# **Beam Design and Deflections**

## Notation:

| а                  | =   | name for width dimension            | M <sub>max</sub> .            | $a_{adj} = maximum$ bending moment          |
|--------------------|-----|-------------------------------------|-------------------------------|---------------------------------------------|
| Α                  | =   | name for area                       |                               | adjusted to include self weight             |
| Areg'd.            | adj | = area required at allowable stress | $M_n$                         | nominal flexure strength with the full      |
|                    | ,   | when shear is adjusted to include   |                               | section at the yield stress for LRFD        |
|                    |     | self weight                         | $M_u$                         | = maximum moment from factored              |
| $A_{\rm web}$      | =   | area of the web of a wide flange    |                               | loads for LRFD                              |
|                    |     | section                             | Р                             | = name for axial force vector               |
| b                  | =   | width of a rectangle                | Q                             | = first moment area about a neutral         |
|                    | =   | total width of material at a        |                               | axis                                        |
|                    |     | horizontal section                  | R                             | = radius of curvature of a deformed         |
|                    | =   | name for height dimension           |                               | beam                                        |
| С                  | =   | largest distance from the neutral   | S                             | = section modulus                           |
|                    |     | axis to the top or bottom edge of a | $S_{req'd}$                   | = section modulus required at               |
|                    |     | beam                                |                               | allowable stress                            |
| $C_1$              | =   | coefficient for shear stress for a  | Т                             | = torque (axial moment)                     |
|                    |     | rectangular bar in torsion          | V                             | = internal shear force                      |
| d                  | =   | calculus symbol for differentiation | $V_{max}$                     | = maximum internal shear force              |
| DL                 | =   | shorthand for dead load             | V <sub>max-a</sub>            | adj = maximum internal shear force          |
| Ε                  | =   | modulus of elasticity               |                               | adjusted to include self weight             |
| $f_b$              | =   | bending stress                      | $V_u$                         | = maximum shear from factored loads         |
| $f_p$              | =   | bearing stress (see P)              |                               | for LRFD                                    |
| $f_v$              | =   | shear stress                        | W                             | = name for distributed load                 |
| fv-max             | =   | maximum shear stress                | Wself w                       | $v_t$ = name for distributed load from self |
| $F_b$              | =   | allowable bending stress            |                               | weight of member                            |
| $F_v$              | =   | allowable shear stress              | x                             | = horizontal distance                       |
| $F_p$              | =   | allowable bearing stress            | у                             | = vertical distance                         |
| $F_y$              | =   | yield strength                      | $\varDelta_{actu}$            | aal = actual beam deflection                |
| $F_{yweb}$         | =   | yield strength of the web material  | $\varDelta$ allo              | <i>wable</i> = allowable beam deflection    |
| h                  | =   | height of a rectangle               | $\varDelta$ limit             | $t_t$ = allowable beam deflection limit     |
| Ι                  | =   | moment of inertia with respect to   | $\Delta_{max}$                | = maximum beam deflection                   |
|                    |     | neutral axis bending                | $\phi_{\scriptscriptstyle b}$ | = resistance factor for flexure in          |
| <b>I</b> trial     | =   | moment of inertia of trial section  |                               | LRFD design                                 |
| I <sub>req'd</sub> | =   | moment of inertia required at       | $\phi_{}$                     | = resistance factor for shear for           |
| -                  |     | limiting deflection                 |                               | LRFD                                        |
| J                  | =   | polar moment of inertia             | ν                             | = density or unit weight                    |
| L                  | =   | name for span length                | 0                             |                                             |
| LL                 | =   | shorthand for live load             | θ                             | = slope of the beam deflection curve        |
| LRFL               | ) = | = load and resistance factor design | ρ                             | = radial distance                           |
| M                  | =   | internal bending moment             | J                             | = symbol for integration                    |
| $M_{max}$          | =   | maximum internal bending moment     | Σ                             | = summation symbol                          |

### **Criteria for Design**

Allowable bending stress or bending stress from LRFD should not be  $F_b \ge f_b$  exceeded:

Knowing M and F<sub>b</sub>, the minimum section modulus fitting the limit is:

 $F_{b} \geq f_{b} = \frac{Mc}{I}$  $S_{req'd} \geq \frac{M}{F_{b}}$ 

Besides strength, we also need to be concerned about *serviceability*. This involves things like limiting deflections & cracking, controlling noise and vibrations, preventing excessive settlements of foundations and durability. When we know about a beam section and its material, we can determine beam deformations.

#### Determining Maximum Bending Moment

Drawing V and M diagrams will show us the maximum values for design. Remember:

$$V = \Sigma(-w)dx$$
  

$$M = \Sigma(V)dx$$
  

$$\frac{dV}{dx} = -w$$
  

$$\frac{dM}{dx} = V$$

#### Determining Maximum Bending Stress

For a prismatic member (constant cross section), the maximum normal stress will occur at the maximum moment.

For a *non-prismatic* member, the stress varies with the cross section AND the moment.

#### Deflections

If the bending moment changes, M(x) across a beam of constant material and cross section then the curvature will change:  $\frac{1}{R} = \frac{M(x)}{EI}$ 

The slope of the n.a. of a beam,  $\theta$ , will be tangent to the radius of curvature, R:

$$\theta = slope = \frac{1}{EI} \int M(x) dx$$

The equation for deflection, y, along a beam is:

$$y = \frac{1}{EI} \int \theta dx = \frac{1}{EI} \iint M(x) dx$$

Elastic curve equations can be found in handbooks, textbooks, design manuals, etc...Computer programs can be used as well. (BigBoy Beam freeware: <u>http://forum.simtel.net/pub/pd/33994.html</u>)

Elastic curve equations can be **superpositioned** ONLY if the stresses are in the elastic range.

The deflected shape is roughly the shame shape as the bending moment diagram flipped but is constrained by supports and geometry.





#### **Boundary Conditions**

The boundary conditions are geometrical values that we know – slope or deflection – which may be restrained by supports or symmetry.

At Pins, Rollers, Fixed Supports: y = 0

At Fixed Supports:  $\theta = 0$ 

At Inflection Points From Symmetry:  $\theta = 0$ 

The Slope Is Zero At The Maximum Deflection y<sub>max</sub>:.

$$\theta = \frac{dy}{dx} = slope = 0$$

Allowable Deflection Limits

All building codes and design codes limit deflection for beam types and damage that could happen based on service condition and severity.  $y_{max}(x) = \Delta_{actual} \leq \Delta_{allowable} = \frac{L}{value}$ 

| Use                               | LL only | DL+LL |
|-----------------------------------|---------|-------|
| Roof beams:                       |         |       |
| Industrial                        | L/180   | L/120 |
| Commercial                        |         |       |
| plaster ceiling                   | L/240   | L/180 |
| no plaster                        | L/360   | L/240 |
| Floor beams:                      |         |       |
| Ordinary Usage                    | L/360   | L/240 |
| Roof or floor (damageable element | L/480   |       |



#### Beam Loads & Load Tracing

In order to determine the loads on a beam (or girder, joist, column, frame, foundation...) we can start at the top of a structure and determine the *tributary area* that a load acts over and the beam needs to support. Loads come from material weights, people, and the environment. This area is assumed to be from half the distance to the next beam over to halfway to the next beam.

The reactions must be supported by the next lower structural element *ad infinitum*, to the ground.

#### Design Procedure

The intent is to find the most light weight member satisfying the section modulus size.

- 1. Know  $F_b$  (allowable stress) for the material or  $F_y$  &  $F_u$  for LRFD.
- 2. Draw V & M, finding  $M_{max}$ .
- 3. Calculate  $S_{req'd}$ . This step is equivalent to determining  $f_b = \frac{M_{max}}{S} \leq F_b$
- 4. For rectangular beams  $S = \frac{bh^2}{6}$ 
  - For steel or timber: use the section charts to find S that will work *and remember that* the beam self weight will increase  $S_{req'd}$ . And for steel, the design charts show the lightest section within a grouping of similar S's.  $W_{self wt} = \gamma A$
  - For any thing else, try a nice value for b, and calculate h or the other way around.

\*\*\*\*Determine the "updated"  $V_{max}$  and  $M_{max}$  including the beam self weight, and verify that the updated  $S_{req'd}$  has been met. \*\*\*\*\*

- 5. Consider lateral stability
- 6. Evaluate horizontal shear stresses using  $V_{max}$  to determine if  $f_v \leq F_v$ 
  - For rectangular beams, W's, and others:  $f_{v-max} = \frac{3V}{2A} \approx \frac{V}{A_{web}} \text{ or } \frac{VQ}{Ib}$
- 7. Provide adequate bearing area at supports:
- 8. Evaluate shear due to torsion

$$f_{v} = \frac{T\rho}{J} \text{ or } \frac{T}{c_{1}ab^{2}} \le F_{v}$$

(circular section or rectangular)

9. Evaluate the deflection to determine if  $\Delta_{maxLL} \leq \Delta_{LL-allowed}$  and/or  $\Delta_{maxTotal} \leq \Delta_{T-allowed}$ 

\*\*\*\* note: when  $\Delta_{calculated} > \Delta_{limit}$ ,  $I_{required}$  can be found with: and  $S_{req'd}$  will be satisfied for similar self weight \*\*\*\*\*

 $I_{req'd} \ge \frac{\Delta_{toobig}}{\Delta_{limit}} I_{trial}$ 

 $f_p = \frac{P}{\Lambda} \le F_p$ 

FOR ANY EVALUATION:

Redesign (with a new section) at any point that a stress or serviceability criteria is NOT satisfied and re-evaluate each condition until it is satisfactory.

## **Beam Design Flow Chart**

