	78.3	53.3	79.9	51.1	76.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.8	80 82	28.3	42.4	26.1	30.7	23.0	35.0	20.70	82.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GOID	11/4	8 8	31.7	47.5	29.3	43.9	26.8	40.2	23.2	34.7
11/4 58 29.4 44.0 27.2 40.8 25.0 37.5 21.8 2 56 32.9 49.4 30.5 45.7 28.0 42.0 24.4 2 56 48.8 73.1 58.5 78.3 51.1 76.7 47.9 2 66 48.8 73.1 58.5 87.8 57.3 85.9 53.6 2 68 16.3 24.5 10.9 16.3 54.4 8.16 — 2 66 47.5 71.3 41.4 62.2 35.3 53.0 29.3 4 65 29.5 44.2 27.4 41.1 25.4 38.1 23.4 2 66 29.5 44.2 27.4 41.1 25.4 38.1 23.6 2 65 36.3 54.4 43.5 65.3 36.3 44.4 66.6 42.6 47.7 4 65 29.5 48.8	300	2	65	43.5	65.3	52.2	78.3	50.0	75.0 84.1	46.8	70.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11/4	85 58	29.4	44.0	27.2	40.8	25.0	37.5	21.8	32.6
1/4 58 16.3 24.5 10.9 16.3 544 8.16 — 2 58 18.3 27.4 12.2 18.3 6.09 9.14 — 2 58 42.4 63.6 37.0 55.5 31.5 47.3 26.1 2 58 26.3 39.4 24.5 36.7 22.7 34.0 20.8 2 58 26.3 39.4 24.5 36.7 22.7 34.0 20.8 4.2 27.4 43.5 65.3 44.4 66.6 47.7 4.2 58 36.3 54.4 48.8 73.1 49.8 74.6 47.7 4.2 56 40.6 60.9 48.8 73.1 56.9 91.4 47.7 Le Le Iuli 58 36.3 57.8 68.3 10.2 78.0 1 Le Le Iuli 58 36.3 57.8 68.3 10.2 78.0 1 </td <td>8</td> <td>2</td> <td>58</td> <td>43.5</td> <td>65.3</td> <td>52.2</td> <td>78.3</td> <td>51.1</td> <td>76.7</td> <td>47.9</td> <td>71.8</td>	8	2	58	43.5	65.3	52.2	78.3	51.1	76.7	47.9	71.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11/4	55	16.3	24.5	10.9	16.3	5.44	8.16	1.1	1.1
11/4 58 26.3 39.4 24.5 36.7 22.7 34.0 20.8 2 58 36.3 54.4 43.5 65.3 44.4 66.6 42.6 $L_{e} \ge L_{e}$ tull 58 43.5 65.3 52.2 78.3 60.9 91.4 69.6 1 $L_{e} \ge L_{e}$ tull 58 43.5 65.3 52.2 78.3 60.9 91.4 69.6 1 $L_{e} \ge L_{e}$ tull 58 48.8 73.1 58.5 87.8 68.3 102 78.0 1 stance SSL, 40.6 60.9 48.8 73.1 56.9 85.3 55.0 stance SSL, 43.5 65.3 50.8 76.1 58.0 73.1 56.9 85.3 65.0 stance SSL, 43.5 65.3 50.8 76.1 58.0 73.1 56.9 85.3 65.0 stance SSL, 48.8 73.1 56.9	LSLP	2	28	42.4	63.6	37.0	55.5	31.5	47.3	26.1	39.2
2 58 36.3 54.4 43.5 65.3 44.4 66.6 42.6 42.6 6.0.9 60.9 48.8 73.1 49.8 74.6 47.7 47.5 65.3 52.2 78.3 60.9 91.4 69.6 17.7 $L_e \ge L_e \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		11/4	58	26.3	39.4	24.5	36.7	22.7	34.0	20.8	31.3
$L_{e} \geq L_{e} \textit{full} \hspace{0.5cm} \begin{array}{cccccccccccccccccccccccccccccccccccc$	TST.	2	92 28	36.3	54.4	43.5	65.3	44.4	66.6	42.6	63.9
$L_e \geq L_{e \textit{full}} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	STD, SSLT, SSLP, OVS,		88 88	43.5	65.3	52.2	78.3	60.9	91.4	69.6	104
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LSLP	41.0	2	36.3	54.4	12.5	65.2	202	76.1	280	87.0
SSL, 15/8 115/16 21/4 LSLT OVS 111/16 2 25/16 SSLP 111/16 2 25/16 LSLP 21/16 27/16 27/8	LSLT	$L_{\theta} \geq L_{\theta} t_{ull}$	65	40.6	60.9	48.8	73.1	56.9	85.3	65.0	97.5
OVS 111/16 2 25/16 SSLP 111/16 2 25/16 LSLP 27/16 27/16 27/8	Edge di	istance	STD, SSLT, LSLT	15		-	15/16	27	8.40	29,	/16
SSIP 111 ₁₁₆ 2 25 ₇₁₆ LSIP 21 ₇₁₆ 27 ₇₁₈ 27 ₇₈	stre	ngth	SAO	11	1/16	2		25	16	25,	8/
21/16 27/16 27/8	Le > Le	tull ^a , in.	SSLP	11	1/16	2	C	25	1,6	21	1/16
0111			LSLP	21/	16	2	7/16	27	. 8	31/	14
•	ASD	LRFD	- indicate	es spacing	less than m	inimum spa	icing require	ed per AISC	Specification	n Section J	3.3.
LRFD	0=200	A - 0.75	Note: Spac slot in the	Note: Spacing indicated is from the c slot in the line of force. Hole deforma	ed is from the edfo	Note: Spacing indicated is from the center of the hole or slot to the center of the adjacent hole of slot in the line of force. Hole deformation is considered. When hole deformation is not considered.	the hole or considered.	slot to the When hole	Note: Spacing indicated is from the center of the hole or slot to the center of the adjacent hole of slot in the line of force. Hole deformation is considered, When hole deformation is not considered.	adjacent lis not cons	hole of idered,