ARCH 331

ARCHITECTURAL STRUCTURES

LECTURE NOTE SET
 Summer 2013

Anne Nichols

Associate Professor of Practice
Department of Architecture
A413 Langford
Texas A\&M University
College Station, TX 77843-3137
(979) 845-6540
fax: (979) 862-1571
http:// faculty.arch.tamu.edu/anichols
anichols@,tamu.edu

TABLE OF CONTENTS

Syllabus
Student Understandings
List of Symbol Definitions
Structural Glossary
Note Set 2.1Structural Systems
Note Set 2.2 Structural Planning
Note Set 2.3 Math for Structures
Note Set 2.4 Numerical Computations
Note Set 2.5 Problem Solving, Units and Numerical Accuracy
Note Set 3.1Forces and Vectors
Note Set 3.2Moments
Note Set 4.1 Point Equilibrium and Truss Analysis
Note Set 4.2 Truss Analysis Using Multiframe
Note Set 5.1Equilibrium of Rigid Bodies
Note Set 5.2 Method of Sections for Truss Structures
Note Set 6.1 Mechanics of Materials
Note Set 6.2Stress and Strain - Elasticity
Note Set 6.3Thermal Effects and Indeterminacy
Note Set 6.4 Sustainability Considerations of Materials
Note Set 7. Beam Structures and Internal Forces
Note Set 8.1Beam Analysis Using Multiframe
Note Set 8.2 Beam Diagrams and Formulas
Note Set 9.1 Centers of Gravity - Centroids
Note Set 9.2 Moments of Inertia
Note Set 10.1 Beam Bending Stresses and Shear Stress
Note Set 10.2Introduction to Beam Stress Analysis and Preliminary Design
Note Set 11Pinned Frames and Arches
Note Set 12.1 Rigid and Braced Frames
Note Set 12.2 Columns and Stability
Note Set 12.3 Frame Analysis Using Multiframe
Note Set 13.1 Common Design Loads in Building Codes

Note Set 13.2 Structural Load Requirements
Note Set 13.3Design Wind Pressures - Envelope Procedure
Note Set 13.4 Earthquake Ground Motion
Note Set 13.5 Building Code Requirements by Construction
Note Set 13.6 SEI/ASCE 7-10: Minimum Design Loads for Buildings and Other Structures

Note Set 14 System Assemblies \& Loads Tracing
Note Set 15.1 Wood Design
Note Set 15.2 Beam Design and Deflections
Note Set 18 Steel Design
Note Set 22.1 Reinforced Concrete Design
Note Set 22.2 Steel Reinforcement Charts (Appendix E)
Note Set 24 Torsion
Note Set 25.1 One-Way Frame Analysis
Note Set 25.2 Thickness and Cover Requirements for Fire Protection
Note Set 25.3 Openings in Concrete Slab Systems
Note Set 27.1Foundation Design
Note Set 27.2 Design of Isolated Square and Rectangular Footings
Note Set 28.1 Masonry Design
Note Set 28.2 BIA Technical Notes: Reinforced Brick Masonry Beams
Note Set 28.3 NCMA Tek Notes: Concrete Masonry

ARCH 331. Foundations Structures

Instructor: Prof. Anne B. Nichols
A413 Langford
(979) 845-6540 anichols@tamu.edu

Office Hours: $\quad 11-12 \mathrm{pm}$ MWF
12-1:30 pm TR
(and by appointment)

Catalogue Description: Introduction to the physical principles that govern statics and strength of materials through the design of architectural structures from a holistic view in the context of architectural ideas and examples. Introduction to construction, behavior, and design considerations for simple and complex structural assemblies; computer applications. Concurrent enrollment in ARCH 305. Prerequisites: MATH 142 or equivalent, PHYS 201.

Goals: ARCH 331 is the study of structural design concepts that influence the development of architectural space and form. In all construction, the component parts of a structure must be assigned definite physical sizes, constructed of specific materials and designed to resist various load combinations. The course is divided into three parts: Statics, Strength of Materials, and Design. Statics involves the study of external forces and the effects of these forces on bodies or structural systems in equilibrium (at reset or moving with a constant velocity). Strength of Materials involves analytical methods for determining the strength, stiffness (deformation characteristics), and stability of the various loadcarrying members. Design involves planning, assessing, and meeting structural requirements of parts or the whole which are prescribed by building codes and material structural design specifications.
Objective: To understand the significance, assumptions, applications, and limitations of the basic principles of Statics and Strength of Materials as they apply to the design and analysis of structural members and systems within the context of architectural planning and design.
Text: \quad Statics and Strength of Materials -Foundations for Structural Design, Onouye, (2005) Pearson - Prentice Hall, ISBN 0-13-111837-4

Recommended Texts:

A Structures Primer, Kaufman, (2010) Prentice Hall, ISBN 978-0-13-230256-3 Understanding Structures, Moore, (1999) McGraw-Hill, ISBN 139780070432536
Reference: ACI 318-11 Code and Commentary
AISC $14^{\text {th }}$ ed. Steel Construction Manual
Masonry Joint Structural Code
National Design Specifications for Wood
Timetable: CREDIT $3.0(2: 2) \quad$ 2:00-4:00 pm Lecture/Lab MTWRF
(section 100)
Grading: The levels listed for graded work (projects, quizzes, exams) and pass-fail work (assignments) must both be met to earn the course letter grade:

Letter Grade	Graded work	Pass-fail work
A	A average $(90-100 \%)$	Pass for 90 to 100% of assignments
B	B average $(80-89 \%)$	Pass for 80 to 100% of assignments
C	C average $(70-79 \%)$	Pass for 72 to 100% of assignments
D	D average $(60-69 \%)$	Pass for 62 to 100% of assignments
F	F average $(<59 \%)$	Pass for 0% to 100% of assignments

Graded work: This typically constitutes 6 quizzes, a learning portfolio (worth 1.5 quizzes) and a final exam (worth 3 quizzes). This equates to proportions of approximately 57% to quizzes, 14% to the learning portfolio, and 29% to the final exam.
Pass/fail work: This constitutes all practice assignments and projects, each with a value of 1 unit. Criteria for passing is at least 75% completeness and correctness along with every problem attempted. Percent effort expected for a problem in a practice assignment is provided on the assignment statement. This is considered a lab course and the assignments are required work with credit given for competency. The work is necessary to apply the material and prepare for the quizzes and exam. It is expected that this work will be completed with assistance or group participation, but all graded work is only by the individual.

Policy: 1) Attendance: Necessary. Required.* And subject to University Policy. See Part I Section 7 in Texas A\&M University Student Rules: http://student-rules.tamu.edu/ Absences related to illness or injury must be documented according to http://shs.tamu.edu/attendance.htm including the Explanatory Statement for Absence from class for 3 days or less. Doctor visits not related to immediate illness or injury are not excused absences.
2) Lecture, Lab and Textbook: The lecture slide shows that correspond to the Notes (see \#3) are to be viewed prior to lecture which will be reserved for review of the full lecture and text reading. Lab will consist of problem solving requiring the textbook. The lecture shows are available on the class web page and eCampus (see \#8). Attendance is required for both lecture and lab. Use of electronic devices during lecture/lab is prohibited.
3) Notes: The notes and related handouts are available on the class web page at http://faculty.arch.tamu.edu/anichols/331frame.html, or on eCampus (see \#8). A bound set can be purchased from the Notes-n-Quotes at 701 W . University, directly across from the Mitchell Physics Building in the Northgate Neighborhood.
4) Assignments: Due as stated on the assignment statements. Only one assignment without University excuse may be turned in for credit no later than two lectures after the due date. All other assignments and projects will receive no credit if late without a recognized excuse or after final exams have begun. Assignments with incorrect formatting will be penalized.

Format:
Date Name Course

Given:
Find:
Solution:
5) Quizzes: Quizzes will be given at any time during the period. Make-up quizzes without an excuse will not be given. Practice quizzes will be posted electronically. No quiz scores will be "dropped".
6) Teaching Assistant:
7) Structures Help Desk:

8) eCampus: eCampus is the on-line course system useful for downloading files, uploading assignments, reading messages and replying, as well as posting scores; and is accessed with your neo account. This will be used to post class materials, questions and responses by class members and the instructor, and scores. It can be accessed at http://ecampus.tamu.edu/
9) Final Exam: The final exam will be comprehensive, and is officially scheduled for: 3:30-5:30 PM, Tuesday, July 8.

* Except for death in the family, medical or deans excuse, and natural disasters.

10) Other Resources: The Student Learning Center provides tutoring in math and physics. (http://slc.tamu.edu/tutoring.shtml) Other tutoring services are listed at http://scs.tamu.edu/sites/default/files/tutoring.pdf The Academic Success Center offers workshops at http://us.tamu.edu/Undergraduate-Studies/Academic-Success-Center
11) Aggie Honor Code: "An Aggie does not lie, cheat, or steal or tolerate those who do."

The University policy will be strictly enforced. See Part I Section 20 in Texas A\&M University Student Rules: http://student-rules.tamu.edu/ Plagiarism (deliberate misrepresentation of someone else's work as your own) will be treated strictly according to University policy as outlined by the Office of the Aggie Honor System: http:/www.tamu.edu/aggiehonor/
12) The American with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring accommodation, please contact the Department for Student Life, Services for Students with Disabilities, in Cain Hall or call 845-1637. Also contact Prof. Nichols at the beginning of the semester.
13) Grievances: For grievances other than those listed in Part III in Texas A\&M University Student Rules: http://student-rules.tamu.edu/ the instructor must be the first point of contact.

Learning Objectives:

1) The student will be able to read a text or article about structural technology, identify the key concepts and related equations, and properly apply the concepts and equations to appropriate structural problems (relevance). The student will also be able to define the answers to key questions in the reading material. The student will be able to evaluate their own skills, or lack thereof, with respect to reading and comprehension of structural concepts, clarity of written communication, reasonable determination of precision in numerical data, and accuracy of computations.
2) The student will be able to read a problem statement, interpret the structural wording in order to identify the concepts and select equations necessary to solve the problem presented (significance). The student will be able to identify common steps in solving structural problems regardless of the differences in the structural configuration and loads, and apply these steps in a clear and structured fashion (logic). The student will draw upon existing mathematical and geometrical knowledge to gather information, typically related to locations and dimensions, provided by representational drawings or models of structural configurations, and to present information, typically in the form of plots that graph variable values. The student will be able to draw representational structural models and diagrams, and express information provided by the figures in equation form. The student will compare the computational results in a design problem to the requirements and properly decide if the requirements have been met. The student will take the corrective action to meet the requirements
3) The student will create a structural model with a computer application based on the concepts of the behavior and loading of the structural member or assemblage. The student will be able to interpret the modeling results and relate the results to the solution obtained by manual calculations.
4) The student will be able to articulate the physical phenomena, behavior and design criteria which influence structural space and form. (depth) The student will be able to identify the structural purpose, label, behavior, advantages and disadvantages, and interaction of various types of structural members and assemblies. (breadth) The student will create a physical structure or structures using non-traditional building materials, considering material and structural behavior, in order to demonstrate the behavior and limitations of a variety of structural arrangements. The student will produce proper documentation and drawings of the size, spacing, location and connection of parts for the construction of the structure.
5) The student will interact and participate in group settings to facilitate peer-learning and teaching. In addition, the student will be able to evaluate the comprehension of concepts, clarity of communication of these concepts or calculations, and the precision and accuracy of the data used in the computations in the work of their peers.
$\left.\left.\begin{array}{cll}\text { Tentative Schedule (subject to change at any time throughout the semester) } \\ \text { Lecture }\end{array} \quad \begin{array}{c}\text { Text Topic }\end{array}\right] \begin{array}{l}\text { Articles/ Problems }\end{array}\right]$
[^0]| Lecture | e Text Topic | Articles/ Problems |
| :---: | :---: | :---: |
| 18. | Steel Construction Bolted Connections \& Welds | Read: note set 18
 Due: Assignment 7 over material from lectures 14-16 |
| 19. | Concrete Construction Materials \& Beam Design | Read: note set 22.1
 Reference: note set 22.2 |
| 20. | T-beams \& Slabs | Read: note set 22.1
 Due: Assignment 8 over material from lectures 17 \& 18 |
| 21. | Shear, Torsion, Reinforcement \& Deflection | Read: note sets 22.1 \& 24
 Quiz 5 over material from lectures 15-18 |
| 22. | Floor Systems \& Continuous Beams Columns \& Frames | Read: note sets $22.1 \& 25.1$
 Reference: note set 25.2
 Due: Assignment 9 over material from lectures 19 \& 20 |
| 23. | Foundation Design \& Footings | Read: note sets 27.1 \& 27.2
 Due: Learning Portfolio |
| 24. | Masonry Construction Beams \& Columns | Read: note set 28.1
 Reference: note sets $28.2 \& 28.3$
 Due: Assignment 10 over material from lectures 21-23 Quiz 6 over material from lectures 19-22 |
| | Final Exam Period | Exam (comprehensive) |

| | Sun | Mon | Tue | Wed | Thu | Fri |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ARCH 331. Student Understandings

1) I understand that there are intellectual standards in this course and that I am responsible for monitoring my own learning.
2) I understand that the class will focus on practice, not on lecture \qquad
3) I understand that I am responsible for preparing for lecture with the assigned reading and lecture show by internalizing key concepts, recognizing key questions, and evaluating what makes sense and what doesn't make sense to me \qquad
4) I understand that I will be held regularly responsible for assessing my own work using criteria and standards discussed in class. \qquad
5) I understand that if at any time in the semester I feel unsure about my "grade", I may request an assessment from the instructor \qquad
6) I understand that there are $\mathbf{1 0}$ practice assignments, generally two due every week during the bulk of the semester. \qquad
7) I understand that I will occasionally be required to assess the work of my classmates in an objective manor using the same criteria and standards used to assess my own work. \qquad
8) I understand that there are 6 graded quizzes, generally one given every week during the bulk of the semester \qquad
9) I understand that there is a final exam in the course. \qquad
10) I understand that I must do a Learning Portfolio, which is a self-evaluation that makes my "case" for receiving a particular grade using criteria provided in class and citing evidence from my work across the semester. \qquad
11) I understand that the work of the course requires Consistent classroom attendance and active participation. \qquad
12) I understand that I will regularly be required to demonstrate that I have prepared for lecture. \qquad
13) I understand that the class will not be graded on a curve. I understand that it is theoretically possible for the whole class to get an A or an F. \qquad
14) I understand the basis of the final grade as outlined in the syllabus. \qquad
15) I understand that since the final grade is based on percentages from graded work and competency on assignments as outlined in the syllabus, that the minimum level of both must be satisfied to obtain the letter grade. The criteria for assignments that are considered "passing" is outlined in the syllabus section on Learning Objectives \qquad
NAME (sign and print) \qquad

DATE

\qquad

List of Symbol Definitions

$a \quad$ long dimension for a section subjected to torsion (in, mm); acceleration ($\mathrm{ft} / \mathrm{sec}^{2}, \mathrm{~m} / \mathrm{sec}^{2}$);
width of the base of a retaining wall for pressure calculation (ft, m);
equivalent square column size in spread footing design (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$);
distance used in beam formulas (ft, m);
depth of the effective compression block in a concrete beam (in, mm)
\boldsymbol{A} area bounded by the centerline of a thin walled section subjected to torsion $\left(\mathrm{in}^{2}, \mathrm{~mm}^{2}\right)$
A area, often cross-sectional ($\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}$)
$A_{b} \quad$ area of a bolt ($\mathrm{in}^{2}, \mathrm{~mm}^{2}$)
$A_{e} \quad$ effective net area found from the product of the net area A_{n} by the shear lag factor $U\left(\mathrm{in}^{2}, \mathrm{ft}^{2}\right.$, $\mathrm{mm}^{2}, \mathrm{~m}^{2}$)
A_{g} gross area, equal to the total area ignoring any holes or reinforcement $\left(\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}\right)$
$A_{g v} \quad$ gross area subjected to shear for block shear rupture ($\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}$)
$A_{n} \quad$ net area, equal to the gross area subtracting any holes $\left(\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}\right)\left(\right.$ see $\left.A_{e}\right)$
$A_{\text {net }} \quad$ net area, equal to the gross area subtracting any reinforcement $\left(\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}\right.$)
$A_{n t} \quad$ net area subjected to tension for block shear rupture ($\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}$)
$A_{n v} \quad$ net area subjected to shear for block shear rupture $\left(\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}\right.$)
$A_{p} \quad$ bearing area $\left(\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}\right)$
$A_{\text {req'd }}$ area required to satisfy allowable stress $\left(\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}\right.$)
$A_{s} \quad$ area of steel reinforcement in concrete beam and masonry design $\left(\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}\right.$)
$A_{s}^{\prime} \quad$ area of steel compression reinforcement in concrete beam design ($\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}$)
$A_{s t} \quad$ area of steel reinforcement in concrete and masonry column design $\left(\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}\right.$)
$A_{\text {throat }}$ area across the throat of a weld (in ${ }^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}$)
$A_{v} \quad$ area of concrete shear stirrup reinforcement $\left(\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}\right)$
$A_{\text {web }} \quad$ web area in a steel beam equal to the depth x web thickness $\left(\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}\right.$)
$A_{l} \quad$ area of column in spread footing design $\left(\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}\right)$
$A_{2} \quad$ projected bearing area of column load in spread footing design $\left(\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}\right)$
ASD Allowable Stress Design
$b \quad$ width, often cross-sectional (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$);
narrow dimension for a section subjected to torsion (in, mm);
number of truss members;
rectangular column dimension in concrete footing design (in, mm, m); distance used in beam formulas (ft, m)
$b_{E} \quad$ effective width of the flange of a concrete T beam cross section (in, mm)
$b_{f} \quad$ width of the flange of a steel or concrete T beam cross section (in, mm)
$b_{o} \quad$ perimeter length for two-way shear in concrete footing design (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$)
$b_{w} \quad$ width of the stem (web) of a concrete T beam cross section (in, mm)
$B \quad$ spread footing or retaining wall base dimension in concrete design (ft, m); dimension of a steel base plate for concrete footing design (in, mm, m)
$B_{s} \quad$ width within the longer dimension of a rectangular spread footing that reinforcement must be concentrated within for concrete design (ft, m)
$B_{1} \quad$ factor for determining M_{u} for combined bending and compression
$c \quad$ distance from the neutral axis to the top or bottom edge of a beam (in, mm, m);
distance from the center of a circular shape to the surface under torsional shear strain (in, mm, m);
rectangular column dimension in concrete footing design (in, mm, m);
the distance from the top of a masonry beam to the neutral axis
$c_{i} \quad$ distance from the center of a circular shape to the inner surface under torsional shear strain (in, mm, m)
c_{o} distance from the center of a circular shape to the outer surface under torsional shear strain (in, mm, m)
$c_{1} \quad$ coefficient for shear stress for a rectangular bar in torsion
$c_{2} \quad$ coefficient for shear twist for a rectangular bar in torsion
$C L, \Psi$ center line
C compression label;
compression force (lb, kips, N, kN):
dimension of a steel base plate for concrete footing design (in, mm, m)
$C_{b} \quad$ modification factor for moment in ASD \& LRFD steel beam design, $\mathrm{C}_{\mathrm{b}}=1$ for simply supported beams (0 moments at the ends)
$C_{c} \quad$ column slenderness classification constant for steel column design;
compressive force in the concrete of a doubly reinforced concrete beam (lb, k, N, kN)
$C_{C} \quad$ curvature factor for laminated arch design
$C_{D} \quad$ load duration factor for wood design
$C_{f} \quad$ form factor for circular sections or or square sections loaded in plane of diagonal for wood design
$C_{f u} \quad$ flat use factor for other than decks in wood design
$C_{F} \quad$ size factor for wood design
$C_{H} \quad$ shear stress factor for wood design
$C_{i} \quad$ incising factor for wood design
$C_{L} \quad$ beam stability factor for wood design
$C_{m} \quad$ modification factor for combined stress in steel design;
compression force in the masonry for masonry design ($\mathrm{lb}, \mathrm{k}, \mathrm{N}, \mathrm{kN}$)
$C_{M} \quad$ wet service factor for wood design
$C_{p} \quad$ column stability factor for wood design
$C_{r} \quad$ repetitive member factor for wood design
$C_{v} \quad$ web shear coefficient for steel design
$C_{V} \quad$ volume factor for glue laminated timber design
$C_{s} \quad$ compressive force in the compression steel of a doubly reinforced concrete beam (lb, k, N, KN)
$C_{t} \quad$ temperature factor for wood design
d depth, often cross-sectional (in, mm, m); diameter (in, mm, m);
perpendicular distance from a force to a point in a moment calculation (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$);
effective depth from the top of a reinforced concrete or masonry beam to the centroid of the tensile steel (in, ft, mm, m):
critical cross section dimension of a rectangular timber column cross section related to the profile (axis) for buckling (in, mm, m);
symbol in calculus to represent a very small change (like the greek letters for d, see $\delta \& \Delta$)
$d^{\prime} \quad$ effective depth from the top of a reinforced concrete beam to the centroid of the compression steel (in, ft, mm, m)
$d_{b} \quad$ bar diameter of a reinforcing bar (in, mm)
nominal bolt diameter (in, mm)
$d_{f} \quad$ depth of a steel column flange (wide flange section) (in, mm)
$d_{x} \quad$ difference in the x direction between an area centroid $(\overline{\mathrm{x}})$ and the centroid of the composite shape (\hat{x}) (in, mm)
$d_{y} \quad$ difference in the y direction between an area centroid $(\overline{\mathrm{y}})$ and the centroid of the composite shape ($\hat{\mathrm{y}}$) (in, mm)
$D \quad$ diameter of a circle (in, mm, m);
dead load for LRFD design
DL dead load
$e \quad$ eccentric distance of application of a force (P) from the centroid of a cross section (in, mm)
$E \quad$ modulus of elasticity (psi; ksi, $\mathrm{kPa}, \mathrm{MPa}, \mathrm{GPa}$);
earthquake load for LRFD design
$E_{c} \quad$ modulus of elasticity of concrete ($\mathrm{psi} ; \mathrm{ksi}, \mathrm{kPa}, \mathrm{MPa}, \mathrm{GPa}$)
E_{s} modulus of elasticity of steel (psi; ksi, kPa, MPa, GPa)
f symbol for stress ($\mathrm{psi}, \mathrm{ksi}, \mathrm{kPa}, \mathrm{MPa}$)
$f_{a} \quad$ calculated axial stress $(\mathrm{psi}, \mathrm{ksi}, \mathrm{kPa}, \mathrm{MPa})$
$f_{b} \quad$ calculated bending stress ($\mathrm{psi}, \mathrm{ksi}, \mathrm{kPa}, \mathrm{MPa}$)
$f_{c} \quad$ calculated compressive stress ($\mathrm{psi}, \mathrm{ksi}, \mathrm{kPa}, \mathrm{MPa}$)
$f_{c}^{\prime} \quad$ concrete design compressive stress ($\mathrm{psi}, \mathrm{ksi}, \mathrm{kPa}, \mathrm{MPa}$)
$f_{c r} \quad$ calculated column stress based on the critical column load $\mathrm{P}_{\mathrm{cr}}(\mathrm{psi}, \mathrm{ksi}, \mathrm{kPa}, \mathrm{MPa})$
$f_{m} \quad$ calculated compressive stress in masonry ($\mathrm{psi}, \mathrm{ksi}, \mathrm{kPa}, \mathrm{MPa}$)
$f_{m}^{\prime} \quad$ masonry design compressive stress ($\mathrm{psi}, \mathrm{ksi}, \mathrm{kPa}, \mathrm{MPa}$)
$f_{p} \quad$ calculated bearing stress ($\mathrm{psi}, \mathrm{ksi}, \mathrm{kPa}, \mathrm{MPa}$)
$f_{s} \quad$ stress in the steel reinforcement for concrete or masonry design (psi, ksi, $\mathrm{kPa}, \mathrm{MPa}$)
$f_{s}^{\prime} \quad$ compressive stress in the compression reinforcement for concrete beam design (psi, ksi, kPa , MPa)
$f_{t} \quad$ calculated tensile stress ($\mathrm{psi}, \mathrm{ksi}, \mathrm{kPa}, \mathrm{MPa}$)
$f_{v} \quad$ calculated shearing stress (psi, ksi, $\mathrm{kPa}, \mathrm{MPa}$)
$f_{x} \quad$ combined stress in the direction of the major axis of a column ($\mathrm{psi}, \mathrm{ksi}, \mathrm{kPa}, \mathrm{MPa}$)
$f_{y} \quad$ yield stress (psi, ksi, $\mathrm{kPa}, \mathrm{MPa}$)
$F \quad$ force (lb, kip, N, kN);
capacity of a nail in shear (lb, kip, N, kN);
symbol for allowable stress in design codes (psi, ksi, kPa, MPa);
fluid load for LRFD design
$F_{a} \quad$ allowable axial stress (psi, ksi, $\mathrm{kPa}, \mathrm{MPa}$)
$F_{b} \quad$ allowable bending stress ($\mathrm{psi}, \mathrm{ksi}, \mathrm{kPa}, \mathrm{MPa}$)
$F_{b}^{\prime} \quad$ allowable bending stress for combined stress for wood design (psi, ksi, $\mathrm{kPa}, \mathrm{MPa}$)
$F_{c} \quad$ allowable compressive stress (psi, ksi, kPa, MPa)
$F_{c \perp} \quad$ allowable compressive stress perpendicular to the wood grain (psi, ksi, $\mathrm{kPa}, \mathrm{MPa}$)
$F_{\text {connector }} \quad$ resistance capacity of a connector (lb, kips, N, kN)
$F_{C E} \quad$ intermediate compressive stress for ASD wood column design dependant on material (psi, ksi, $\mathrm{kPa}, \mathrm{MPa}$)
$F_{c r} \quad$ flexural buckling (column) stress in ASD and LRFD (psi, ksi, kPa, MPa)
$F_{c}^{\prime} \quad$ allowable compressive stress for ASD wood column design (psi, ksi, kPa, MPa)
$F^{*}{ }_{c} \quad$ intermediate compressive stress for ASD wood column design dependant on load duration (psi, ksi, kPa, MPa)
$F_{e} \quad$ elastic critical buckling stress is steel design
$F_{\text {EXX }}$ yield strength of weld material (psi, ksi, $\mathrm{kPa}, \mathrm{MPa}$)
$F_{\text {horizontal-resist }}$ resultant frictional force resisting sliding in a footing or retaining wall (lb, kip, N, kN)
$F_{n} \quad$ nominal strength in LRFD steel design (psi, ksi, kPa, MPa)
nominal tension or shear strength of a bolt ($\mathrm{psi}, \mathrm{ksi}, \mathrm{kPa}, \mathrm{MPa}$)
$F_{p} \quad$ allowable bearing stress parallel to the wood grain (psi, ksi, $\mathrm{kPa}, \mathrm{MPa}$)
$F_{s} \quad$ allowable tensile stress in reinforcement for masonry design (psi, ksi, $\mathrm{kPa}, \mathrm{MPa}$)
$F_{\text {sliding }}$ resultant force causing sliding in a footing or retaining wall (lb, kip, N, kN)
$F_{t} \quad$ allowable tensile stress (psi, ksi, $\mathrm{kPa}, \mathrm{MPa}$)
$F_{v} \quad$ allowable shear stress (psi, ksi, kPa, MPa);
allowable shear stress in a welded connection
$F_{x} \quad$ force component in the x coordinate direction (lb, kip, N, kN)
$F_{y} \quad$ force component in the y coordinate direction (lb, kip, N, kN); yield stress (psi, ksi, kPa, MPa)
$F_{y w} \quad$ yield stress in the web of a steel wide flange section (psi, ksi, $\mathrm{kPa}, \mathrm{MPa}$)
$F_{u} \quad$ ultimate stress a material can sustain prior to failure ($\mathrm{psi}, \mathrm{ksi}, \mathrm{kPa}, \mathrm{MPa}$)
F.S. factor of safety
$g \quad$ acceleration due to gravity, $32.17 \mathrm{ft} / \mathrm{sec}^{2}, 9.807 \mathrm{~m} / \mathrm{sec}^{2}$;
gage spacing of staggered bolt holes (in, mm)
$G \quad$ shear modulus (psi; ksi, kPa, MPa, GPa);
gigaPascals ($10^{9} \mathrm{~Pa}$ or $1 \mathrm{kN} / \mathrm{mm}^{2}$);
relative stiffness of columns to beams in a rigid connection (see Ψ);
specific gravity (ie. factor multiplied by density of water to get density)
h depth, often cross-sectional (in, ft, mm, m);
height (in, ft, mm, m);
sag of a cable structure (ft, m);
effective height of a wall or column (see ℓ_{e})
$h_{c} \quad$ height of the web of a wide flange steel section (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$)
$h_{f} \quad$ depth of a flange in a T section (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$);
height of a concrete spread footing (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$)
H hydraulic soil load for LRFD design;
height of retaining wall (ft, m)
$H_{A} \quad$ horizontal force due to active soil pressure ($\mathrm{lb}, \mathrm{k}, \mathrm{N}, \mathrm{kN}$)
I moment of inertia ($\mathrm{in}^{4}, \mathrm{~mm}^{4}, \mathrm{~m}^{4}$)
$\bar{I} \quad$ moment of inertia about the centroid $\left(\mathrm{in}^{4}, \mathrm{~mm}^{4}, \mathrm{~m}^{4}\right)$
$I_{c} \quad$ moment of inertia about the centroid (in ${ }^{4}, \mathrm{~mm}^{4}, \mathrm{~m}^{4}$)
$I_{\text {min }} \quad$ minimum moment of inertia of I_{x} and $\mathrm{I}_{\mathrm{y}}\left(\mathrm{in}^{4}, \mathrm{~mm}^{4}, \mathrm{~m}^{4}\right)$
$I_{\text {transformed }}$ moment of inertia of a multi-material section transformed to one material

$$
\left(\mathrm{in}^{4}, \mathrm{~mm}^{4}, \mathrm{~m}^{4}\right)
$$

$I_{x} \quad$ moment of inertia with respect to an x -axis $\left(\mathrm{in}^{4}, \mathrm{~mm}^{4}, \mathrm{~m}^{4}\right)$
$I_{y} \quad$ moment of inertia with respect to a y-axis $\left(\mathrm{in}^{4}, \mathrm{~mm}^{4}, \mathrm{~m}^{4}\right)$
$j \quad$ multiplier by effective depth of masonry section for moment arm, jd (see d)
$J, J_{o} \quad$ polar moment of inertia $\left(\mathrm{in}^{4}, \mathrm{~mm}^{4}, \mathrm{~m}^{4}\right)$
$k \quad$ kips (1000 lb);
shape factor for plastic design of steel beams, $\mathrm{M}_{\mathrm{p}} / \mathrm{M}_{\mathrm{y}}$;
effective length factor for columns (also K);
distance from outer face of W flange to the web toe of fillet (in, mm);
multiplier by effective depth of masonry section for neutral axis, kd
kg kilograms
$k N \quad$ kiloNewtons $\left(10^{3} \mathrm{~N}\right)$
$k P a \quad$ kiloPascals $\left(10^{3} \mathrm{~Pa}\right)$
$K \quad$ effective length factor with respect to column end conditions (also k); masonry mortar strength designation
$K_{c E} \quad$ material factor for wood column design
$\ell \quad$ length (in, ft, mm, m);
cable span (ft, m)
$l_{d} \quad$ development length for reinforcing steel (in, $\left.\mathrm{ft}, \mathrm{mm}, \mathrm{m}\right) \quad\left(\right.$ also $\left.L_{d}\right)$
$l_{d c} \quad$ development length for column dowels (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$)
$l_{d h} \quad$ development length for hooks (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$)
$\ell_{e} \quad$ effective length that can buckle for wood column design (in, ft, mm, m) (also L_{e})
$l_{n} \quad$ clear span from face of support to face of support in concrete design (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$)
$l_{s} \quad$ lap splice length in concrete design (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$)
$l b \quad$ pound force
$L \quad$ length (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$);
live load for LRFD design;
spread footing dimension in concrete design (ft, m)
$L_{b} \quad$ unbraced length of a steel beam in LRFD design (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$)
$L_{c} \quad$ clear distance between the edge of a hole and edge of next hole or edge of the connected steel plate in the direction of the load (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$)
$L_{d} \quad$ development length of reinforcement in concrete $(\mathrm{ft}, \mathrm{m})$ (also l_{d})
$L_{e} \quad$ effective length that can buckle for column design (in, $\left.\mathrm{ft}, \mathrm{mm}, \mathrm{m}\right)\left(\right.$ also $\left.\ell_{e}\right)$
$L_{m} \quad$ projected length for bending in concrete footing design (ft, m)
$L_{p} \quad$ maximum unbraced length of a steel beam in LRFD design for full plastic flexural strength (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m})$
$L_{r} \quad$ roof live load in LRFD design;
maximum unbraced length of a steel beam in LRFD design for inelastic lateral-torsional
buckling (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$)
$L^{\prime} \quad$ length of an angle in a connector with staggered holes (in, mm);
length of the one-way shear area in concrete footing design (ft, m)
$L L \quad$ live load
$L R F D$ Load and Resistance Factor Design
$m \quad$ mass (lb-mass, g, kg);
meters
$\mathrm{mm} \quad$ millimeters
M moment of a force or couple (lb-ft, kip-ft, N-m, kN-m);
bending moment (lb-ft, kip-ft, N-m, kN-m);
masonry mortar strength designation
$M_{a} \quad$ required bending moment in steel ASD beam design (unified) (lb-ft, kip- $\mathrm{ft}, \mathrm{N}-\mathrm{m}, \mathrm{kN}-\mathrm{m}$)
$M_{A} \quad$ moment value at quarter point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, N-m, kN-m)
$M_{B} \quad$ moment value at half point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, $\mathrm{N}-\mathrm{m}$, $\mathrm{kN}-\mathrm{m}$)
$M_{C} \quad$ moment value at three quarter point of unbraced beam length for LRFD beam design ($\mathrm{lb}-\mathrm{ft}$, kip-ft, $\mathrm{N}-\mathrm{m}, \mathrm{kN}-\mathrm{m}$)
$M_{m} \quad$ moment capacity of a reinforced masonry beam (lb-ft, kip-ft, N-m, $\mathrm{kN}-\mathrm{m}$)
$M_{n} \quad$ nominal flexure strength with the full section at the yield stress for LRFD steel beam design (lb-ft, kip-ft, N-m, kN-m);
nominal flexure strength with the steel reinforcement at the yield stress and compressive stress at the concrete design strength for reinforced beam design (lb-ft, kip-ft, N-m, kN-m)
$M_{\text {overturning }}$ resulting moment from all forces on a footing or retaining wall causing overturning (lb-ft, kip-ft, $\mathrm{N}-\mathrm{m}, \mathrm{kN}-\mathrm{m}$)
$M_{p} \quad$ (also $\mathrm{M}_{\mathrm{ult}}$) internal bending moment when all fibers in a cross section reach the yield stress (lbft , kip-ft, $\mathrm{N}-\mathrm{m}, \mathrm{kN}-\mathrm{m}$)
$M_{\text {resist }}$ resulting moment from all forces on a footing or retaining wall resisting overturning (lb- ft , kip$\mathrm{ft}, \mathrm{N}-\mathrm{m}, \mathrm{kN}-\mathrm{m}$)
$M_{u} \quad$ maximum moment from factored loads for LRFD beam design (lb-ft, kip-ft, $\mathrm{N}-\mathrm{m}, \mathrm{kN}-\mathrm{m}$)
$M_{\text {ult }} \quad\left(\right.$ also $\left.\mathrm{M}_{\mathrm{p}}\right)$ internal bending moment when all fibers in a cross section reach the yield stress (lb ft , kip-ft, N-m, kN-m)
$M_{y} \quad$ internal bending moment when the extreme fibers in a cross section reach the yield stress (lb - ft , kip-ft, N-m, kN-m)
$M_{1} \quad$ smaller end moment used to calculate C_{m} for combined stresses in a beam-column (lb-ft, kip-ft, $\mathrm{N}-\mathrm{m}, \mathrm{kN}-\mathrm{m}$)
M_{2} larger end moment used to calculate C_{m} for combined stresses in a beam-column (lb-ft, kip-ft, $\mathrm{N}-\mathrm{m}, \mathrm{kN}-\mathrm{m}$)
$M P a$ megaPascals ($10^{6} \mathrm{~Pa}$ or $1 \mathrm{~N} / \mathrm{mm}^{2}$)
$n \quad$ number of truss joints, nails or bolts;
modulus of elasticity transformation coefficient for steel to concrete or masonry
n.a. neutral axis (axis connecting beam cross-section centroids)
$N \quad$ Newtons (kg-m/sec ${ }^{2}$);
bearing-type connection with bolt threads included in shear plane;
normal load (lb, kip, N, kN);
masonry mortar strength designation;
bearing length on a wide flange steel section (in, mm);
number of stories
o point of overturning of a retaining wall, commonly at the "toe"
o.c. on-center
O point of origin;
masonry mortar strength designation
$p \quad$ pitch of nail or bolt spacing (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$);
pressure ($\mathrm{lb} / \mathrm{ft}^{2}, \mathrm{kips} / \mathrm{ft}^{2}, \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~Pa}, \mathrm{MPa}$)
$p_{A} \quad$ active soil pressure $\left(\mathrm{lb} / \mathrm{ft}^{2}, \mathrm{kips} / \mathrm{ft}^{2}, \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~Pa}, \mathrm{MPa}\right)$
P force, concentrated (point) load (lb, kip, N, kN);
axial load in a column or beam-column (lb, kip, N, kN)
$P_{a} \quad$ allowable axial load (lb, kip, N, kN);
required axial force in ASD steel design (unified) (lb, kip, N, kN)
$P_{\text {allowable }}$ allowable axial load (lb, kip, N, kN)
$P_{c} \quad$ available axial strength for steel unified design (lb, kip, N, kN)
$P_{c r} \quad$ critical (failure) load in column calculations (lb, kip, N, kN)
$P_{\text {dowels }}$ nominal capacity of dowels from concrete column to footing in concrete design ((lb, kip, N, kN)
$P_{e l} \quad$ Euler buckling strength in steel unified design (lb, kip, N, kN)
$P_{n} \quad$ nominal column or bearing load capacity in LRFD steel and concrete design (lb, kip, N, kN); nominal axial load for a tensile member or connection in LRFD steel (lb, kip, N, kN)
$P_{o} \quad$ maximum axial force with no concurrent bending moment in a reinforced concrete column (lb, kip, N, kN)
$P_{r} \quad$ required axial force in steel unified design (lb, kip, N, kN)
P_{u} factored column load calculated from load factors in LRFD steel and concrete design (lb, kip, N, kN);
factored axial load for a tensile member or connection in LRFD steel (lb, kip, N, kN)
$P a \quad$ Pascals ($\mathrm{N} / \mathrm{m}^{2}$)
$q \quad$ shear flow (lb/in, kips/ft, $\mathrm{N} / \mathrm{m}, \mathrm{kN} / \mathrm{m}$);
soil bearing pressure ($\mathrm{lb} / \mathrm{ft}^{2}, \mathrm{kips} / \mathrm{ft}^{2}, \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~Pa}, \mathrm{MPa}$)
$q_{\text {allowed }}$ allowable soil bearing pressure ($\mathrm{lb} / \mathrm{ft}^{2}, \mathrm{kips} / \mathrm{ft}^{2}, \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~Pa}, \mathrm{MPa}$)
$q_{g} \quad$ gross allowed soil pressure ($\mathrm{lb} / \mathrm{ft}^{2}, \mathrm{kips} / \mathrm{ft}^{2}, \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~Pa}, \mathrm{MPa}$)
$q_{\text {net }} \quad$ net allowed soil bearing pressure ($\mathrm{lb} / \mathrm{ft}^{2}, \mathrm{kips} / \mathrm{ft}^{2}, \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~Pa}, \mathrm{MPa}$)
$q_{u} \quad$ ultimate soil bearing strength in allowable stress design ($\mathrm{lb} / \mathrm{ft}^{2}, \mathrm{kips} / \mathrm{ft}^{2}, \mathrm{~N} / \mathrm{m}, \mathrm{Pa}, \mathrm{MPa}$);
factored soil bearing pressure in concrete design from load factors ($\mathrm{lb} / \mathrm{ft}^{2}, \mathrm{kips} / \mathrm{ft}^{2}, \mathrm{~N} / \mathrm{m}, \mathrm{Pa}$, MPa)
$Q \quad$ first moment area used in shearing stress calculations $\left(\mathrm{in}^{3}, \mathrm{~mm}^{3}, \mathrm{~m}^{3}\right)$: generic axial load quantity for LRFD design (also see R)
$Q_{\text {connected }}$ first moment area used in shearing stress calculations for built-up beams ($\mathrm{in}^{3}, \mathrm{~mm}^{3}, \mathrm{~m}^{3}$)
$Q_{x} \quad$ first moment area about an x axis (using y distances) ($\mathrm{in}^{3}, \mathrm{~mm}^{3}, \mathrm{~m}^{3}$)
$Q_{y} \quad$ first moment area about an y axis (using x distances) ($\mathrm{in}^{3}, \mathrm{~mm}^{3}, \mathrm{~m}^{3}$)
$r \quad$ radius of a circle or arc (in, mm, m);
radius of gyration (in, mm, m)
$r_{o} \quad$ polar radius of gyration (in, mm, m)
$r_{x} \quad$ radius of gyration with respect to an x -axis (in, mm, m)
$r_{y} \quad$ radius of gyration with respect to a y -axis(in, $\left.\mathrm{mm}, \mathrm{m}\right)$
$R \quad$ force, reaction or resultant (lb, kip, N, kN);
radius of curvature of a beam (ft, m);
rainwater or ice load for LRFD design;
generic load quantity (force, shear, moment, etc.) for LRFD design (also see Q);
radius of curvature of a laminated arch (ft, m)
$R_{a} \quad$ required strength (ASD-unified) (also see V_{a}, M_{a})
$R_{n} \quad$ concrete beam design ratio $=\mathrm{M}_{\mathrm{u}} / \mathrm{bd}^{2}\left(\mathrm{lb} / \mathrm{in}^{2}, \mathrm{MPa}\right)$
nominal value for LRFD design to be multiplied by ϕ (also see P_{n}, M_{n})
nominal value for ASD design to be divided by the safety factor Ω
$R_{u} \quad$ design value for LRFD design based on load factors (also see P_{u}, M_{u})
$R_{x} \quad$ reaction or resultant component in the x coordinate direction (lb, kip, N, kN)
$R_{y} \quad$ reaction or resultant component in the y coordinate direction (lb, kip, N, kN)
$s \quad$ length of a segment of a thin walled section (in, mm); spacing of stirrups in reinforced concrete beams (in, mm);
longitudinal center-to-center spacing of any two consecutive holes (in, mm)
s.w. self-weight
$S \quad$ section modulus $\left(\mathrm{in}^{3}, \mathrm{~mm}^{3}, \mathrm{~m}^{3}\right)$;
snow load for LRFD design;
allowable strength per length of a weld for a given size (lb/in, kips/in, N/mm, kN/m);
masonry mortar strength designation
$S_{\text {required }}$ section modulus required to not exceed allowable bending stress $\left(\mathrm{in}^{3}, \mathrm{~mm}^{3}, \mathrm{~m}^{3}\right)$
$S_{x} \quad$ section modulus with respect to the x-centroidal axis $\left(\mathrm{in}^{3}, \mathrm{~mm}^{3}, \mathrm{~m}^{3}\right.$)
$S_{y} \quad$ section modulus with respect to the y-centroidal axis $\left(\mathrm{in}^{3}, \mathrm{~mm}^{3}, \mathrm{~m}^{3}\right.$)
$S C$ slip critical bolted connection
S4S surface-four-sided
$t \quad$ thickness (in, mm, m)
$t_{f} \quad$ thickness of the flange of a steel beam cross section (in, mm, m)
$t_{w} \quad$ thickness of the web of a steel beam cross section (in, mm, m)
T tension label;
tensile force (lb, kip, N, kN);
torque (lb-ft, k-ft, N-m, kN-m);
throat size of a weld (in, mm);
effect of thermal load for LRFD design;
period of vibration (sec)
$T_{s} \quad$ tension force in the steel reinforcement for masonry design (lb, kip, N, kN)
$U \quad$ shear lag factor for steel tension member design (see A_{e} and $A_{n e t}$)
$U_{b s} \quad$ reduction coefficient for block shear rupture
$v \quad$ shear force per unit length ($\mathrm{lb} / \mathrm{ft}, \mathrm{k} / \mathrm{ft}, \mathrm{N} / \mathrm{m}, \mathrm{kN} / \mathrm{m}$) (see q)
$V \quad$ volume $\left(\mathrm{in}^{3}, \mathrm{ft}^{3}, \mathrm{~mm}^{3}, \mathrm{~m}^{3}\right)$;
shear force ($\mathrm{lb}, \mathrm{k}, \mathrm{N}, \mathrm{kN}$);
wind speed ($\mathrm{mi} / \mathrm{hr}, \mathrm{m} / \mathrm{hr}$)
$V_{a} \quad$ required shear in steel ASD design (unified) (lb, kip, N, kN)
$V_{c} \quad$ shear force capacity in concrete (lb, kip, N, kN)
$V_{n} \quad$ nominal shear strength capacity for LRFD beam design (lb, kip, N, kN)
$V_{s} \quad$ shear force capacity in steel shear stirrups(lb, kip, N, kN)
$V_{u} \quad$ maximum shear from factored loads for LRFD design (lb, kip, N, kN);
shear at a distance d away from the face of support for reinforced concrete beam design (lb, kip, N, kN)
$V_{u l} \quad$ maximum one-way shear from factored loads for LRFD beam design (lb, kip, N, kN)
$V_{u 2}$ maximum two-way shear from factored loads for LRFD beam design (lb, kip, N, kN)
$w \quad$ load per unit length on a beam (lb/ft, k/ft, N/m, kN/m) (also ω); load per unit area ($\mathrm{lb} / \mathrm{ft}^{2}, \mathrm{kips} / \mathrm{ft}^{2}, \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~Pa}, \mathrm{MPa}$); width dimension (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$)
$w_{\text {adjusted }}$ adjusted distributed load for equivalent live load deflection limit (lb/ft, kip/ft, $\mathrm{N} / \mathrm{m}, \mathrm{kN} / \mathrm{m}$)
$w_{c} \quad$ weight of reinforced concrete per unit volume ($\mathrm{lb} / \mathrm{ft}^{3}, \mathrm{~N} / \mathrm{m}^{3}$)
$w_{\text {equivalent }}$ the equivalent distributed load derived from the maximum bending moment ($\mathrm{lb} / \mathrm{ft}$, kip/ ft , $\mathrm{N} / \mathrm{m}, \mathrm{kN} / \mathrm{m}$)
$w_{u} \quad$ factored load per unit length on a beam from load factors ($\mathrm{lb} / \mathrm{ft}, \mathrm{kip} / \mathrm{ft}, \mathrm{N} / \mathrm{m}, \mathrm{kN} / \mathrm{m}$); factored load per unit area on a surface from load factors ($\mathrm{lb} / \mathrm{ft}^{2}$, $\mathrm{kip} / \mathrm{ft}^{2}, \mathrm{~N} / \mathrm{m}^{2}, \mathrm{kN} / \mathrm{m}^{2}$)
$W \quad$ weight (lb, kip, N, kN);
total load from a uniform distribution (lb, kip, N, kN);
wind load for LRFD design;
wide flange shape designation (i.e. $\mathrm{W} 21 \times 68$)
$x \quad$ a distance in the x direction (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$);
the distance from the top of a concrete beam to the neutral axis
$\bar{x} \quad$ the distance in the x direction from a reference axis to the centroid of a shape (in, mm)
$\hat{x} \quad$ the distance in the x direction from a reference axis to the centroid of a composite shape (in, mm)

X bearing-type connection with bolt threads excluded from shear plane
$y \quad$ a distance in the y direction (in, $\mathrm{ft}, \mathrm{mm}, \mathrm{m}$);
distance from the neutral axis to the y-level of a beam cross section (in, mm)
$\bar{y} \quad$ the distance in the y direction from a reference axis to the centroid of a shape (in, mm)
\hat{y} the distance in the y direction from a reference axis to the centroid of a composite shape (in, mm)
$Z \quad$ plastic section modulus of a steel beam $\left(\mathrm{in}^{3}, \mathrm{~mm}^{3}\right)$;
lateral design value for a single fastener in a timber connection (lb/nail, $\mathrm{k} / \mathrm{bolt}$)
$Z_{x} \quad$ plastic section modulus of a steel beam with respect to the x axis $\left(\mathrm{in}^{3}, \mathrm{~mm}^{3}\right)$
' symbol for feet
" symbol for inches
\# symbol for pounds
$=$ symbol for equal to
\approx symbol for approximately equal to
$\propto \quad$ symbol for proportional to
$\leq \quad$ symbol for less than or equal to
\int symbol for integration
$\alpha \quad$ coefficient of thermal expansion $\left(/{ }^{\circ} \mathrm{C}, /{ }^{\circ} \mathrm{F}\right)$;
angle, in a math equation (degrees, radians)
$\beta \quad$ angle, in a math equation (degrees, radians)
$\beta_{c} \quad$ ratio of long side to short side of the column in concrete footing design
$\beta_{1} \quad$ coefficient for determining stress block height, a, based on concrete strength, f_{c}^{\prime}; coefficient for determining stress block height, c, in masonry LRFD design
$\delta \quad$ elongation (in, mm)
$\delta_{P} \quad$ elongation due to axial load (in, mm)
$\delta_{s} \quad$ shear deformation (in, mm)
$\delta_{T} \quad$ elongation due to change in temperature (in, mm)
Δ beam deflection (in, mm); an increment
$\Delta_{L L} \quad$ beam deflection due to live load (in, mm)
$\Delta_{\max } \quad$ maximum calculated beam deflection (in, mm)
$\Delta_{T L} \quad$ beam deflection due to total load (in, mm)
$\Delta_{x} \quad$ beam deflection in beam diagrams and formulas (in, mm)
$\Delta T \quad$ change in temperature $\left({ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}\right)$
$\varepsilon \quad$ strain (no units)
$\varepsilon_{t} \quad$ thermal strain (no units)
$\varepsilon_{y} \quad$ yield strain (no units)
$\phi \quad$ diameter symbol;
angle of twist (degrees, radians);
resistance factor in LRFD steel design and reinforced concrete design
$\phi_{b} \quad$ resistance factor for flexure in LRFD design
$\phi_{c} \quad$ resistance factor for compression in LRFD design
$\phi_{t} \quad$ resistance factor for tension in LRFD design
ϕ_{v} resistance factor for shear in LRFD design
$\mu \quad$ Poisson's ratio;
coefficient of static friction
$\gamma \quad$ specific gravity of a material ($\mathrm{lb} / \mathrm{in}^{3}, \mathrm{lb} / \mathrm{ft}^{3}, \mathrm{~N} / \mathrm{m}^{3}, \mathrm{kN} / \mathrm{m}^{3}$);
angle, in a math equation (degrees, radians);
shearing strain;
load factor in LRFD design
γ_{D} dead load factor in LRFD design
γ_{L} live load factor in LRFD design
$\theta \quad$ angle, in a trig equation, ex. $\sin \theta$ (degrees, radians); slope of the deflection of a beam at a point (degrees, radians)
$\pi \quad$ pi $\left(180^{\circ}\right)$
$\rho \quad$ radial distance (in, mm);
radius of curvature in beam deflection relationships (ft, m);
reinforcement ratio in concrete beam design $=\mathrm{A}_{\mathrm{s}} / \mathrm{bd}$
$\rho_{b} \quad$ balanced reinforcement ratio in masonry design
$\rho_{\text {balanced }}$ balanced reinforcement ratio in concrete beam design
$\rho_{g} \quad$ reinforcement ratio in concrete column design $=\mathrm{A}_{\mathrm{st}} / \mathrm{A}_{\mathrm{g}}$
$\rho_{\max }$ maximum reinforcement ratio allowed in concrete beam design for ductile behavior
$\sigma \quad$ engineering symbol for normal stress (axial or bending)
$\tau \quad$ engineering symbol for shearing stress
$v_{c} \quad$ shear strength in concrete design
$\omega \quad$ load per unit length on a beam (lb/ft, kip/ft, $\mathrm{N} / \mathrm{m}, \mathrm{kN} / \mathrm{m}$) (see w);
load per unit area ($\mathrm{lb} / \mathrm{ft}^{2}$, $\mathrm{kips} / \mathrm{ft}^{2}, \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~Pa}, \mathrm{MPa}$)
$\omega^{\prime} \quad$ load per unit volume ($\mathrm{lb} / \mathrm{ft}, \mathrm{kip} / \mathrm{ft}, \mathrm{N} / \mathrm{m}, \mathrm{kN} / \mathrm{m}$) (see γ)
Σ summation symbol
$\Omega \quad$ safety factor for ASD of steel (unified)
$\Psi \quad$ relative stiffness of columns to beams in a rigid connection (see G)

Structural Glossary

Allowable strength: Nominal strength divided by the safety factor.
Allowable stress: Allowable strength divided by the appropriate section property, such as section modulus or cross section area.

Applicable building code: Building code und which the structure is designed.
ASD (Allowable Strength Design): Method of proportioning structural components such that the allowable strength equals or exceeds the required strength of the component under the action of the ASD load combinations.

ASD load combination: Load combination in the applicable building code intended for allowable strength design (allowable stress design).

ASTM standards: The American Society of Testing and Materials specifies standards for performance and testing of construction materials.

Axial force: A force that is acting along the longitudinal axis of a structural member.
Base shear: A lateral (wind or seismic) force acting at the base of a structure.
Beam: Structural member that has the primary function of resisting bending moments.
Beam-column: Structural member that resists both axial force and bending moment.
Bearing (local compressive yielding): Limit state of local compressive yielding due to the action of a member bearing against another member or surface.

Bending moment: A force rotating about a point; causes bending in beams, etc.
Block shear rupture: In a connection, limit state of tension fracture along one path and shear yielding or shear fracture along another path.
Bracing: Diagonal members that are used to stiffen a structure, by utilizing the inherent in-plane stiffness of a triangular framework.

Braced frame: An essentially vertical truss system that provides resistance to lateral forces and provides stability for the structural system.
Buckling: Limit state of sudden change in the geometry of a structure or any of its elements under a critical loading condition.

Buckling strength: Nominal strength for buckling or instability limit states.
Built-up member, cross-section, section, shape: Member, cross-section, section or shape fabricated from elements that are nailed, welded, glued or bolted together.

Camber: Curvature fabricated into a beam or truss so as to compensate for deflection induced by loads.

Cantilevers: Structural elements or systems that are supported only at one end.
Cement: The generic name for cementitious (binder) materials used in concrete, which is a commonly used building material.

Center of gravity: The location of resultant gravity forces on an object or objects.
Centroid: The center of mass of a shape or object.

Chord member: Primary member that extends, usually horizontally, through a truss connection.
Cold-rolled steel structural member: Shape manufactured by roll forming cold-or hot- rolled coils or sheets without manifest addition of heat such as would be required for hot forming.
Collector: An element that transfers load from a diaphragm to a resisting element.
Column: Structural member that has the primary function of resisting axial force.
Component (of vector): One of several vectors combined to a resultant vector.
Composite: Condition in which steel and concrete elements and members work as a unit in the distribution of internal forces.

Composite materials: Those consisting of a combination of two of more distinct materials, together yielding superior characteristics to those of the individual constituents.

Compression: A force that tends to shorten or crush a member or material.
Concentrated force: A force acting on a single point.
Concentrated load: An external concentrated force (also known as a point load).
Concrete: Material composed mainly of cement, crushed rock or gravel, sand and water.
Concrete crushing: Limit state of compressive failure in concrete having reached the ultimate strain.

Connection: A connection joins members to transfer forces or moments from one to the other.
Cope: Cutout made in a structural member to remove a flange and conform to the shape of an intersecting member.

Couple: A couple is a system of two equal forces of opposite direction offset by a distance. A couple causes a moment whose magnitude equals the magnitude of the force times the offset distance.

Cover plate: Plate welded or bolted to the flange of a member to increase cross-sectional area, section modulus or moment of inertia.

Creep: Plastic deformation that proceeds with time.
Damping: Reduces vibration amplitude, like amplitude seismic vibration.
Dead load: The weight of a structure or anything permanently attached to it.
Deflection: Deflection is the vertical moment under gravity load of beams for example, while lateral movement under wind of seismic load is called drift.

Deformation: A change of the shape of an object or material.
Design load: Applied load determined in accordance with either LRFD load combinations or ASD load combinations, whichever is applicable.

Design strength: Resistance factor multiplied by the nominal strength, $\varnothing \mathrm{Rn}$.
Design stress range: Magnitude of change in stress due to the repeated application and removal of service live loads. For locations subject to stress reversal it is the algebraic difference of the peak stresses.

Design stress: Design strength divided by the appropriate section property, such as section modulus or cross section area.

Determinate structure: A structure with the number of reactions equal to the number of static equations (3).
Diagonal Bracing: Inclined structural member carrying primarily axial force in a braced fame.
Diaphragm plate: Plate possessing in-plane shear stiffness and strength, used to transfer forces to the supporting elements.
Diaphragm: Roof, floor or other membrane or bracing system that transfers in-plane forces to the lateral force resisting system.

Displacement: May be a translation, a rotation, or a combination of both.
Distributed load: An external force which acts over a length or an area.
Double curvature: Deformed shape of a beam with one or more inflection points within the span.
Double-concentrated forces: Two equal and opposite forces that form a couple on the same side of the loaded member.

Drift: Lateral deflection of structure due to lateral wind or seismic load.
Ductibility: The capacity of a material to deform without breaking; it is measured as the ratio of total strain at failure, divided by the strain at the elastic limit.
Durability: Ability of a material, element or structure to perform its intended function for its required life without the need for replacement or significant repair, but subject to normal maintenance.

Dynamic equilibrium: Equilibrium of a moving object without change of motion.
Dynamic load: Cyclic load, such as gusty wind or seismic loads.
Effective length factor, K : Ratio between the effective length and the unbraced length of the member.

Effective length: Length of an otherwise identical column with the same strength when analyzed with pinned end conditions.
Effective net area: Net area modified to account for the effect of shear lag.
Effective section modulus: Section modulus reduced to account for buckling of slender compression elements.
Effective width: Reduced width of a plate or slab with an assumed uniform stress distribution which produces the same effect on the behavior of a structural member as the actual plate or slab with its nonuniform stress distribution.

Elastic: A material or structure is elastic if it returns to its original geometry upon unloading.
Elastic/plastic: Materials that have both an elastic zone and a plastic zone (i.e. steel).
Elastic limit: The point of a stress/strain graph beyond which deformation of a material is plastic,
i.e. remains permanently deformed.

Elastic modulus: The linear slope value relating material stress to strain.
End-bearing pile: A pile supported on firm soil or rock.
Energy: The work to move a body a distance; energy is the product of forces times distance.
Epicenter: The point on the Earth's surface above the hypocenter where an earthquake originates.

Equilibrium: An object is in equilibrium if the resultant of all forces acting on it has zero magnitude.

External force: A force acting on an object; external forces are also called applied forces.
Factored load: Product of a load factor and the nominal load.
Fatigue: Limit state of crack initiation and growth resulting from repeated application of live loads, usually by reversing the loading direction.

Fillet weld: Weld of generally triangular cross section made between intersecting surfaces of elements.

Fitted bearing stiffener: Stiffener used at a support or concentrated load that fits tightly against one or both flanges of a beam so as to transmit load through bearing.
Fixed connection: A connection that resists axial and shear forces and bending moments.
Flexure: Bending deformation (of increasing curvature).
Flexural buckling: Buckling mode in which a compression member deflects laterally without twist or change in cross-sectional shape.

Flexural-torsional buckling: Buckling mode in which a compression member bends and twists simultaneously without change in cross-sectional shape.

Force: Resultant of distribution of stress over a prescribed area, or an action that tends to change the shape of an object, move an object, or change the motion of an object.

Foundations: There are two basic types: 'shallow,' which includes pad footing, strip footings and rafts and 'deep' i.e. piles. The choice is a function of the strength and stiffness of the underlying strata and the load to be carried, the aim being to limit differential settlement on the structure and more importantly the finishes.

Fully restrained moment connection: Connection capable of transferring moment with negligible rotation between connected members.

Funicular: The shape of a chain or string suspended form two points under any load.
Gravity: An attractive force between objects; each object accelerates at the attractive force divided by its mass.

Groove weld: Weld in a groove between connection elements.
Gusset plate: Plate element connecting truss members of a strut or brace to a beam or column.
Hertz: Cycles per second.
Horizontal diaphragm: A floor or roof deck to resist lateral load.
Horizontal shear: Force at the interface between steel and concrete surfaces in a composite beam.
Indeterminate structure: A structure with more unknown reactions than static equations (3).
Inelastic: Inelastic (plastic) strain implies permanent deformation.
Inertia: Tendency of objects at rest to remain at rest and objects in motion to remain in motion.
In-plane instability: Limit state of a beam-column bent about its major axis while lateral buckling or lateral-torsional buckling is prevented by lateral bracing.

Instability: Limit state reached in the loading of a structural component, frame or structure in which a slight disturbance in the loads or geometry produces large displacements.

Internal force: The force within an object that resists external forces, also called resisting force.
Joint: Area where two or more ends, surfaces, or edges are attached. Categorized by type of fastener or weld used and method of force transfer.
Joist: A repetitive light beam.
K-connection: Connection in which forces in branch members or connecting elements transverse to the main member are primarily equilibrated by forces in other branch members or connecting elements on the same side of the main member.

Kern: The core of a post or other compression member which limits eccentric stresses being tensile.

Lacing: Plate, angle or other steel shape, in a lattice configuration, that connects two steel shapes together.

Lap joint: Joint between two overlapping connection elements in parallel planes.
Lateral bracing: Diagonal bracing, shear walls or equivalent means for providing in-plane lateral stability.

Lateral load resisting system: Structural system designed to resist lateral loads and provide stability for the structure as a whole.

Lateral load: Load, such as that produced by wind or earthquake effects, acting in a lateral direction.

Lateral-torsional buckling: Buckling mode of a flexural member involving deflection normal to the plane of bending occurring simultaneously with twist about the shear center of the crosssection.

Length effects: Consideration of the reduction in strength of a member based on its unbraced length.

Limit state: Condition in which a structure or component becomes unfit for service and is judged either to be no longer useful for its intended function (serviceability limit state) or to have reached its ultimate load-carrying capacity (strength limit state).
Linear: A structural or material behavior is linear if its deformation is directly proportional to the loading.
Line of action: The line of action defines the location and incline of a vector.
Linear elastic: A force-displacement relationship which is both linear and elastic.
Live load: Any load not permanently attached to the structure.
Load: Force or other action that results from the weight of building materials, occupants and their possessions, environmental effects, differential movement, or restrained dimensional changes.

Load effect: Forces, stresses and deformations produced in a structural component by the applied loads.

Load factor: Factor that accounts for deviations of the nominal load from the actual load, for uncertainties in the analysis that transforms the load into a load effect and for the probability that more than one extreme load will occur simultaneously.

Local bending: Limit state of large deformation of a flange under a concentrated tensile force.
Local buckling: Limit state of buckling of a compression element within a cross section.
Local crippling: Limit state of local failure of web plate in the immediate vicinity of a concentrated load or reaction.

Local yielding: Yielding that occurs in a local area of an element.
LRFD (Load and Resistance Factor Design): Method of proportioning structural components such that the design strength equals or exceeds the required strength of the component under the action of the LRFD load combinations.

LRFD load combination: Load combination in the applicable building code intended for strength design (load and resistance factor design).
Main member: Chord member or column to which branch members or other connecting elements are attached.

Mass: Mass is the property of an object to resist acceleration.
Magnitude: a scalar value of physical units, such as force or displacement.
Modulus of elasticity: The proportional constant relating stress/strain of material in the linear elastic range: calculated as stress divided by strain. The modulus of elasticity is the slope of the stress-strain graph, usually denoted as E, also as Young's Modulus Y, or E-Modulus.

Moment: A force causing rotation without translation; defined as force times lever arm.
Moment of inertia: Moment of inertia is the capacity of an object to resist bending or buckling, defined as the sum of all parts of the object times the square of their distance from the centroid.

Moment connection: Connection that transmits bending moment between connected members.
Moment frame: Framing system that provides resistance to lateral loads and provides stability to the structural system, primarily by shear and flexure of the framing members and their connections.

Net area: Gross area reduced to account for removed material.
Nominal dimension: Designated or theoretical dimension, as in the tables of section properties.
Nominal load: Magnitude of the load specified by the applicable building code.
Nominal strength: Strength of a structure or component (without the resistance factor or safety factor applied) to resist load effects, as determined in accordance with this Specification.

Normal stress: Stress acting parallel to the axis of an object in compression and tension; normal stress is usually simply called stress.
Out-of-plane buckling: Limit state of a beam-column bent about its major axis while lateral buckling or lateral-torsional buckling is not prevented by lateral bracing.

Overlap connection: Connection in which intersecting branch members overlap.
Overturn: Topping, or tipping over under lateral load.

Permanent load: Load in which variations over time are rare or of small magnitude. All other loads are variable loads.

Pin connection: A pin connection transfers axial and shear forces but no bending moment.
Pin support: A pin support resists axial and shear forces but no bending moment.
Pitch: Longitudinal center-to-center spacing of fasteners. Center-to-center spacing bolt threads along axis of bolt.

Plastic: Material may be elastic or plastic. Plastic deformation of a structure or material under load remains after the load is removed.

Plastic analysis: Structural analysis based on the assumption of rigid-plastic behavior, in other words, that equilibrium is satisfied throughout the structure and the stress is at or below the yield stress.

Plastic hinge: Yielded zone that forms in a structural member when the plastic moment is attained. The member is assumed to rotate further as if hinged, except that such rotation is restrained by the plastic moment.
Plastic moment: Theoretical resisting moment developed within a fully yielded cross section.
Plastic stress distribution method: Method for determining the stresses in a composite member assuming that the steel section and the concrete in the cross section are fully plastic.

Plate girder: Built-up beam.
Plug weld: Weld made in a circular hole in one element of a joint fusing that element to another element.

Post-buckling strength: Load or force that can be carried by an element, member, or frame after initial buckling has occurred.

Pressure: Similar to stress, the force intensity at a point, except that pressure is acting on the surface of an object rather than within the object.

Prying action: Amplification of the tension force in a bolt caused by leverage between the point of applied load, the bolt and the reaction of the connected elements.

Punching load: Component of branch member force perpendicular to a chord.
$P-\delta$ effect: Effect of loads acting on the deflected shape of a member between joints or nodes.
$P-\Delta$ effect: Effect of loads acting on the displaced location of joints or nodes in a structure. In tiered building structures, this is the effect of loads acting on the laterally displaced location of floors and roofs.

Radius of gyration: A mathematical property, determining the stability of a cross section, defined as: $\mathrm{r}=\sqrt{I / A}$, where $\mathrm{I}=$ moment of inertia and $\mathrm{A}=$ cross section area.

Reaction: The response of a structure to resist applied load.
Required strength: Forces, stresses and deformations acting on the structural component, determined by either structural analysis, for the LRFD or ASD load combinations, as appropriate, or as specified by the Specification or Standard.
Resilience: The property of structures to absorb energy without permanent deformation of fracture.

Resistance factor ϕ : Factor that accounts for unavoidable deviations of the nominal strength from the actual strength and for the manner and consequences of failure.

Resultant: The resultant of a system of forces is a single force or moment whose magnitude, direction, and location make it statically equivalent to the system of forces.
Retaining wall: Wall used to hold back soil or other materials.
Roller support: In two dimensions, a roller support restrains one translation degree of freedom.
Rupture strength: In a connection, strength limited by tension or shear rupture.
Safety factor: Factor that accounts for deviations of the actual strength from the nominal strength, deviations of the actual load from the nominal load, uncertainties in the analysis that transforms the load into a load effect, and for the manner and consequence of failure.

Scalar: A mathematical entity with a numeric value but no direction (in contrast to a vector).
Section modulus: The property of a cross section defined by its shape and orientation; section modulus is denoted S , and $\mathrm{S}=\mathrm{I} / \mathrm{c}$, where $\mathrm{I}=$ moment of inertia about the centroid and c is the distance from the centroid to the edge of the section,
Service load combination: Load combination under which serviceability limit states are evaluated.
Service load: Load under which serviceability limit states are evaluated.
Serviceability limit state: Limiting condition affecting the ability of a structure to preserve its appearance, maintainability, durability or the comfort of its occupants or function of machinery, under normal usage.
Shear: A sliding force, pushing and pulling in opposite directions.
Shear buckling: Buckling mode in which a plate element, such as the web of a beam, deforms under pure shear applied in the plane of the plate.

Shear connector: Headed stud, cannel, plate or other shape welded to a steel member and embedded in concrete of a composite member to transmit shear forces at the interface between the two materials.

Shear connector strength: Limit state of reaching the strength of a shear connector, as governed by the connector bearing against the concrete in the slab or by the tensile strength of the connector.

Shear modulus: The ratio of shear stress divided by the shear strain in a linear elastic material.
Shear rupture: Limit state of rupture (fracture) due to shear.
Shear strain: Strain measuring the intensity of racking in a material. Shear strain is measured as the change in angle of a small square part of a material.

Shear stress: Stress acting parallel to an imaginary plane cut through an object.
Shear wall: Wall that provides resistance to lateral loads in the plane of the wall and provides stability for the structural system.

Shear yielding: Yielding that occurs due to shear.
Shear yielding (punching): In a connection, limit state based on out-of-plane shear strength of the chord wall to which branch members are attached.

Slip: In a bolted connection, limit state of relative motion of connected parts prior to the attainment of the available strength of the connection.

Slip-critical connection: Bolted connection designed to resist movement by friction on the faying surface of the connection under the clamping forces of the bolts.
Slot weld: Weld made in an elongated hole fusing an element to another element.
Splice: Connection between two structural elements joined at their ends to forma single, longer element.

Stability: Condition reached in the loading of a structural component, frame or structure in which a slight disturbance in the loads or geometry does not produce large displacements.
Static equilibrium: Equilibrium of an object at rest.
Stiffness: The capacity of a material to resist deformation.
Stiffened element: Flat compression element with adjoining out-of-plane elements along both edges parallel to the direction of loading.

Stiffener: Structural element, usually an angle or plate, attached to a member to distribute load, transfer shear or prevent buckling.
Stiffness: Resistance to deformation of a member or structure, measured by the ratio of the applied force (or moment) to the corresponding displacement (or rotation).
Strain: Change of length along an axis, calculated as $\varepsilon=\Delta L / L$, where L is the original length and $\Delta \mathrm{L}$ is the change of length.
Strength: The capacity of a material to resist breaking.
Strength design: A design method based on factored load and ultimate strength for concrete design.

Strength limit state: Limiting condition affecting the safety of the structure, in which the ultimate load-carrying capacity is reached.

Stress: Force per unit area caused by axial force, moment, shear or torsion.
Stress concentration: Localized stress considerably higher than average (even in uniformly loaded cross sections of uniform thickness) due to abrupt changes in geometry or localized loading.

Stress resultant: A system of forces which is statically equivalent to a stress distribution over an area.

Stress: The internal reaction to an applied force, measured in force per unit area.
Structure: Composition of elements that define form and resist applied loads.
Structural Aluminum: Elements manufactured of aluminum for structural purposes, generally 50% larger than comparable steel elements due to the lower modulus of elasticity.

Structural Steel: Elements manufactured of steel with properties designated by ASTM standards, including A36, A992 \& A572.
Strong axis: Major principal centroidal axis of a cross section.
Structural analysis: Determination of load effects on members and connections based on principles of structural mechanics.

Structural component: Member, connector, connecting element or assemblage.
Structural system: An assemblage of load-carrying components that are joined together to provide interaction or interdependence.
T-connection: Connection in which the branch member or connecting element is perpendicular to the main member and in which forces transverse to the main member are primarily equilibrated by shear in the main member.

Tensile rupture: Limit state of rupture (fracture) due to tension.
Tensile strength (of material): Maximum tensile stress that a material is capable of sustaining as defined by ASTM.
Tensile strength (of member): Maximum tension force that a member is capable of sustaining.
Tensile yielding: Yielding that occurs due to tension.
Tension: A force that tends to elongate or enlarge an object.
Tension and shear rupture: In a bolt, limit state of rupture (fracture) due to simultaneous tension and shear force.
Tie plate: Plate element used to join parallel components of a built-up column, girder or strut rigidly connected to the parallel components and designed to transmit shear between them.
Torsion: A twisting moment.
Torsional bracing: Bracing resisting twist of a beam or column.
Torsional buckling: Buckling mode in which a compression member twists about its shear center axis.

Torsional yielding: Yielding that occurs due to torsion.
Translation: Motion of an object along a straight line path without rotation.
Transverse reinforcement: Steel reinforcement in the form of closed ties or welded wire fabric providing confinement for the concrete surrounding the steel shape core in an encased concrete composite column.
Transverse stiffener: Web stiffener oriented perpendicular to the flanges, attached to the web.
Truss: A linear support system consisting of triangular panels usually with pin joints.
Ultimate strength: The utmost strength reached by a material before breaking.
Unbraced length: Distance between braced points of a member, measured between the centers of gravity of the bracing members.

Uneven load distribution: In a connection, condition in which the load is not distributed through the cross section of connected elements in a manner that can be readily determined.

Unframed end: The end of a member not restrained against rotation by stiffeners of connection elements.

Unstiffened elements: Flat compression element with an adjoining out-of-plane element along one edge parallel to the direction of loading.
Uplift: Upward force, usually wind uplift.
Variable load: Load not classified as permanent load.

Vector: A mathematical entity having a magnitude, line of action, and a direction in space.
Vertical bracing system: System of shear walls, braced frames or both, extending through one or more floors of a building.

Vertical diaphragm: A wall to resist lateral load.
Vibration: The cyclic motion of an object.
Wall: A vertical element to resist load and define space; shear walls also resist lateral loads.
Weak axis: Minor principal centroidal axis of a cross section.
Web buckling: Limit state of lateral instability of a web.
Web compression buckling: Limit state of out-of-plane compression buckling of the web due to a concentrated compression force.
Web sideway buckling: Limit state of lateral buckling of the tension flange opposite the location of a concentrated compression force.

Weld metal: Portion of a fusion weld that has been completely melted during welding. Weld metal has elements of filler metal and base metal melted in the weld thermal cycle.
Working stress: The same as allowable stress.
Yield moment: In a member subjected to bending, the moment at which the extreme outer fiber first attains the yield stress.
Yield point: First stress in a material at which an increase in strain occurs without an increase in stress as defined by ASTM.
Yield strength: Stress at which a material exhibits a specified limiting deviation from the proportionality of stress to strain as defined by ASTM.
Yield strain: The strain of a material which occurs at the level of yield stress.
Yield stress: Generic term to denote either yield point or yield strength, as appropriate for the material.

Yielding: Limit state of inelastic deformation that occurs after the yield stress is reached.
Yielding (plastic moment): Yielding throughout the cross section of a member as the bending moment reaches the plastic moment.
Yielding (yield moment): Yielding at the extreme fiber on the cross section of a member when the bending moment reached the yield moment.

References:
AISC, Specifications for Structural Steel Buildings, $13^{\text {th }}$ ed. (2005)
Jacqueline Glass, Encyclopaedia of Architectural Technology, Wiley, Cornwall (2002)

Structural Systems

from Architectural Structures, Wayne Place, Wiley, 2007:

STRUCTURAL DESIGN PROCESS

1.1 Nature of the Process

Architects have a huge array of issues to address in architectural practice. Among these are the following: keeping rain out of a building, getting water off a site, thermal comfort, visual comfort, space planning, fire egress, fire resistance, corrosion and rot resistance, vermin resistance, marketing, client relations, the law, contracts, construction administration, the functional purposes of architecture, the role of the building in the larger cultural context, security, economy, resource management, codes and standards, and how to make a building withstand all the forces to which it will likely be subjected during its lifetime. This last subject area is referred to as architectural structures.

Because of the extraordinary range of demands on an architect's time and skills and the extraordinary number of subjects that architecture students must master, architectural structures are typically addressed in only two or three lecture courses in an accredited architectural curriculum in the United States. These two or three lecture courses must be contrasted with the ten or twelve courses that will normally be taken by a graduate of an accredited structural engineering curriculum. This contrast in level of focus makes it clear why a good structural engineering consultant is a very valuable asset to an architect. However, having a good structural consultant does not relieve the architect of serious responsibility in the structural domain. All architects must be well versed in matters related to structures. The architect has the primary responsibility for establishing the structural concept for a building, as part of the overall design concept, and must be able to speak the language of the structural consultant with sufficient skill and understanding to take full advantage of the consultant's capabilities.

1.2 General Comments Regarding Architectural Education

Structural design is one of the more rigorous aspects of architectural design. Much knowledge has been generated and codified over the centuries that human beings have been practicing in and developing this field. This book gives primary attention to those things that are known, quantified, and codified.

However, very few things in the realm of architecture yield a single solution. To any given design problem, there are many possible solutions, and picking the best solution is often the subject of intense debate. Therefore, no one should come to this subject matter assuming that this text, or any text, is going to serve up a single, optimized solution to any design problem, unless that design problem has been so narrowly defined as to be artificial.

In design, there is always a great deal of latitude for personal expression. Design is purposeful action. The designer must have an attitude to act. Architecture students develop an attitude through a chaotic learning process involving a lot of trial and error. In going through this process, an architecture student must remain aware of a fundamental premise: the process is more important than the product; that is, the student's learning and development are more important than the output. The student has a license to make mistakes. It is actually more efficient to plow forward and make mistakes than to spend too much time trying to figure out how to do it perfectly the first time. To paraphrase the immortal words of Thomas Edison: To have good ideas, you should have many ideas and then throw out the bad ones. Of course, throwing out the bad ones requires a lot of rigorous and critical thinking. No one should ever fall in love with any idea that has not been subjected to intense and prolonged critical evaluation and withstood the test with flying colors. Furthermore, important ideas should be subjected to periodic reevaluation. Times and conditions change. Ideas that once seemed unassailable may outlive their usefulness or, at the very least, need updating in the light of new knowledge and insights.
In pursuing this subject matter, it is valuable to have a frame of reference regarding the roles of the architect, as the leader of the design team, and the structural engineer, as a crucial contributor of expertise and hard work needed to execute the project safely and effectively. The diagram in Figure 1.1 will help provide that frame of reference.
In contemplating the diagram in Figure 1.1, keep in mind that design and analysis are two sides of the same coin and that the skills and points of view of architects and engineers, although distinctive, also overlap and sometimes blur together. The most effective design teams consist of individuals with strong foci who can play their respective roles while having enough overlap in understanding and purpose that they can see each other's point of view and cooperate in working toward mutually understood and shared goals. The most harmful poison to a design team is to have such a separation in points of view and understanding that a rift develops between the members of the team. Cooperation is the watchword in this process, as in all other team efforts.

Typical questions:
What should the form be? What are the structural elements? How do the elements fit and work together?

Characterizations: Artistic "Feelable"
Emphasizes "soul" Intuitive Learnable Chaotic
Trial-and-error learning process Idiosyncratic and individualistic

Typical questions:
How big do the structural elements need to be? What grade of material do we use? How strong do the connectors need to be?

Characterizations: Scientific Knowable
Emphasizes "efficiency" Analytic Teachable
Orderly Systematized
Generalized and codified

Figure 1.1 Nature of the design process and roles of the design participants.

Design Criteria for the Behavior of the Overall System

Components of a system consist of vertical and horizontal elements. Connections of the vertical to horizontal elements are also necessary. For the structural elements to behave and respond as designed, the system must have the following qualities:

- the components stay together
- the system resists overturning, sliding, twisting and excessive distortion
- the system has internal stability
- the system has overall strength and stiffness

"Order" of Design

There is no set order to design of a structural system. But there are certain stages that can be recognized. These may be referred to as preliminary, revised and final, or more formally as:

First order: which can include determining structural type and organization, design intent, and contextual or programmatic emphasis. Preliminary member size charts are useful at this stage.

Second order: which can include evaluating structural strategies, choice of construction materials, and structural system options with those materials. System selection design aids are useful at this stage.

Third order: which, after the design has been narrowed down, is where analysis and design (shape and size) of individual structural elements (beams, columns, connections, etc.) is performed. The outcome here may direct further first order or second order investigations!!!
from Understanding Structures, Fuller Moore, McGraw-Hill, 1999:

DESIGN CRITERIA																		RATIONALE
Exposed, fire-resiant construction																		Inherently fire-resistive construction
Irregular building form																		Simple, site-fabricated systems
Irregular column placement																		Systems without beams in roof or floors
Minimize floor thickness																		Precast-concrete systems without ribs
Allow for future renovations																		Short-span, one-way, easily modified
Permit construction in poor weather																		Quickly erected; avoid site-cast concrete
Minimize off-site fabrication time																		Easily formed or built on site
Minimize on-site erection time																		Highly prefabricated; modular components
Minimize low-rise construction time																		Lightweight, easily formed or prefabricated
Minimize medium-rise construction time																		Precast, site-cast concrete; steel frames
Minimize high-rise construction time																		Strong; prefabricated; lightweight
Minimize shear walls or diagonal bracing																		Capable of forming rigid joints
Minimize dead load on foundations																		Lightweight, short-span systems
Minimize damage due to foundation settlement																		Systems without rigid joints
Minimize the number of separate trades on job																		Multipurpose components
Provide concealed space for mech. services																		Systems that inherently provide voids
Minimize the number of supports																		Two-way, long-span systems
Long spans																		Long-span systems

Figure 18.6: Framing system selection chart.
from The Architect's Studio Companion, $3^{\text {rd }}$ ed., Allen \& Iano, Wiley, 2002

System Types by Material

from Structures, Schodek \& Bechthold, $6^{\text {th }}$ ed.. Pearson, 2008:

Timber Systems

Reinforced Concrete Systems

(a) One-way flat plate (poured in place).

(b) One-way beam-and-slab system (poured in place).

(c) One-way pan joist system (poured in place).

Reinforced Concrete Systems (continued)

Steel Systems

(a) Steel deck and beam floor system.

(d) Plate girders.

(b) Steel deck and open-web bar joist system.

(e) Welded trusses: double-angle members.

(c) Composite steel and concrete floor system.

(f) Welded trusses: tube members.

Steel Systems(continued)

Structural Planning

Design Issues

(Reference: The Architect's Studio Companion, $3^{\text {rd }}$ ed., Allen \& Iano, Wiley, 2002)
Lateral Stability: Wind forces and inertial forces due to ground acceleration are two types of lateral loads buildings must be designed to resist. Without resisting elements or systems, the buildings will move a little, a lot, or suddenly. Stability is the ability to flex and not suddenly "snap" or in other words, the ability to remain in the configuration intended to transfer load.

- Resisting systems include shear walls, braced frames and rigid frames:

- Configurations are important for the systems to be effective. Symmetrical or balanced arrangements are the most effective for resisting the lateral forces from all directions.

Stabilizing elements may be placed within the interior or at the perimeter of a building.

Rigid frame structures require no additional bracing or shear walls, as shown in this elevation and plan.

The locations of braced frames or shear walls must be considered in relation to the elevation and plan of the building.

Stabilizing elements should be arranged in a balanced fashion.

Vertical Load Resistance: Load bearing walls, columns and frames are examples of vertical load resisting elements. They can support a variety of horizontal spanning elements, such as beams and slabs. The order, or modular placement, becomes important, and uniform arrangements are economical. Load bearing walls can also function as shear walls to resist lateral loads. They are commonly constructed of reinforced concrete or masonry.

COLUMN AND BEAM SYSTEMS (shown from below)

Shear walls may be arranged in a box form to resist lateral forces from all directions.

When combined with other stabilizing mechanisms, shear walls may be arranged so as to resist forces in only one
direction of a building direction of a building.

Horizontal Load Resistance: The combination of vertical and horizontal load resistance is dependant upon construction materials and size or utility of spaces. Slabs can act as diaphragms to transmit loads to the columns, shear wall or frames. They are commonly constructed of reinforced concrete. Rigid frames are commonly steel or monolithically cast reinforced concrete.

Multistory Design Issues: As a building gets taller, it is exposed to more wind load that it must resist laterally. It also increases in mass at each story, which makes the inertial forces from ground acceleration very complex. The behavior of a structure under these types of loads is dependant upon the arrangement of the masses and the stiffness and placement of the horizontal and vertical load resisting elements.

Cores are quite common to increase stiffness vertically. Unfortunately, they can't provide effective horizontal load transfer, and should not be relied on as the sole lateral resistant mechanism! Exterior bracing or tube formations, such as the Sears Tower in Chicago, are other multistory configurations to resist lateral loads.

Vertical and horizontal "discontinuities" contribute to irregular or poor lateral response. Vertical discontinuities include "cut-outs" in stories, or changes in plan vertically, while horizontal continuities include problems such as "soft stories" which have different stiffness from the rest of the structure, and unbalanced placement of shear walls.

Transfer beams or trusses may be used to interrupt vertical loadbearing elements where necessary.

UNBALANCED PLAN
 SECTION

Discrete building masses should be structurally independent. Inherently unstable building masses should be avoided.

Discontinuities in the stiffness of structures at different levels should be avoided, or additional stabilizing elements may be required.

Structural Plans and Grids

Figure 7.4 This foundation plan uses a grid referencing system, though not the one promoted by the National CAD Standard. Note the idiosyncrasies in this drawing: north is normally the top of the page. (From The Professional Practice of Architectural Working Drawings, 2nd edition, by Osamu Wakita and Linde, Richard, John Wiley \& Sons, Inc., 1995. Used with permission of John Wiley \& Sons, Inc.)

Footing Detail

Figure 8.5b Footings are often depicted in wall sections on subsequent sheets, but in this instance the engineer is showing just a footing section, denoted C S3.1 on the plan in 8.5 a .

Section $\frac{5}{e 3}-12 "=1^{\prime}-0^{\prime \prime}$

Figure 8.5a Drawings of structural steel framing systems begin with the foundation plan, which is where the columns
and footings that carry the frame are described. (Drawing courtesy of Buehler and Buehler Structural Engineers.)

Figure 8.5c The first floor framing plan commonly shows column locations and lists girders and beams by size. The floor deck is also described on the plan. The girder designation W21 $\times 50 \mathrm{C}=+3 / 4^{\prime \prime}$ (above gridline F) and 30-5-30 (below gridline F) is, respectively, the girder size and camber and number of headed stud anchors required in each third of the beam (left, center, right). The beam designation is slightly different (see lines perpendicular to girder lines): Above the beam line following the beam size is the number of headed stud anchors to be uniformly distributed between columns on the top of the beam, with the camber listed below the beam line. (Drawing courtesy of Buehler and Buehler Structural Engineers.)

Reinforced Masonry

Figure 8.6a In this partial floor plan for a reinforced masonry structure, the wall descriptions are very simple. Note the conservative use of the masonry symbol and the consequent uncluttered appearance of the drawing. The split-bubble referencing system used throughout these drawings directs the reader's attention to several details, depicted on other pages as well as the page on which they originate. Details 1 A-4/A-6 and 3 A-4/A-6 are building sections; details A and $B A-4 / A-4$ are details of the connection to existing concrete columns; and detail E A-4/A-11 is a roof connection detail. In the upper right part of the drawing is the reference to an exterior elevation (A A-4/A-5).

Timber

Figure 8.7a This partial roof framing plan shows the glued-laminated girder and beam system. Note the weight of $A C$ unit 1 and how the structural engineer has addressed the additional loading where mechanical equipment is supported by the roof. (Drawing courtesy of Buehler and Buehler Structural Engineers.)

Common Span Lengths and Depths:

from Structures, $6^{\text {th }}$ ed., Schodek \& Bechthold, Pearson/Prentice Hall, 2007

Span Range by System

FIGURE 13.12 Approximate span ranges of different systems. (See also more detailed charts in Chapter 15.)

FIGURE 15.4 Approximate span ranges for timber systems. So that typical sizes of different timber members can be compared, the diagrams of the members are scaled to represent typical span lengths for each of the respective elements. The span lengths that are actually possible for each element are noted by the maximum and minimum span marks.

FIGURE 15.6 Approximate span ranges for reinforced-concrete systems. So that typical sizes of different members can be compared, the diagrams of the members are scaled to represent typical span lengths for each of the respective elements. The span lengths that are actually possible for each element are noted by the maximum and minimum span marks.

FIGURE 15.9 Approximate span ranges for steel systems. So that typical sizes of different members can be compared, the diagrams of the members are scaled to represent typical span lengths for each of the respective elements. The span lengths that are actually possible for each element are noted by the maximum and minimum span marks.

Math for Structures I

1. Parallel lines never intersect.
2. Two lines are perpendicular (or normal) when they intersect at a right angle $=90^{\circ}$.
3. Intersecting (or concurrent) lines cross or meet at a point.
4. If two lines cross, the opposite angles are identical:

5. If a line crosses two parallel lines, the intersection angles with the same orientation are identical:

6. If the sides of two angles are parallel and intersect in the same fashion, the angles are identical.

7. If the sides of two angles are parallel, but intersect in the opposite fashion, the angles are supplementary: $\alpha+\beta=180^{\circ}$.

8. If the sides of two angles are perpendicular and intersect in the same fashion, the angles are identical.

9. If the sides of two angles are perpendicular, but intersect in the opposite fashion, the angles are supplementary: $\alpha+\beta=180^{\circ}$.

10. If the side of two angles bisects a right angle, the angles are complimentary:
 $\alpha+\gamma=90^{\circ}$.

11. If a right angle bisects a straight line, the remaining angles are complimentary: $\alpha+\gamma=90^{\circ}$.

12. The sum of the interior angles of a triangle $=180^{\circ}$.
13. For a right triangle, that has one angle of 90°, the sum of the other angles $=90^{\circ}$.

14. For a right triangle, the sum of the squares of the sides equals the square of the hypotenuse:

$$
A B^{2}+A C^{2}=C B^{2}
$$

15. Similar triangles have identical angles in the same orientation. Their sides are related by:

Case 1:

Case 2:

$$
\frac{A B}{A D}=\frac{A C}{A E}=\frac{B C}{D E}
$$

16. For right triangles:

$$
\begin{aligned}
& \sin =\frac{\text { oppositeside }}{\text { hypotenuse }}=\sin \alpha=\frac{A B}{C B} \\
& \cos =\frac{\text { adjacentside }}{\text { hypotenuse }}=\cos \alpha=\frac{A C}{C B} \\
& \tan =\frac{\text { oppositeside }}{\text { adjacentside }}=\tan \alpha=\frac{A B}{A C}
\end{aligned}
$$

(SOHCAHTOA)

17. If an angle is greater than 180° and less than 360°, \sin will be less than 0.

If an angle is greater than 90° and less than 270°, cos will be less than 0. If an angle is greater than 90° and less than 180°, tan will be less than 0. If an angle is greater than 270° and less than 360°, tan will be less than 0.
18. LAW of SINES (any triangle)

$$
\frac{\sin \alpha}{A}=\frac{\sin \beta}{B}=\frac{\sin \gamma}{C}
$$

19. LAW of COSINES (any triangle)

$$
A^{2}=B^{2}+C^{2}-2 B C \cos \alpha
$$

20. Surfaces or areas have dimensions of width and length and units of length squared (ex. in ${ }^{2}$ or inches x inches).
21. Solids or volumes have dimension of width, length and height or thickness and units of length cubed (ex. m^{3} or mx mx m)
22. Force is defined as mass times acceleration. So a weight due to a mass is accelerated upon by gravity: $\quad \mathrm{F}=\mathrm{m} \cdot \mathrm{g}$

$$
\mathrm{g}=9.81 \mathrm{~m} / \mathrm{sec}^{2}=32.17 \mathrm{ft} / \mathrm{sec}^{2}
$$

23. Weight can be determined by volume if the unit weight or density is known: $\quad \mathrm{W}=\mathrm{V} \cdot \gamma$ where $\cdot \mathrm{V}$ is in units of length ${ }^{3}$ and γ is in units of force/unit volume
24. Algebra: If $\quad a \cdot b=c \cdot d \quad$ then it can be rewritten:

$$
\begin{array}{ll}
a \cdot b+k=c \cdot d+k & \text { add a constant } \\
c \cdot d=a \cdot b & \text { switch sides } \\
a=\frac{c \cdot d}{b} & \text { divide both sides by } b
\end{array}
$$

$$
\frac{a}{c}=\frac{d}{b} \quad \text { divide both sides by } b \cdot c
$$

25. Cartesian Coordinate System

26. Solving equations with one unknown:

$$
\begin{array}{llll}
1 \text { st } \text { order polynomial: } & 2 x-1=0 \cdots & 2 x=1 \cdots & x=\frac{1}{2} \\
& a x+b=0 \cdots & x=\frac{-b}{a}
\end{array}
$$

$2^{\text {nd }}$ order polynomial

$$
\begin{array}{lcc}
a x^{2}+b x+c=0 \cdots & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & \begin{array}{c}
\text { two answers } \\
\text { (radical cannot be } \\
\text { negative) }
\end{array} \\
x^{2}-1=0 \cdots & x=\frac{-0 \pm \sqrt{0^{2}-4(-1)}}{2 \cdot 1} \cdots & x= \pm 1 \\
(a=1, b=0, c=-1) &
\end{array}
$$

27. Solving 2 linear equations simultaneously:

One equation consisting only of variables can be rearranged and then substituted into the second equation:

ex:	$5 x-3 y=0$	add 3 y to both sides to rearrange	$5 x=3 y$
	$4 x-y=2$	divide both sides by 5	$x=\frac{3}{5} y$
		substitute x into the other equation	$4\left(\frac{3}{5} y\right)-y=2$
		add like terms	$\frac{7}{5} y=2$
		simplify	$y=\frac{10}{7}=1.43$

Equations can be added and factored to eliminate one variable:
ex:

$$
\begin{array}{ll}
2 x+3 y=8 \\
4 x-y=2 & \text { multiply both sides by } 3 \\
& \text { and add } \\
& \text { simplify } \\
& \text { put } x=1 \text { in an equation for } y \\
& \text { simplify }
\end{array}
$$

$$
2 x+3 y=8
$$

$$
\frac{12 x-3 y=6}{14 x+0=14}
$$

$$
x=1
$$

$$
2 \cdot 1+3 y=8
$$

$$
\begin{gathered}
3 y=6 \\
y=2
\end{gathered}
$$

28. Derivatives of polynomials

$$
\begin{array}{ll}
y=\text { constant } & \frac{d y}{d x}=0 \\
y=x & \frac{d y}{d x}=1 \\
y=a x & \frac{d y}{d x}=a \\
y=x^{2} & \frac{d y}{d x}=2 x \\
y=x^{3} & \frac{d y}{d x}=3 x^{2}
\end{array}
$$

29. The minimum and maximum of a function can be found by setting the derivative $=0$ and solving for the unknown variable.
30. Calculators (and software) process equations by an "order of operations", which typically means they process functions like exponentials and square roots before simpler functions such as + or - . BE SURE to specify with parenthesis what order you want, or you'll get the wrong answers. It is also important to have degrees set in your calculator for trig functions.

For instance, Excel uses - for sign (like -1) first, then will process exponents and square roots, times and divide, followed by plus and minus. If you type $4 \times 10^{\wedge} 2$ and really mean $(4 \times 10)^{\wedge} 2$ you will get an answer of 400 instead of 1600 .

Numerical Computations

from Statics and Strength of Materials, $5^{\text {th }}$ ed. Morrow \& Kokernak, Prentice Hall, 2004

Accuracy

The accuracy of a numerical value is often expressed in terms of the number of significant digits that the value contains. What are significant digits? Any nonzero digit is considered significant; zeroes that appear to the left or right of a digit sequence are used to locate the decimal point and are not considered significant. Thus the numbers $0.00345,3.45,3450$, and $3,450,000$ all contain three significant digits represented by the sequence 3-4-5. Zeroes bounded on both sides by nonzero digits are also significant; $0.0005067,5.067$, 50.67 , and 506,700 each contain four significant digits, as represented by the numerical sequence 5-0-6-7.

The accuracy of a solution can be no greater than the accuracy of the data on which the solution is based. For example, the length of one side of a right triangle may be given as 20 ft . Without knowing the possible error in the length measurement, it is impossible to determine the error in the answer obtained from it. We will usually assume that the data are known with an accuracy of 0.2 percent. The possible error in the $20-\mathrm{ft}$ length would therefore be 0.04 ft .

To maintain an accuracy of approximately 0.2 percent in our calculations, we will use the following practical rule: use four digits to record numbers beginning with 1 and three digits to record numbers beginning with 2 through 9 . Thus a length of 19 ft becomes 19.00 ft , a length of 20 ft becomes 20.0 ft , and a length of 43 ft becomes 43.0 ft .

You will notice one exception to this rule throughout the text: values of the trigonometric functions are traditionally written to four decimal places, and that practice will be followed here, not for increased accuracy, but to clarify the computations used in worked examples.

Rounding Off Numbers*

If the data are given with greater accuracy than we wish to maintain (see Fig. 1.1), the following rules may be used to round off their values:

1. When the digit dropped is greater than 5, increase the digit to the left by 1 . Example: 23.56 ft becomes 23.6 ft .
2. When the digit dropped is less than 5 , drop it without changing the digit to the left. Example: 23.34 ft becomes 23.3 ft .
3. When the digit dropped is 5 followed only by zeros, increase the digit to the left by 1 only if it becomes even. If the digit to the left becomes odd, drop the 5 without changing the digit to the left. Example: 23.5500 ft rounded to three numbers becomes 23.6 ft , and 23.4500 ft becomes 23.4 ft . (This practice is often referred to as the round-even rule.)
[^1]
Calculators

Electronic calculators and computers are widely available for use in engineering. Their speed and accuracy make it possible to do difficult numerical computations in a routine manner. However, because of the large number of digits appearing in solutions, their accuracy is often misleading. As pointed out previously, the accuracy of the solution can be no greater than the accuracy of the data on which the solution is based. Care should be taken to retain sufficient digits in the intermediate steps of the calculations to ensure the required accuracy of the final answer. Answers with more significant digits than are reasonable should not be recorded as the final answer. An accuracy greater than 0.2 percent is rarely justified.

Problem Solving, Units and Numerical Accuracy

Problem Solution Method:

1. $\left.\begin{array}{c}\text { Inputs } \\ \text { Outputs } \\ \text { "Critical Path" }\end{array} \quad \square \quad \begin{array}{l}\underline{\text { GIVEN: }} \\ \underline{\text { FIND: }} \\ \text { SOLUTION }\end{array}\right\}$ on graph paper
2. Draw simple diagram of body/bodies $\&$ forces acting on it/them.
3. Choose a reference system for the forces.
4. Identify key geometry and constraints.
5. Write the basic equations for force components.
6. Count the equations \& unknowns.
7. SOLVE
8. "Feel" the validity of the answer. (Use common sense. Check units...)

Example: Two forces, $\mathrm{A} \& \mathrm{~B}$, act on a particle. What is the resultant?

1. GIVEN: Two forces on a particle and a diagram with size and orientation

FIND: The "resultant" of the two forces
SOLUTION:
2. Draw what you know (the diagram, any other numbers in the problem statement that could be put on the drawing....)
3. Choose a reference system. What would be the easiest? Cartesian, radian?
4. Key geometry: the location of the particle as the origin of all the forces

Key constraints: the particle is "free" in space
5. Write equations:

$$
\begin{aligned}
& \text { sizeof } A^{2}+\text { sizeof } B^{2}=\text { sizeof resultant } \\
& \sin \alpha=\frac{\operatorname{sizeof} B}{\operatorname{sizeof} A+B}
\end{aligned}
$$

6. Count: Unknowns: 2 , magnitude and direction \leq Equations: $2 \therefore$ can solve
7. Solve: graphically or with equations
8. "Feel": Is the result bigger than A and bigger than B? Is it in the right direction? (like A \& B)

Units

Units	Mass	Length	Time	Force
SI	kg	m	S	$N=\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}}$
Absolute English	lb	ft	S	Poundal $=\frac{l b \cdot f t}{s^{2}}$
Technical English	$\text { slug }=\frac{l b_{f} \cdot s^{2}}{f t}$	ft	S	$1 b_{\text {force }}$
Engineering English	lb	ft	S	$1 b_{\text {force }}$
$l b_{\text {force }}=l b_{(\text {mass })} \times 32.17 \mathrm{ft} / \mathrm{s}^{2}$				
gravitational constant	$g_{c}=32.17 \mathrm{ft} / \mathrm{s}^{2}$	(Engli		
	$g_{c}=9.81 \mathrm{~m} / \mathrm{s}^{2}$	(SI)		
conversions (pg. vii)	$\begin{aligned} & 1 \mathrm{in}=25.4 \mathrm{~mm} \\ & 1 \mathrm{lb}=4.448 \mathrm{~N} \end{aligned}$			

Numerical Accuracy

Depends on 1) accuracy of data you are given
2) accuracy of the calculations performed

The solution CANNOT be more accurate than the less accurate of \#1 and \#2 above!
DEFINITIONS: precision the number of significant digits accuracy the possible error

Relative error measures the degree of accuracy:

$$
\frac{\text { relativeerror }}{\text { measurement }} \times 100=\text { degree of accuracy (\%) }
$$

For engineering problems, accuracy rarely is less than 0.2%.

Forces and Vectors

Notation:

F	$\begin{aligned} & =\text { name for force vectors, as is } A, B, \\ & \quad C, T \text { and } P \end{aligned}$	tail	$\begin{aligned} & =\text { start of a vector (without } \\ & \text { arrowhead) } \end{aligned}$
F_{x}	$=$ force component in the x direction	tip	= direction end of a vector (with
F_{y}	= force component in the y direction		arrowhead)
R	$=$ name for resultant vectors	x	$=\mathrm{x}$ axis direction
R_{x}	$=$ resultant component in the x direction	$\begin{aligned} & y \\ & \theta \end{aligned}$	$\begin{aligned} & =\mathrm{y} \text { axis direction } \\ & =\text { angle, in a trig equation, ex. } \sin \theta \end{aligned}$
R_{y}	$=$ resultant component in the y direction		that is measured between the x axis and tail of a vector

Characteristics

- Forces have a point of application - tail of vector
size - units of lb, K, N, kN
direction - to a reference system, sense indicated by an arrow
- Classifications include: Static \& Dynamic
- Structural types separated primarily into Dead Load and Live Load with further identification as wind, earthquake (seismic), impact, etc.

Rigid Body

- Ideal material that doesn't deform
- Forces on rigid bodies can be internal - within or at connections
or external - applied
- Rigid bodies can translate (move in a straight line)
or rotate (change angle)

- Weight of truck is external (gravity)
- Push by driver is external
- Reaction of the ground on wheels is external

If the truck moves forward: it translates
If the truck gets put up on a jack: it rotates

- Transmissibility: We can replace a force at a point on a body by that force on another point on the body along the line of action of the force.

External conditions haven't changed
For the truck:

- The same external forces will result in the same conditions for motion
- Transmissibility applies to EXTERNAL forces. INTERNAL forces respond differently when an external force is moved.
- DEFINITION: 2D Structure - A structure that is flat and may contain a plane of symmetry. All forces on this structure are in the same plane as the structure.

Internal and External

- Internal forces occur within a member or between bodies within a system
- External forces represent the action of other bodies or gravity on the rigid body

Force System Types

- Collinear - all forces along the same line
- Coplanar - all forces in the same plane
- Space - out there

Further classification as

- Concurrent - all forces go through the same point
- Parallel - all forces are parallel

Graphical Addition

- Parallelogram law: when adding two vectors acting at a point, the result is the diagonal of the parallelogram
- The tip-to-tail method is another graphical way to add vectors.

- With 3 (three) or more vectors, successive application of the parallelogram law will find the resultant $O R$ drawing all the vectors tip-to-tail in any order will find the resultant.

Rectangular Force Components and Addition

- It is convenient to resolve forces into perpendicular components (at 90°).
- Parallelogram law results in a rectangle.
- Triangle rule results in a right triangle.

θ is: between $x \& F$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{x}}=\mathrm{F} \cdot \cos \theta \\
& \mathrm{~F}_{\mathrm{y}}=\mathrm{F} \cdot \sin \theta \\
& \mathrm{~F}=\sqrt{F_{x}^{2}+F_{y}^{2}} \\
& \tan \theta=\frac{F_{y}}{F_{x}}
\end{aligned}
$$

When $90^{\circ}<\theta<270^{\circ}, \mathrm{F}_{\mathrm{x}}$ is negative
When $180^{\circ}<\theta<360^{\circ}, \mathrm{F}_{\mathrm{y}}$ is negative
When $0^{\circ}<\theta<90^{\circ}$ and $180^{\circ}<\theta<270^{\circ}$, $\tan \theta$ is positive
When $90^{\circ}<\theta<180^{\circ}$ and $270^{\circ}<\theta<360^{\circ}$, $\tan \theta$ is negative

- Addition (analytically) can be done by adding all the x components for a resultant x component and adding all the \mathbf{y} components for a resultant y component.

$$
R_{x}=\sum F_{x}, R_{y}=\sum F_{y} \quad \text { and } R=\sqrt{R_{x}^{2}+R_{y}^{2}} \quad \tan \theta=\frac{R_{y}}{R_{x}}
$$

CAUTION: An interior angle, ϕ, between a vector and either coordinate axis can be used in the trig functions. BUT No sign will be provided by the trig function, which means you must give a sign and determine if the component is in the x or y direction. For example, $F \sin \phi=$ opposite side, which whould be negative in x !

Example 1 (page 9)

Example Problem 2.2
A utility pole supports two tension forces A and B with the directions shown. Using the parallelogram law and the tip-to-tail methods, determine the resultant force for A and B (magnitude and direction).
Scale: $1^{\prime \prime}=200 \mathrm{lb}$.

Steps:

1. GIVEN: Write down what's given (drawing and numbers).
2. FIND: Write down what you need to find.
(resultant graphically)
3. SOLUTION:
4. Draw the 400 lb and 600 lb forces to scale with tails at 0 . (If the scale isn't given, you must choose one that fits on your paper, ie. 1 inch $=200 \mathrm{lb}$.)
5. Draw parallel reference lines at the ends of the vectors.
6. Draw a line from O to the intersection of the reference lines
7. Measure the length of the line
8. Convert the line length by the scale into pounds (by multiplying by the force measure and dividing by the scale value, ie X inches * $200 \mathrm{lb} / 1$ inch).

Alternate solution:

4. Draw one vector
5. Draw the other vector at the TIP of the first one (away from the tip).
6. Draw a line from 0 to the tip of the final vector and continue at step 7

Example 2 (pg 12)

Example Problem 2.4

A tent stake is subjected to three pulling forces, as shown in Figure 2.18. Using the graphical tip-to-tail method, determine the resultant of forces $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} (magnitude and direction).
$1.5 \mathrm{~mm}=1 \mathrm{lb}$. or $1 \mathrm{~mm}=2 / 3 \mathrm{lb}$.

Example 3 (pg 16)

Example Problem 2.7

A large eyebolt (Figure 2.24) is used in supporting a canopy over the entry to an office building. The tension developed in the support rod is equal to 2600 newtons. Determine the rectangular components of the force if the rod is at a 5 in 12 slope.

Also determine the embedment length, L , if the anchor can resist 500 N for ever cm of embedment.

Example 4 (pg 19) Determine the resultant vector analytically with the component method.

Example Problem 2.9 (Figure 2.29)

This is the same problem as Example Problem 2.2, which was solved earlier using the graphical methods.

(a)

Moments

Notation:

d	$=$ perpendicular distance to a force from a point	$\begin{aligned} & M \\ & W \end{aligned}$	$\begin{aligned} & =\text { moment due to a force } \\ & =\text { name for force due to weight } \end{aligned}$
F	= name for force vectors or	x	= horizontal distance
	magnitude of a force, as is P, Q, R	θ	$=$ angle, in a trig equation, ex. $\sin \theta$,
F_{x}	$=$ force component in the x direction		that is measured between the x axis
F_{y}	$=$ force component in the y direction		and tail of a vector

Moment of a Force About an Axis

- Two forces of the same size and direction acting at different points are not equivalent. They may cause the same translation, but they cause different rotation.
- DEFINITION: Moment - A moment is the tendency of a force to make a body rotate about an axis. It is measured by $\mathrm{F} \times \mathrm{d}$, where d is the distance perpendicular to the line of action of the force and through the axis of rotation.

- For the same force, the bigger the lever arm (or moment arm), the bigger the moment magnitude, i.e. $M_{A}=F \cdot d_{1}<M_{A}=F \cdot d_{2}$

(a)

(b)
- Units:

SI:
$\mathrm{N} \cdot \mathrm{m}, \mathrm{KN} \cdot \mathrm{m}$
Engr. English: lb-ft, kip-ft

- Sign conventions: Moments have magnitude and rotational direction:

negative -

- Moments can be added as scalar quantities when there is a sign convention.

- Repositioning a force along its line of action results in the same moment about any axis.

$$
\begin{array}{ll}
\mathrm{M}_{\mathrm{A}}=\mathrm{F} \cdot \mathrm{~d} \\
\mathrm{M}_{\mathrm{B}}=\mathrm{F} \cdot \mathrm{~d}^{\prime}
\end{array}
$$

- A force is completely defined (except for its exact position on the line of action) by F_{x}, F_{y}, and M_{A} about A (size and direction).
- The sign of the moment is determined by which side of the axis the force is on.

- Varignon's Theorem: The moment of a force about any axis is equal to the sum of moments of the components about that axis.

$\stackrel{\mathrm{A}}{\mathrm{d}=F \cdot d=P \cdot d_{1}+Q \cdot d_{2}}$

- Proof 1: Resolve F into components along line BA and perpendicular to it $\left(90^{\circ}\right)$.

d from A to line $A B=0$

$$
\mathrm{d} \text { from } \mathrm{A} \text { to } \mathrm{F}_{\perp}=\mathrm{d}_{\mathrm{BA}}=\frac{d}{\cos \theta}
$$

$$
\mathrm{F}_{\mathrm{BA}}=F \sin \theta
$$

$$
\mathrm{F}_{\perp}=F \cos \theta
$$

$$
\sum \mathrm{M}=-F \cdot d=-F_{B A} \cdot 0-F_{\perp} \cdot d_{B A}=-F \cos \theta \cdot \frac{d}{\cos \theta}=-F \cdot d
$$

- Proof 2: Resolve P and Q into $\mathrm{P}_{\mathrm{BA}} \& \mathrm{P}_{\perp}$, and $\mathrm{Q}_{\mathrm{BA}} \& \mathrm{Q}_{\perp}$.

d from A to line $\mathrm{AB}=0$

$$
\begin{array}{ll}
\mathrm{M}_{\mathrm{A} \text { by } \mathrm{P}}=-P_{\perp} \cdot d_{B A} & \mathrm{M}_{\mathrm{A} \text { by } \mathrm{Q}}=-Q_{\perp} \cdot d_{B A} \\
\sum \mathrm{M}=-P_{\perp} \cdot d_{B A}+\left(-Q_{\perp} \cdot d_{B A}\right) &
\end{array}
$$

and we know $d_{B A}$ from Proof 1, and by definition: $P_{\perp}+Q_{\perp} .=F_{\perp}$. We know $d_{B A}$ and F_{\perp} from above, so again $\mathrm{M}=-\mathrm{F}_{\perp} \cdot \mathrm{d}_{\mathrm{BA}}=-\mathrm{F} \cdot \mathrm{d}$

- By choosing component directions such that $\mathrm{d}=0$ to one of the components, we can simplify many problems.

Example 1 (pg 24)

Example Problem 2.13 (Figure 2.35)
A 1-foot-wide slice of a 4-foot-thick concrete gravity dam weighs 10,000 pounds and the equivalent force due to water pressure behind the dam is equal to 1200 pounds. The stability of the dam against overturning is evaluated about the "toe" at A.
Determine the resultant moment at A due to the two forces shown. Is the dam stable?

Example Problem 2.15 (Figure 2.38)

The same problem from Example Problem 2.14 will be solved using the principle of moments. (Figure 2.36) (Moment at A)

Moment Couples

- Moment Couple: Two forces with equal magnitude, parallel lines of action and opposite sense tend to make our body rotate even though the sum of forces is 0 . The sum of the moment of the forces about any axis is not zero.

$$
\begin{aligned}
& \sum M=F \cdot d_{2}-F \cdot d_{1}=M \\
& M=F\left(d_{2}-d_{1}\right) \\
& M=-F \cdot d: \text { moment of the couple }(\mathrm{CW})
\end{aligned}
$$

- M does not depend on where A is. M depends on the perpendicular distance between the line of action of the parallel forces.
- M for a couple (defined by F and d) is a constant. And the sense $(+/-)$ is obtained by observation.
- Just as there are equivalent moments (other values of F and d that result in M) there are equivalent couples. The magnitude is the same for different values of F and resulting d or different values of d and resulting F.

Equivalent Force Systems

- Two systems of forces are equivalent if we can transform one of them into the other with:
1.) replacing two forces on a point by their resultant
2.) resolving a force into two components
3.) canceling two equal and opposite forces on a point
4.) attaching two equal and opposite forces to a point
5.) moving a force along its line of action'
6.) replacing a force and moment on a point with a force on another (specific) point
7.) replacing a force on point with a force and moment on another (specific) point * based on the parallelogram rule and the principle of transmissibility
- The size and direction are important for a moment. The location on a body doesn't matter because couples with the same moment will have the same effect on the rigid body.

Addition of Couples

- Couples can be added as scalars.
- Two couples can be replaced by a single couple with the magnitude of the algebraic sum of the two couples.

Resolution of a Force into a Force and a Couple

- The equivalent action of a force on a body can be reproduced by that force and a force couple:

If we'd rather have F acting at A^{\prime} which isn't in the line of action, we can instead add F and $-F$ at A^{\prime} with no change of action by F. Now it becomes a couple of F separated by d and the force F moved to A^{\prime}. The size is $\mathrm{F} \cdot \mathrm{d}=\mathrm{M}$

The couple can be represented by a moment symbol:

- Any force can be replaced by itself at another point and the moment equal to the force multiplied by the distance between original line of action and new line of action.

Resolution of a Force into a Force and a Moment

- Principle: Any force \mathbf{F} acting on a rigid body (say the one at A) may be moved to any given point A^{\prime}, provided that a couple \mathbf{M} is added: the moment \mathbf{M} of the couple must equal the moment of \mathbf{F} (in its original position at A) about A^{\prime}.

- IN REVERSE: A force \mathbf{F} acting at A^{\prime} and a couple \mathbf{M} may be combined into a single resultant force \mathbf{F} acting at A (a distance d away) where the moment of \mathbf{F} about A^{\prime} is equal to M.

Resultant of Two Parallel Forces

- Gravity loads act in one direction, so we may have parallel forces on our structural elements. We know how to find the resultant force, but the location of the resultant must provide the equivalent total moment from each individual force.

$$
R=A+B \quad M_{C}=A \cdot a+B \cdot b=R \cdot x \Rightarrow x=\frac{A \cdot a+B \cdot b}{R}
$$

Example 3 (pg 19)

Example Problem 2.19

The cantilevered beam shown in Figure 2.43 is subjected to two equal and opposite forces as shown. Determine the resultant moment M_{A} at the beam support and the moment M_{B} at the free end.

Example 4 (pg 34)

Example Problem 2.22 (Figures 2.49 and 2.50)

A major, precast-concrete column supports beam loads from the roof and second floor as shown. Beams are supported by seats projecting from the columns. Loads from the beams are assumed to be applied one foot from the column axis.
Determine the equivalent column load condition when all beam loads are shown acting through the column axis.

(a)

(b)

(e)

Equilibrium of a Particle \& Truss Analysis

Notation:

$\left.\begin{array}{llll}b & =\text { number of members in a truss } & R_{x} & =\begin{array}{l}\text { resultant component in the } \mathrm{x} \\ \text { direction }\end{array} \\ (C) & =\text { shorthand for compression }\end{array}\right)$

- EQUILIBRIUM is the state where the resultant of the forces on a particle or a rigid body is zero. There will be no rotation or translation. The forces are referred to as balanced.
ex: 2 forces of same size, opposite direction

ex: 4 forces, polygon rule shows that it closes
- Analytically, for a point:

$$
R_{x}=\sum F_{x}=0 \quad R_{y}=\sum F_{y}=0 \quad \text { (scalar addition) }
$$

- NEWTON'S FIRST LAW: If the resultant force acting on a particle is zero, the particle will remain at rest (if originally at rest) or will move with constant speed in a straight line (if originally in motion).

Collinear Force System

- All forces act along the same line. Only one equilibrium equation is needed: $\sum F_{\text {(in-line) }}=0$
- Equivalently: $R_{x}=\sum F_{x}=\mathbf{0}$ and $R_{y}=\sum F_{y}=\mathbf{0}$

Concurrent Force System

- All forces act through the same point. Only two equilibrium equations are needed:

$$
R_{x}=\sum F_{x}=\mathbf{0} \text { and } R_{y}=\sum F_{y}=\mathbf{0}
$$

- It is ABSOLUTELY NECESSARY to consider all the forces acting on a body (applied directly and indirectly) using a FREE BODY DIAGRAM. Omission of a force would ruin the conditions for equilibrium.
- FREE BODY DIAGRAM (aka FBD): Sketch of a significant isolated particle of a body or structure showing all the forces acting on it. Forces can be from
- externally applied forces
- weight of the rigid body
- reaction forces or constraints
- forces developed within a section member
- How to solve when there are more than three forces on a free body:

1. Resolve all forces into x and y components using known and unknown forces and angles. (Tables are helpful.)
2. Determine if any unknown forces are related to other forces and write an equation.
3. Write the two equilibrium equations (in x and y).
4. Solve the equations simultaneously when there are the same number of equations as unknown quantities. (see math handout)

- Common problems have unknowns of: 1) magnitude of force

2) direction of force

FREE BODY DIAGRAM STEPS FOR A POINT;

1. Determine the point of interest. (What point is in equilibrium?)
2. Detach the point from and all other bodies ("free" it).
3. Indicate all external forces which include:

- action on the point by the supports \& connections
- action on the point by other bodies
- the weigh effect (=force) of any body attached to the point (force due to gravity)

4. All forces should be clearly marked with magnitudes and direction. The sense of forces should be those acting on the point not from the point.
5. Dimensions/angles should be included for force component computations.
6. Indicate the unknown forces, such as those reactions or constraining forces where the body is supported or connected.

- Force Reactions can be categorized by the type of connections or supports. A force reaction is a force with known line of action, or a force of unknown direction. The line of action of the force is directly related to the motion that is prevented.

prevents motion:
up and down

prevents motion:
vertical \& horizontal
- The line of action should be indicated on the FBD. The sense of direction is determined by the type of support. (Cables are in tension, etc...) If the sense isn't obvious, assume a sense. When the reaction value comes out positive, the assumption was correct. When the reaction value comes out negative, the assumption was opposite the actual sense. DON'T CHANGE THE ARROWS ON YOUR FBD OR SIGNS IN YOUR EQUATIONS.
- With the 2 equations of equilibrium for a point, there can be no more than 2 unknowns.

Friction

- There will be a force of resistance to movement developed at the contact face between objects when one is made to slide against the other. This is known as static friction and is determined from the reactive force, N, which is normal to the surface, and a coefficient of friction, μ, which is based on the materials in contact.

$$
F=\mu N
$$

- If the static friction force is exceeded by the pushing force, there will still be friction, but it is called kinetic friction, and it is smaller than static friction, so it is moving.
- The friction resistance is independent of the amount of contact area.

Materials	μ range
Metal on ice	$0.03-0.05$
Metal on metal	$0.15-0.60$
Metal on wood	$0.20-0.60$
Metal on stone	$0.30-0.70$
Wood on wood	$0.30-0.70$
Steel on steel	0.75
Stone on stone	$0.40-0.70$
Rubber on concrete	$0.60-0.90$
Aluminum on aluminum	$1.10-1.70$

(d) Motion $\longrightarrow\left(P_{x}>F_{m}\right)$

a)

(b)

(c)

Fig. 8.1

Cables have the same tension all along the length if they are not cut. The force magnitude is the same everywhere in the cable even if it changes angles. Cables CANNOT be in compression. (They flex instead.)

High-strength steel is the most common material used for cable structures because it has a high strength to weight ratio.

Cables must be supported by vertical supports or towers and must be anchored at the ends. Flexing or unwanted movement should be resisted. (Remember the Tacoma Narrows Bridge?)

Cables with a single load have a concurrent force system. It will only be in equilibrium if the cable is symmetric.

The forces anywhere in a straight segment can be resolved into x and y components of $T_{x}=T \cos \theta$ and
 $T_{y}=T \sin \theta$.

The shape of a cable having a uniform distributed load is almost parabolic, which means the geometry and cable length can be found with:

$$
y=4 h\left(L x-x^{2}\right) / L^{2}
$$

where y is the vertical distance from the straight line from cable start to end

h is the vertical sag (maximum y)
x is the distance from one end to the location of y
L is the horizontal span.

$$
L_{\text {total }}=L\left(1+8 / 3 h^{2} / L^{2}-32 / 5 h^{4} / L^{4}\right)
$$

where $\mathrm{L}_{\text {total }}$ is the total length of parabolic cable
h and L are defined above.

Cables with Several Concentrated Loads or Fixed Geometry

- In order to completely constrain cables, the number of unknown support reactions will be more than the available number of equilibrium equations. We can solve because we have additional equations from geometry due to the slope of the cable.
- The tension in the cable IS NOT the same everywhere, but the horizontal component in a cable segment WILL BE.

Truss Structures

- A truss is made up of straight two-force members connected at its ends. The triangular arrangement produces stable geometry. Loads on a truss are applied at the joints only.
- Joints are pin-type connections (resist translation, not rotation).
- Forces of action and reaction on a joint must be equal and opposite.
- Members in TENSION are being pulled.
- Members in COMPRESSION are being squeezed.

- External forces act on the joints.
- Truss configuration:

Three members form a rigid assembly with 3 (three) connections.
To add members and still have a rigid assembly, 2 (two) more must be added with one connection between.

For rigidity: $\quad \mathrm{b}=2 \mathrm{n}-3$, where b is number of members and n is number of joints

Method of Joints

- The method takes advantage of the conditions of equilibrium at each joint.

1. Determine support reaction forces.
2. Draw a FBD of each member AND each joint
3. Identify geometry of angled members
4. Identify zero force members and other special (easy to solve) cases
5. Each pin is in equilibrium ($\sum F_{x}=0$ and $\sum F_{y}=0$ for a concurrent force system)
6. Total equations $=2 \mathrm{n}=\mathrm{b}+3 \quad$ (one force per member +3 support reactions)

Advantages: Can find every member force
Disadvantages: Lots of equations, easy to lose track of forces found.
Tools available:

Tip-to-tail method for 3 joint forces must close
Analytically, there will be at most 2 unknowns with 2 equilibrium equations.

Joint Configurations (special cases to recognize for faster solutions)
Case 1) Two Bodies Connected
$\mathrm{A} \underset{\mathrm{B}}{\mathrm{C}} \mathrm{C}$
or

\qquad

- $\xrightarrow{(0)}$
(0)
F_{AB} has to be equal (=) to F_{BC}
Case 2) Three Bodies Connected with Two Bodies in Line

or even

F_{AB} and F_{BC} have to be equal, and F_{BD} has to be $\mathbf{0}$ (zero).

Case 3) Three Bodies Connected and a Force - 2 Bodies aligned \& 1 Body and a Force are Aligned

Four Bodies Connected - 2 Bodies Aligned and the Other 2 Bodies Aligned

$F_{A B}$ has to equal $F_{B C}$, and $\left[F_{B D}\right.$ has to equal $\left.P\right]$ or [$F_{B D}$ has to equal $\left.F_{B E}\right]$

Graphical Analysis

The method utilizes what we know about force triangles and plotting force magnitudes to scale.

1. Draw an accurate form diagram of the truss at a convenient scale with the loads and support reaction forces.
2. Determine the support reaction forces.
3. Working clockwise and from left to right, apply interval notation to the diagram, assigning capital letters to the spaces between external forces and numbers to internal spaces.
4. Construct a load line to a convenient scale of length to force by using the interval notation and working clockwise around the truss from the upper left plotting the lengths of the vertical and horizontal loads.
5. Starting at a left joint where we know there are fewer than three forces, we draw reference lines in the direction of the unknown members so that they intersect. Label the intersection with the number of the internal space.
6. Go to the next joint (clockwise and left to right) with two unknown forces and repeat for all joints. The diagram should close.
7. Measure the line segments and apply interval notation to determine their sense: Proceeding clockwise around the joint, follow the notation. The direction toward the joint is compressive. The direction away from the joint is tensile.

Example 1 (pg 49)

Example Problem 3.I: Equilibrium of a Particle

Two cables, shown in Figure 3.8, are used to support a weight $W=800 \mathrm{lb}$., suspended at concurrent point C. Determine the tension developed in cables $C A$ and $C B$ for the system to be in equilibrium. Solve this problem analytically and check the answer graphically.

Example 2 (pg 56)

Example Problem 3.5

A compound cable system supports a weight $W=800 \mathrm{lb}$. at point B, as shown in Figure 3.18. Cable BA is attached to a wall support at A and concurrent point C is supported by a compression strut $D C$. Determine all of the cable forces and the compression in strut $D C$.

Example 3 (pg 90)

Example Problem 4.I (Method of Joints)

An asymmetrical roof truss, shown in Figure 4.4, supports two vertical roof loads. Determine the-suppert reactions at eachend, then, Ussing the method of joints, solve for all member forces. Summarize the results of all member forees on a FBD (this diagram is referred to as a force summation diagram).

Example 4

Using the method of joint, determine all member forces.
SOLUTION:
Find the joints with 2 (or less unknowns) for FBD's: A and H, while looking for any special cases like E, which has "crossed" members and forces. $F_{D E}=F_{E F}$ and $F_{E C}=500 \mathrm{lb}$ (tension).
(Check off members found:

$A B, B D, A D, B C, D C, D E, E C, E F, C G, C F, F G, G H, F H)$
Let's use A first (but H is just as acceptable). Draw the point, adding the known force, and draw the unknown member forces away from the point, assuming tension (shown as dashed). Find the geometry of member AB from the rise of 10 ft and the run of 15 ft . The hypotenuse will be $\sqrt{10^{2}+15^{2}}=18.03:$

$$
\begin{aligned}
& \Sigma F_{x}=F_{A D}+F_{A B} \frac{15}{18.03}=0 \\
& \Sigma F_{y}=412.5^{l b}+F_{A B} \frac{10}{18.03}=0 \quad F_{A B}=(-412.5)^{\star} 18.03 / 10=-743.7 \mathrm{lb}(\mathrm{C})
\end{aligned}
$$

and substituting the (negative) value of F_{AB} into the $\Sigma F_{x}, \mathrm{~F}_{\mathrm{AD}}=618.75 \mathrm{lb}(\mathrm{T})$
(Check off members found: $A B, B D, A D, B C, D C, D E, E C, E F, C G, C F, F G, G H, F H$)
Review which joints have 2 (or less) unknowns: B and H.

Let's use B. Because we know $F_{A B}$ is in compression we draw the force into the point.
We need the geometry of member $B C$ with a rise of $5(15-10)$ and a run of 15 with a hypotenuse of $\sqrt{5^{2}+15^{2}}=15.81$:

$$
\begin{array}{ll}
\Sigma F_{x}=743.7^{\text {lb }} \frac{15}{18.03}+F_{B C} \frac{15}{15.81}=0 & \mathrm{FBC}^{2}=-652.1 \mathrm{lb}(\mathrm{C}) \\
\Sigma F_{y}=743.7^{\text {lb }} \frac{10}{18.03}+F_{B C} \frac{5}{15.81}-F_{B D}=0 & \left(\text { substituting the negative value of } \mathrm{FBC}^{\text {) }}\right. \\
& \mathrm{F}_{\mathrm{BD}}=206.2 \mathrm{lb}(\mathrm{~T})
\end{array}
$$

(Check off members found: $A B, B D, A D, B C, D C, D E, E C, E F, C G, C F, E F, F G, G H, F H$)
Review which joints have 2 (or less) unknowns: D and H.
Let's use D. Both $F_{A D}$ and $F_{B D}$ are tensile, so we can draw them away. The geometry of $D E$ is familiar with the rise the same as the run for an angle of 45° :

$$
\begin{array}{ll}
\Sigma F_{x}=-618.75^{1 b}+F_{D C} \cos 45^{\circ}+F_{D E}=0 \\
\Sigma F_{y}=-150^{1 b}+206.2^{l b}+F_{D C} \sin 45^{\circ}=0 & \mathrm{~F}_{D C}=-79.5 \mathrm{lb} \text { (C) }
\end{array}
$$

and substituting the (negative) value of $\mathrm{FDc}^{\text {into }}$ the $\Sigma F_{x}, \mathrm{FDE}_{\mathrm{DE}}=675.0 \mathrm{lb}(\mathrm{T})=\mathrm{FEF}$ (! from above)
(Check off members found: $A B, B D, A D, B C, D C, D E, E C, E F, C G, C F, F G, G H, F H$)
Review which joints have 2 (or less) unknowns: C and H.
Let's use C. Draw $F_{D C}$ and $F_{B C}$ as compressive forces. And the geometry has been found due to symmetry, with the angle of FCF a negative 45° :

$F_{x}=652.1^{l b} \frac{15}{15.81}+79.5^{l b} \cos 45^{\circ}+F_{C F} \cos \left(-45^{\circ}\right)+F_{C G} \frac{15}{15.81}=0$

$$
\Sigma F_{y}=652.1^{l b} \frac{5}{15.81}+79.5^{l b} \sin 45^{\circ}-500^{l b}+F_{C F} \sin \left(-45^{\circ}\right)-F_{C G} \frac{5}{15.81}=0
$$

Solve simultaneously because there inn't an easy way to find one unknown equal to a value multiplied by the other unknown:

$$
\begin{aligned}
& \begin{array}{l}
\Sigma F_{x}=674.9^{\text {lb }}+0.707 F_{C F}+0.949 F_{C G}=0 \\
\\
\text { add: } \\
\frac{\Sigma F_{y}=-237.6^{\text {bb }}-0.707 F_{C F}-0.316 F_{C G}=0}{437.5^{\text {lb }}+0 F_{C F}+0.633 F_{C G}=0} \quad F_{C G}=-690.8 \mathrm{lb}(\mathrm{C}) \quad \text { and substituting, } F_{C F}=-27.6 \mathrm{lb}(\mathrm{C})
\end{array}
\end{aligned}
$$

(Check off members found: $A B, B D, A D, B G, D G, D E, E C, E F, G G, G F, F G, G H, F H$)

Example 4 (continued)

Review which joints have 2 (or less) unknowns: G, F and H. Let's use F (because H really looks like A mirrored). Draw $F_{C F}$ as compressive and $F_{E F}$ in tension. The angle from for $F_{C F}$ is negative 45° :

$$
\begin{array}{lc}
\Sigma F_{x}=-675.0^{l b}+27.6^{l b} \cos \left(-45^{\circ}\right)+F_{F H}=0 & \mathrm{~F}_{\mathrm{FH}}=655.5 \mathrm{lb}(\mathrm{~T}) \\
\Sigma F_{y}=27.6^{l b} \sin \left(-45^{\circ}\right)-200^{l b}+F_{F G}=0 & \mathrm{FFG}_{\mathrm{FG}}=219.5 \mathrm{lb}(\mathrm{~T})
\end{array}
$$

(Check off members found:
$A B, B C, A D, B G, D G, D E, E G, E F, G G, C F, F G, G H, F H)$

Review which joints have 2 (or less) unknowns; which are G and H.
Let's use G and pretend that we have only found $F_{G F}$ (and not $F_{C G}$) in order to show a set of equations that use substitution with the algebra. The geometry has been found due to symmetry:

$$
\begin{aligned}
& \Sigma F_{x}=-F_{C G} \frac{15}{15.81}+F_{G H} \frac{15}{18.03}=0 \quad \text { rearranging: } F_{C G}=F_{G H} \frac{15}{18.03} \cdot \frac{15.81}{15}=F_{G H} \frac{15.81}{18.03} \\
& \Sigma F_{y}=F_{C G} \frac{5}{15.81}-F_{G H} \frac{10}{18.03}-219.5^{l b}=0
\end{aligned}
$$

Substituting:

$$
\Sigma F_{y}=\left(F_{G H} \frac{15.81}{18.03}\right) \frac{5}{15.81}-F_{G H} \frac{10}{18.03}-219.5^{l b}=0
$$

Simplifying

$$
-0.277 F_{G H}=219.5^{l b} \quad \mathrm{~F}_{G H}=-791.6 \mathrm{lb}(\mathrm{C})
$$

and $\mathrm{FCG}_{\mathrm{CG}}=-694.1 \mathrm{lb}(\mathrm{C})$ (which validates the earlier answer found of $690.8 \mathrm{lb}(\mathrm{C})$ with respect to rounding errors in all fractions and trig functions)
(Check off members found: $A B, B D, A D, B G, D G, D E, E C, E F, G G, G F, F G, G H, F H$)

(Typically, the last joint left will verify that the joint is in equilibrium with values found, but in this exercise the last joint was used to show the algebraic method of substitution.)

Truss Analysis using Multiframe

1．The software is on the computers in the College of Architecture in Programs under the Windows Start menu（see https：／／wikis．arch．tamu．edu／display／HELPDESK／Computer＋Accounts for lab locations）．Multiframe is under the Bentley Engineering menu．
2．There are tutorials available on line at http：／／www．formsys．com／mflearning that list the tasks and order in greater detail．The first task is to define the unit system：
－Choose Units．．．from the View menu．Unit sets are available，but specific units can also be selected by double clicking on a unit or format and making a selection from the menu．

Units						
Unit Set：	Configuration：					
American Australian British Canadian European Japanese		Unit Type	Unit	Decimal Places	Format	A
	1	Length	f ft	3	Fixed Decimal	
	2	Angle	deg	3	Fixed Decimal	三
	3	Deflection	in	3	Fixed Decimal	
	4	Rotation	deg	3	Fixed Decirnal	
	5	Force	kip	3	Fixed Decirnal	
	6	Moment	lbt－ft	3	Fixed Decimal	
	7	Dist．Force	lbf／ft	3	Fixed Decimal	
	8	Stress	ksi	3	Fixed Decimal	
	9	Mass	1 b	3	Fixed Decimal	
	10	Mass／Length	lb／ft	3	Fixed Decimal	
	11	Area	in^{2}	3	Fixed Decirnal	
	12	Mint of Inertia	in ${ }^{4}$	3	Fixed Decimal	
	13	Density	$1 \mathrm{l} / \mathrm{ft}^{3}$	3	Fixed Decimal	
	14	Section Modulus	in ${ }^{3}$	3	Fixed Decimal	\checkmark
	$\stackrel{-}{<}$		IIII	\cdots		
					OK	

3．To see the scale of the geometry，a grid option is available：
－Choose Grid．．．from the View menu

4．To create the geometry，you must be in the Frame window（default）．The symbol is the frame in the window toolbar：

The Member toolbar shows ways to create members：

The Generate toolbar has convenient tools to create typical structural shapes．

- Select a starting point and ending point with the cursor. The location of the cursor and the segment length is displayed at the bottom of the geometry window. The ESC button will end the segmented drawing. Continue to use the add connected members button. Any time the cursor is over an existing joint, the joint will be highlighted by a red circle.
- The geometry can be set precisely by selecting the joint (drag), and bringing up the joint properties menu (right click) to set the coordinates.
(
- The support types can be/set by selecting the joint (drag) and using the Joint Toolbar (pin shown), or the Frame / Joint Restraint/... menu (right click).
NOTE: If the support appear at both ends of the member, you had the member seleqted rather than the joint. Select the joint to change spipport for and right click to select the joint restraints nhenu or select the correct support on the joint toolbar.

The support forces will be determined in the analysis.

5. All members must have sections assigned (see section 6.) in order to calculate reactions and deflections. To use a standard steel section proceed to step 6. For custom sections, the section information must be entered. To define a section:

- Choose Edit Sections / Add Section... from the Edit menu
- Type a name for your new section
- Choose group Frame from the group names provided so that the section will remain with the file data
- Choose a shape. The Flat Bar shape is a rectangular section.
- Enter the cross section data.

Table values 1-9 must have values for a Flat Bar, but not all are used for every analysis. A recommendation is to put the value of 1 for those properties you don't know or care about. Properties like $\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{w}}$, etc. refer to wide flange sections.

- Answer any query. If the message says there is an error, the section will not be created until the error is corrected.

6. The standard sections library loaded is for the United States. If another section library is needed, use the Open Sections Library... command under the file menu, choose the library folder, and select the SectionsLibrary.slb file.

Select the members (drag to make bold) and assign sections with the Section button on the Member toolbar:

- Choose the group name and section name:
(STANDARD SHAPES)

(CUSTOM)

7. In order for Multiframe to recognize that the truss members are two-force bodies, all joints must be highlighted and assigned as pins with the Pinned Joints button on the Joint toolbar:
8. The truss geometry is complete, and in order to define the load conditions you must be in the Load window represented
 by the green arrow:
9. The Load toolbar allows a joint to be loaded with a force or a moment in global coordinates, shown by the first two buttons after the display numbers button. It allows a member to be loaded with a distributed load, concentrated load or moment (next three buttons) in global coordinates, as well as loading with distributed or single force or moment in the local coordinate system (next three buttons). It allows a load panel to be loaded with a distributed load in global or local coordinates (last two buttons).

- Choose the joint to be loaded (drag) and select the load type (here shown for point loading):.

- Choose the direction by the arrow shown. There is no need to put in negative values for downward loading.
- Enter the values of the load

NOTE: Do not put support reactions as applied loads. The analysis will determine the reaction values
Multiframe will automatically generate a grouping called a Load Case named Load Case 1 when a load is created. All additional loads will be added to this load case unless a new load case is defined (Add case under the Case menu).

10. In order to run the analysis after the geometry, member properties and loading has been defined:

- Choose Analyze Linear from the Case menu

11. If the analysis is successful, you can view the results in the Plot window represented by the red moment diagram:

12. The Plot toolbar allows the numerical values to be shown (1.0 button), the reaction arrows to be shown (brown up arrow) and reaction moments to be shown (brown curved arrow):

- To show the axial force diagram, Choose the purple Axial Force button. Tensile members will have "T" by the value (if turned on), while compression members will have "C" by the value

- To show the deflection diagram, Choose the blue Deflection button
- To animate the deflection diagram, Choose Animate... from the Display menu. You can also save the animation to a avi file by checking the box.
- To see exact values of axial load and deflection, double click on the member and move the vertical cross hair with the mouse. The ESC key will return you to the window.

13. The Data window (D) allows you to view all data "entered" for the geometry, sections and loading. These values can be edited.

14. The Results window (R) allows you to view all results of the analysis including displacements, reactions, member forces (actions) and stresses. These values can be cut and pasted into other Windows
 programs such as Word or Excel.

Static Case: Load Case 1						
	Memb	Label	Joint	$\begin{aligned} & \text { Px } \\ & \text { libf } \end{aligned}$	$V y^{\prime \prime}$	$\begin{gathered} \text { Mz' } \\ \text { libf-ft } \end{gathered}$
1	1		1	7.377	0.000	0.000
2	1		2	-7.377	0.000	0.000
3	2		2	-0.681	0.000	0.000
4	2		3	0.681	0.000	0.000
5	3		1	1.075	0.000	0.000
6	3		3	-1.075	0.000	0.000
7	4		2	4.157	0.000	0.000
8	4		4	-4.157	0.000	0.000
Ready \quad Z:\eı $/ \mathrm{A}$						

NOTE: Px' refers to the axial load (P) in the local axis x direction (x^{\prime}).
15. To save the file Choose Save from the File menu.
16. To load an existing file Choose Open... from the File menu.
17. To print a plot Choose Print Window... from the File menu. As an alternative, you may copy the plot $(\mathrm{Ctrl}+\mathrm{c})$ and paste it in a word processing document $(\mathrm{Ctrl}+\mathrm{v})$.

Equilibrium of Rigid Bodies

Notation:

k	$=$ spring constant	w	$=$ name for distributed load
F	$=$ name for force vectors, as is P	W	$=$ name for total force due to
F_{x}	$=$ force component in the x direction		distributed load
F_{y}	$=$ force component in the y direction	α	$=$ angle, in a math equation
$F B D$	= free body diagram	θ	$=$ angle, in a trig equation, ex. $\sin \theta$,
L	= beam span length		that is measured between the x axis
M	$=$ moment due to a force		and tail of a vector
\underline{x}	= horizontal distance	Σ	= summation symbol

- Definition: Equilibrium is the state when all the external forces acting on a rigid body form a system of forces equivalent to zero. There will be no rotation or translation. The forces are referred to as balanced.

$$
R_{x}=\sum F_{x}=0 \quad R_{y}=\sum F_{y}=0 \quad \text { AND } \quad \sum M=0
$$

- It is ABSOLUTELY NECESSARY to consider all the forces acting on a body (applied directly and indirectly) using a FREE BODY DIAGRAM. Omission of a force would ruin the conditions for equilibrium.

FREE BODY DIAGRAM STEPS;

1. Determine the free body of interest. (What body is in equilibrium?)
2. Detach the body from the ground and all other bodies ("free" $i t$).
3. Indicate all external forces which include:

- action on the free body by the supports \& connections
- action on the free body by other bodies
- the weigh effect (=force) of the free body itself (force due to gravity)

4. All forces should be clearly marked with magnitudes and direction. The sense of forces should be those acting on the body not by the body.
5. Dimensions/angles should be included for moment computations and force computations.
6. Indicate the unknown angles, distances, forces or moments, such as those reactions or constraining forces where the body is supported or connected. (Text uses hashes on the unknown forces to distinguish them.)

- Reactions can be categorized by the type of connections or supports. A reaction is a force with known line of action, or a force of unknown direction, or a moment. The line of action of the force or direction of the moment is directly related to the motion that is prevented.

prevents motion:
up and down

prevents motion:
vertical \& horizontal

prevents:
rotation \& translation

Reactions and Support Connections

Structural Analysis, $4^{\text {th }}$ ed., R.C. Hibbeler
Table 2-1 Supports for Coplanar Structures
Thealized

Symbol | One unknown of Unknowns |
| :--- |

force that acts in the direction
of the cable or link.

The line of action should be indicated on the FBD. The sense of direction is determined by the type of support. (Cables are in tension, etc...) If the sense isn't obvious, assume a sense._When the reaction value comes out positive, the assumption was correct. When the reaction value comes out negative, the assumption was opposite the actual sense. DON'T CHANGE THE ARROWS ON YOUR FBD OR SIGNS IN YOUR EQUATIONS.

- With the 3 equations of equilibrium, there can be no more than 3 unknowns. COUNT THE NUMBER OF UNKNOWN REACTIONS.

Example 1

(similar to ex. on pg 65)

500 lb is known

check:
reactions for the pin-type support at $\mathrm{A}=\mathbf{A}_{\mathbf{x}} \boldsymbol{\&} \mathbf{A}_{\mathbf{y}}$
reactions and components for the smooth surface at $\mathrm{B}=\mathbf{B}$ (perpendicular to ground only)
\# equations $=\mathbf{3}$
procedure:
Write summation of forces in x and y and set $=0$.

Choose a place to take a moment. Summing moments at \mathbf{A} means that $\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}$ and B_{x} have moment arms of zero.

- The general rule is to sum at point where there are the most unknown reactions which usually results in one unknown left in the equation. This "point" could also be where two lines of action intersect.
- More than one moment equation can be used, but it will not be unique. Only 3 equations are unique. Variations:

$$
\begin{array}{llll}
\sum F_{x}=0 & \sum F_{y}=0 & \sum M_{1}=0 & \text { or } \\
\sum F_{x}=0 & \sum M_{1}=0 & \sum M_{2}=0 & \text { or } \\
\sum M_{1}=0 & \sum M_{2}=0 & \sum M_{3}=0
\end{array}
$$

Recognizing support unknowns in FBD's

Statical Indeterminancy and Improper Constraints

- Definition: A completely constrained rigid body has the same number of unknown reactions as number of equilibrium equations and cannot move under the loading conditions. The reactions are statically determinate.
- Definition: Statically indeterminate reactions appear on a rigid body when there are more unknown reactions than the number of equilibrium equations. The reactions that cannot be solved for are statically indeterminate. The degree of indeterminacy is the number of additional equations that would be needed to solve, i.e. one more $=1{ }^{\text {st }}$ degree, 2 more $=2^{\text {nd }}$ degree...

Example of Static Indeterminancy:

Find the reactions on the cantilever when a pin is added at C

With 5 unknowns, two won't be solvable. (statically indeterminate to the $2^{\text {nd }}$ degree)

- Definition: When the support conditions provide the same or less unknown reactions as the equations of equilibrium but allow the structure to move (not equilibrium), the structure is considered partially constrained. This occurs when the reactions must be either concurrent or parallel.

Example of Partial Constraints:

Find the reactions when the pin support at A changes to a roller

If $\Sigma \mathrm{F}$ has to equal 0 , the x component must be 0 , meaning $\mathrm{B}=0$.
A would have to equal 100 N , but then $\Sigma \mathrm{M}$ wouldn't be 0 .

- The condition of at most as many unknown reactions as equilibrium equations is necessary for static determinacy, but isn't sufficient. The supports must completely constrain the structure.
- We'd like to avoid partial or improper constraint in the design of our structures. However, some structures with these types of constraints may not collapse. They may move. Or they may require advanced analysis to find reaction forces.

Example of Partial Constraints and Static Indeterminacy:

Find the weight and reactions when the sleeve track is horizontal
$\mathrm{k}=5 \mathrm{~N} / \mathrm{mm}$
$\mathrm{k}(\Delta \mathrm{l})=\mathrm{F}$ by spring length of unstretched spring $=450 \mathrm{~mm}$

For $\Sigma \mathrm{F}$ to equal 0 , the spring force must be 0 (x component $=0$) meaning it can't be stretched if there is no movement

Rigid Body Cases:

1. Two-force body: Equilibrium of a body subjected to two forces on two points requires that those forces be equal and opposite and act in the same line of action.

(A)

(B)

(C)
2. Three-force body: Equilibrium of a body subjected to three forces on three points requires that the line of action of the forces be concurrent (intersect) or parallel AND that the resultant equal zero.

Loads, Support Conditions \& Reactions for Beams

Types of Forces

Concentrated - single load at one point
Distributed - loading spread over a distance or area

Types of supports:

- Statically determinate
(number of unknowns \leq number of equilibrium equations)

simply supported (most common)

overhang

cantilever
- Statically indeterminate: (need more equations from somewhere

restrained, ex.

continuous
(most common case when $\mathrm{L}_{1}=\mathrm{L}_{2}$)

Distributed Loads

Distributed loads may be replaced by concentrated loads acting through the balance/center of the distribution or load area: THIS IS AN EQUIVALENT FORCE SYSTEM.

- $\quad w$ is the symbol used to describe the load per unit length.
- W is the symbol used to describe the total load.

Example 2 (changed from pg 72)
Example Problem 3.14-Cantilever (Figure 3.42)
Determine the support reactions developed at A for a cantilever beam supporting a trapezoidal load and a point load (horizontal) on the bar at the free end.

Method of Sections for Truss Analysis

Notation:

(C) = shorthand for compression
(T) = shorthand for tension
$P \quad=$ name for load or axial force vector

Joint Configurations (special cases to recognize for faster solutions)
Case 1) Two Bodies Connected
$A \xlongequal[B]{C}$
or

F_{AB} has to be equal and opposite to F_{BC}

Case 2) Three Bodies Connected with Two Bodies in Line

$F_{A B}$ and $F_{B C}$ have to be equal, and $F_{B D}$ has to have zero force.

Case 3) Three Bodies Connected and a Force - 2 Bodies aligned \& 1 Body and a Force are Aligned Four Bodies Connected - 2 Bodies Aligned and the Other 2 Bodies Aligned

F_{AB} has to equal F_{BC}, and $\left[\mathrm{F}_{\mathrm{BD}}\right.$ has to equal P$]$ or [F_{BD} has to equal F_{BE}]

Method of Sections (relies on internal forces being in equilibrium with external forces on a section)

1. Determine support reaction forces.
2. Cut a section in such a way that force action lines intersect.
3. Solve for equilibrium. Sum moments about an intersection of force lines of action

Advantages: Quick when you only need one or two forces (only 3 equations needed)
Disadvantages: Not always easy to find a place to cut a section or see where force lines intersect

- Compound Truss: A truss assembled of simple trusses and additional links. It has $\mathrm{b}=2 \mathrm{n}-3$, is statically determinate, rigid and completely constrained with a pin and roller. It can be identified by triangles with pins in the middle of some sides.
- Statically Indeterminate Trusses:

Occur if there are more members than equations for all the joints
OR if there are more reaction supports unknowns than 3

- Diagonal Tension Counters: Crossed bracing of cables or slender members is commonly used in bridge trusses, buildings and towers. These trusses look indeterminate, but can be solved statically because the bracing cannot hold a compressive force. The members are excluded in the analysis.

Method:

1. Determine support reaction forces.
2. Cut a section in such a way that the tension counters are exposed.
3. Solve for force equilibrium in y with one counter.
 If the value is positive (in tension), this is the solution.
4. Solve for force equilibrium in y with the other counter.

Example 1 (pg 99)
A 64 -foot parallel chord truss (Figure 4.30) supports horizontal and vertical loads as shown. Using the method of sections, determine the member forces $B C, H G$, and $G D$.
(Support forces must be found as well).

Example 2

Using the method of sections, determine member forces in $\mathrm{FE}, \mathrm{EB}, \mathrm{BC}, \mathrm{AB}$ and FB .

SOLUTION:

A section can't pass through 5 members, so there will have to be two sections. The first passes through FE, EB and BC.

FE is shown assumed to be in compression, while the other forces are drawn
 assumed to be in tension.

There can be only two intersections when two of the three forces are parallel - at E and B:
$\Sigma M_{E}=100^{l b}(6 f t)-B C(8 f t)=0$
$B C=75^{\mid b}(T)$
$\Sigma M_{B}=100^{l b}(12 f t)-F E(8 f t)=0$
$\mathrm{FE}=150^{\mathrm{bb}}$ (C)
Because EB is the only unknown force with a y component, it is useful to sum forces in the y direction (although it also has the only remaining unknown x component):
$\Sigma F_{y}=100^{l b}-E B\left({ }^{8 f t} / \sqrt{100} f t\right)=0$

(or $\Sigma F_{x}=150^{l b}-75^{l b}-E B\left({ }^{6 t} / \sqrt{100} f t\right)=0$)
$E B=125^{\mathrm{b}}(\mathrm{T})$

A second section can be drawn through AB, FB and FE .
There are three points of intersection of the unknown forces at A, F and B. B is not on the section, but we know where it is.

$$
\Sigma M_{A}=-200^{l b}(6 f t)+F B(6 f t)=0 \quad F B=200^{\mathrm{lb}}(\mathrm{C})
$$

$\Sigma M_{F}=-200^{l b}(6 f t)+A B_{y}(6 f t)=0$ (sliding AB components to A)

$A B=A B_{y}(\sqrt{100} / 8)=250^{\text {b }}(\mathrm{T})$
or $\Sigma M_{F}=-200^{l b}(6 f t)+A B_{x}(8 f t)=0$ (sliding AB components to B)
$A B=A B_{x}(\sqrt{100} / 6)=250^{\mathrm{bb}}(T)$
$\Sigma M_{B}=-200^{l b}(6 f t)+F E(8 f t)=0$
$\mathrm{FE}=150^{\mathrm{lb}}(\mathrm{C})$

Example 3 (pg 90)

Example Problem 4.1 (P4ethod of Joints)

An asymmetrical roof truss, shown in Figure 4.4, supports two vertical roof loads. Determine the suppert reactions at eachend, then, using the methed of joints, solve for all member forces. Summarize the results of all member forees on- a FBD (this diagram is referred to as a force summation diagram). Determine the member forces $C B, D B$ and $D F$.

Example 4

Using the method of sections, determine member forces in BC, CD and BD.

SOLUTION:
Find the support reactions from rigid body equilibrium, or in this case, from load tracing with symmetrical loads.

Draw a section line through the members of interest, cutting through no more than 3 members to separate the truss into two pieces. In this case, $B C$ and $C D$ can be cut through, while $B D$ will need another section.

Draw one of the sections, exposing the member forces. Drawing them "out" or "away" from the cut assumes tension. BC is drawn in compression. So is DC, but because it has a 45 degree angle, the components will have the same magnitude.

Find a point to sum moments where two unknown forces intersect. This may be on a point of the section or off the section. X is such a location where the line of action of $B C$ intersects that of $D E$. For every 15 ft to the left, the line slopes down 5 ft , so X is located $(10 \mathrm{ft} / 5 \mathrm{ft}) 15 \mathrm{ft}=30 \mathrm{ft}$ to the left of B.
$\Sigma M_{X}=450^{l b}(15 f t)-300^{l b}(30 f t)-D C_{y}(30 f t)=0$
$D C y=-75 \mathrm{lb}$, so $D C=D C_{y} / \sin 45=106 \mathrm{lb}$ tension

(compression was assumed, but the answer was negative indicating our assumption wasn't verified).
(Notice that $D C_{x}$ and $D C_{y}$ "slid" down to D and then the lever arm for $D C_{x}$ was 0 . The components can also slide to the other end point of the member to locate the lever arms)

Summing at D where $D C$ and $D E$ intersect means there will be no lever arms. Sliding the components of $B C$ to B means there will be no lever arm for BC_{y} :
$\Sigma M_{D}=-450^{l b}(15 f t)+B C_{x}(10 f t)=0 \quad B C_{x}=675^{\text {lb }}$, so $B C=B C_{x} \sqrt{10} / 3=711.5^{\text {bb }}$ compression

Draw a section line that passes through BD and cuts through no more than three members.

If we hadn't already found BC , we could sum moments at point X again to eliminate $B C$ and $A D$ from our equation, leaving $B D$.

But it is obvious that we have only one unknown y force, which is BD :

$$
\Sigma F_{y}=450^{l b}-B D-711.5^{l b}(1 / \sqrt{10})=0 \quad \mathrm{BD}=225^{\mathrm{lb}} \underline{\text { tension }}
$$

Mechanics of Materials

Notation:

```
\(A \quad=\) area \((\) net \(=\) with holes, bearing \(=\) in
        contact, etc...)
\(d \quad=\) diameter of a hole
\(f \quad=\) symbol for stress
\(f_{\text {allowable }}=\) allowable stress
\(f_{v} \quad=\) shear stress
\(f_{p} \quad=\) bearing stress (see P )
\(F_{\text {allowed }}=\) allowable stress (used by codes)
\(F_{v} \quad=\) allowable shear stress
\(k P a=\) kilopascals or \(1 \mathrm{kN} / \mathrm{m}^{2}\)
\(q \quad=\) allowable soil bearing pressure
\(\underline{p s i}=\) pounds per square inch
```

Mechanics of Materials is a basic engineering science that deals with the relation between externally applied load and its effect on deformable bodies. The main purpose of Mechanics of Materials is to answer the question of which requirements have to be met to assure STRENGTH, RIGIDITY, AND STABILITY of engineering structures.

To solve a problem in Mechanics of Materials, one has to consider THREE ASPECTS OF THE PROBLEM:

1. STATICS: equilibrium of external forces, internal forces, stresses
2. GEOMETRY: deformations and conditions of geometric fit, strains
3. MATERIAL PROPERTIES: stress-strain relationship for each material, obtained from material testing.

- STRESS - The intensity of a force acting over an area.

Normal Stress

Stress that acts along an axis of a member; can be internal or external; can be compressive or tensile.

$$
f=\sigma=\frac{P}{A_{\text {net }}} \quad \text { Strength condition: } f=\frac{P}{A_{\text {net }}}<f_{\text {allowable }} \text { or } F_{\text {allowed }}
$$

Shear Stress

Stress that acts perpendicular to an axis or length of a member, or parallel to the cross section is called shear stress.

$$
f_{v}=\tau=\frac{P}{A_{n e t}}
$$

Strength condition: $f_{v}=\frac{P}{A_{\text {net }}}<\tau_{\text {allowable }}$ or $F_{\text {allowed }}$

Bearing Stress

A compressive normal stress acting between two bodies.

$$
f_{p}=\frac{P}{A_{\text {bearing }}}
$$

Bending Stress

A normal stress caused by bending; can be compressive or tensile. (Discussed in Note Set on Beam Bending.)

Torsional Stress

A shear stress caused by torsion (moment around the axis). (Discussed in Note Set on Torsion.)

Bolts in Shear and Bearing

Single shear - forces cause only one shear "drop" across the bolt.

Figure 5.11 A bolted connection-single shear.

Double shear - forces cause two shear changes across the bolt.

$$
f_{V}=\frac{P}{2 A}
$$

(two shear planes)

Free-body diagram of middle section of the bolt in shear.
Figure 5.12 A bolted commection in double shear.

Bearing of a bolt on a bolt hole - The bearing surface can be represented by projecting the cross section of the bolt hole on a plane (into a rectangle).

$$
f_{p}=\frac{P}{A}=\frac{P}{t d}
$$

Bearing stress on plate,

Example $1(\mathrm{pg} 201)^{*}$
Example Problem 6.8 (Figures 6.18 to 6.20)
A pipe storage rack is used for storing pipe in a shop. The support rack beam is fastened to the main floor beam using steel straps $1 / 2^{\prime \prime} \times 2^{\prime \prime}$ in dimension. Round bolts are used to fasten the strap to the floor beam in single shear. (a) If the weight of the pipes impose a maximum tension load of 10,000 pounds in each strap, determine the tension stress developed in the steel strap. (b) Also, what diameter bolt is necessary to fasten the strap to the floor beam if the allowable shear stress for the bolts equals $F_{v}=15,000^{\mathrm{lb}} / \mathrm{in}^{2}$.? Determine the bearing stress in the strap from the bolt diameter chosen. If the straps are 10 ft . in length, how much elongation would occur? What is the ultimate load capacity in each strap? Assume A36 steel: $\mathrm{F}_{\mathrm{u}}=58 \mathrm{ksi}, \mathrm{E}=29 \times 10^{3} \mathrm{ksi}$.

(a)

(b)

Example 2 (pg 202)

Example Problem 6.9 (Figures 6.21 to 6.26)

A $75 \mathrm{~mm} \times 200 \mathrm{~mm}$ "rough cut" beam is supported by columns at both ends. Column $A B$ supports the beam in bearing while column $C D$ utilizes a shear block at C. Both columns bear on concrete footings on the ground.
a. What is the compressive stress developed in column $A B$? $R_{A}=24 \mathrm{kN}$
b. What is the bearing stress that develops at C between the beam and shear block made from a $100 \mathrm{~mm} \times 100 \mathrm{~mm}$ block cut from a post?
c. What is the required depth y necessary to resist the shear force developed at the glued joint between the shear block and post? Assume that the glue is capable of safely resisting 500 kPa (72.5 psi) in shear.
d. Determine the size of square footing required to take the maximum column load if the allowable soil pressure $q=73^{\mathrm{kN}} / \mathrm{m}^{2}=73 \mathrm{kPa}(1525 \mathrm{psf})$.

Stress and Strain - Elasticity

Notation:

A	$=$ area
D	$=$ diameter dimension
E	$=$ modulus of elasticity or Young's
	modulus
f	$=$ stress
$F_{\text {allow }}=$	allowable stress
$F_{t}=$	allowable tensile stress
$F . S$.	$=$ factor of safety
h	$=$ height
$k P a=$	kilopascals or $1 \mathrm{kN} / \mathrm{m}^{2}$
$k s i=$	kips per square inch
L	$=$ length
$L R F D=$	load and resistance factor design
$M P a=$	megapascals or $10^{6} \mathrm{~N} / \mathrm{m}^{2}$ or
	1 N/mm ${ }^{2}$
$q=$	allowable soil bearing pressure
$p s f=$	pounds per square foot
P	$=$ name for axial force vector
R	$=$
	name for design quantity (force or
	moment) for LRFD, ex. R_{L}, R_{D}, or
	R_{n}

$t \quad=$ thickness
$\delta=$ elongation or length change
$\varepsilon \quad=$ strain
$\phi \quad=$ angle of twist
$=$ resistance factor for LRFD
$=$ diameter symbol
$\mu \quad=$ lateral strain ratio or Poisson's ratio
$\gamma \quad=$ shear strain
$=$ density or unit weight
$\gamma_{D}=$ dead load factor for LRFD
$\gamma_{L}=$ live load factor for LRFD
$\theta \quad=$ angle of principle stress
$\rho \quad=$ radial distance
$\sigma=$ engineering symbol for normal
stress
$\tau \quad=$ engineering symbol for shearing
stress

Normal Strain

In an axially loaded member, normal strain, ε is the change in the length, δ with respect to the original length, L .

$$
\varepsilon=\frac{\delta}{L}
$$

It is UNITLESS, but may be called strain or microstrain (μ).

Shearing Strain

(b)

In a member loaded with shear forces, shear strain, γ is the change in the sheared side, δ_{s} with respect to the original height, L. For small angles: $\tan \phi \cong \phi$.

$$
\gamma=\frac{\delta_{s}}{L}=\tan \phi \cong \phi
$$

In a member subjected to twisting, the shearing strain is a measure of the angle of twist with respect to the length and distance from the center, ρ :

$$
\gamma=\frac{\rho \phi}{L}
$$

Testing of Load vs. Strain

Behavior of materials can be measured by recording deformation with respect to the size of the load. For members with constant cross section area, we can plot stress vs. strain.

BRITTLE MATERIALS - ceramics, glass, stone, cast iron; show abrupt fracture at small strains.

DUCTILE MATERIALS - plastics, steel; show a yield point and large strains (considered plastic) and "necking" (give warning of failure)

SEMI-BRITTLE MATERIALS - concrete; show no real yield point, small strains, but have some "strain-hardening".

Linear-Elastic Behavior

In the straight portion of the stress-strain diagram, the materials are elastic, which means if they are loaded and unloaded no permanent deformation occurs.

True Stress \& Engineering Stress

True stress takes into account that the area of the cross section changes with loading.

Engineering stress uses the original area of the cross section.

Hooke's Law - Modulus of Elasticity

In the linear-elastic range, the slope of the stress-strain diagram is constant, and has a value of E , called Modulus of Elasticity or Young's Modulus.

$$
f=E \cdot \varepsilon
$$

Isotropic Materials - have the same E with any direction of loading.
Anisotropic Materials - have different E's with the direction of loading.
Orthotropic Materials - have directionally based E's

Table D-1 Elastic moduli of selected materials

Material	Modulus of clasticity E		Shear modulus G		Poisson's ratio ν
	$10^{6} \mathrm{psi}$	GPa	$10^{6} \mathrm{psi}$	GPa	
Aluminum	10	70	3.8	26	0.33
Aluminum alloys	10-12	70-80	3.8-4.4	26-30	0.33
2014-T6	10.6	73	4	28	0.33
6061-T6	10	70	3.8	26	0.33
7075-T6	10.4	72	3.9	27	0.33
Brick (compression)	1.5-3.5	10-24			
Cast iron	12-25	80-170	4.5-10	31-69	0.2-0.3
Gray cast iron	14	97	5.6	39	0.25
Concrete (compression)	2.6-4.4	18-30			0.1-0.2
Copper	17	115	6.2	43	0.35
Copper alloys	14-18	96-120	5.2-6.8	36-47	0.33-0.35
Brass	14-16	96-110	5.2-6	36-41	0.34
80\% Cu, $20 \% \mathrm{Zn}$	15	100	5.5	38	0.33
Naval brass	15	100	5.5	38	0.33
Bronze	14-17	96-120	5.2-6.3	36-44	0.34
Manganese bronze	15	100	5.6	39	0.35
Glass	7-12	50-80	2.9-5	20-33	0.20-0.27
Magnesium	5.8	40	2.2	15	0.34
Nickel	30	210	11.4	80	0.31
Nylon	0.3-0.4	2-3			0.4
Rubber	0.0001-0.0006	0.001-0.004	0.00004-0.0002	0.0003-0.0014	0.44-0.50
Steel	28-32	190-220	10.8-12.3	75-85	0.28-0.30
Stone (compression)					
Granite	6-10	40-70			0.2-0.3
Marble	7-14	50-100			0.2-0.3
Titanium	16	110	5.8	40	0.33
Titanium alloys	15-18	100-124	5.6-6.8	39-47	0.33
Tungsten	52	360	22	150	0.2
Wood (bending)					
Ash	1.5-1.6	10-11			
Oak	1.6-1.8	11-12			
Southern pine	1.6-2	11-14			
Wrought iron	28	190	10.9	75	0.3

Plastic Behavior \& Fatigue

Permanent deformations happen outside the linear-elastic range and are called plastic deformations. Fatigue is damage caused by reversal of loading.

- The proportional limit (at the end of the elastic range) is the greatest stress valid using Hooke's law.
- The elastic limit is the maximum stress that can be applied before permanent deformation would appear upon unloading.
- The yield point (at the yield stress) is where a ductile material continues to elongate without an increase of load. (May not be well defined on the stress-strain plot.)
- The ultimate strength is the largest stress a material will see before rupturing, also called the tensile strength.
- The rupture strength is the stress at the point of rupture or failure. It may not coincide with the ultimate strength in ductile materials. In brittle materials, it will be the same as the ultimate strength.
- The fatigue strength is the stress at failure when a member is subjected to reverse cycles of stress (up \& down or compression \& tension). This can happen at much lower values than the ultimate strength of a material.
- Toughness of a material is how much work (a combination of stress and strain) us used for fracture. It is the area under the stress-strain curve.

Concrete does not respond well to tension and is tested in compression. The strength at crushing is called the compression strength.

Materials that have time dependent elongations when loaded are said to have creep. Concrete and wood creep. Concrete also has the property of shrinking over time.

Poisson's Ratio

For an isometric material that is homogeneous, the properties are the same for the cross section:

$$
\varepsilon_{y}=\varepsilon_{z}
$$

There exists a linear relationship while in the linear-elastic range of
 the material between longitudinal strain and lateral strain:

$$
\mu=-\frac{\text { lateral strain }}{\text { axial strain }}=-\frac{\varepsilon_{y}}{\varepsilon_{x}}=-\frac{\varepsilon_{z}}{\varepsilon_{x}} \quad \varepsilon_{y}=\varepsilon_{z}=-\frac{\mu f_{x}}{E}
$$

Positive strain results from an increase in length with respect to overall length.
Negative strain results from a decrease in length with respect to overall length.
μ is the Poisson's ratio and has a value between 0 and $1 / 2$, depending on the material

Relation of Stress to Strain

$f=\frac{P}{A} ; \varepsilon=\frac{\delta}{L}$ and $E=\frac{f}{\varepsilon}$ so $E=\frac{P / A}{\delta / L}$ which rearranges to: $\quad \delta=\frac{P L}{A E}$

Orthotropic Materials

One class of non-isotropic materials is orthotropic materials that have directionally based values of modulus of elasticity and Poisson's ratio (E, μ).

Ex: plywood, laminates, fiber reinforced polymers with
 direction fibers

Stress Concentrations

In some sudden changes of cross section, the stress concentration changes (and is why we used average normal stress). Examples are sharp notches, or holes or corners.
(Think about airplane window shapes...)

Maximum Stress

When both normal stress and shear stress occur in a structural member, the maximum stresses can occur at some other planes (angle of θ).

Maximum Normal Stress happens at $\theta=0^{\circ}$ AND
Maximum Shearing Stress happens at $\theta=45^{\circ}$ with only normal stress in the x direction.

Allowable Stress Design (ASD) and Factor of Safety (F.S.)

There are uncertainties in material strengths:

$$
F . S=\frac{\text { ultimate load }}{\text { allowable load }}=\frac{\text { ultimate stress }}{\text { allowable stress }}
$$

Allowable stress design determines the allowable stress by: allowable stress $=\frac{\text { ultimate stress }}{F . S}$

Load and Resistance Factor Design - LRFD

There are uncertainties in material strengths and in structural loadings.
$\gamma_{D} R_{D}+\gamma_{L} R_{L} \leq \phi R_{n}$
where
$\gamma=$ load factor for Dead and Live loads
$\mathrm{R}=$ load (dead or live)
$\phi=$ resistance factor
$\mathrm{R}_{\mathrm{n}}=$ nominal load (capacity)

Thermal Effects and Indeterminacy

Notation:

A	$=$ area	$\varepsilon_{t} \quad=$ thermal strain (no units)
E	$=$ modulus of elasticity or Young's modulus	$\delta \quad=$ elongation or length change
f	$=$ stress	$\delta_{P}=$ elongation due to axial load
L	= length	$\delta_{\text {restr }}=$ restrained length change
P	= name for axial force vector	$\delta_{T}=$ elongation due or length change
P^{\prime}	$=$ name of reaction force	due to temperature
α	$=$ coefficient of thermal expansion for a material	$\Delta T=$ change in temperature

Thermal Strains

Physical restraints limit deformations to be the same, or sum to zero, or be proportional with respect to the rotation of a rigid body.
We know axial stress relates to axial strain: $\quad \delta=\frac{P L}{A E}$ which relates δ to P
Deformations can be caused by the material reacting to a change in energy with temperature. In general (there are some exceptions):

- Solid materials can contract with a decrease in temperature.
- Solid materials can expand with an increase in temperature.

The change in length per unit temperature change is the coefficient of thermal expansion, α. It has units of $/{ }^{\circ} \mathrm{F} \quad$ or $/{ }^{\circ} \mathrm{C}$ and the deformation is related by: $\quad \delta_{T}=\alpha(\Delta T) L$

Thermal Strain: $\quad \varepsilon_{T}=\alpha \Delta T$

There is no stress associated with the length change with free movement, BUT if there are restraints, thermal deformations or strains can cause internal forces and stresses.

How A Restrained Bar Feels with Thermal Strain

1. Bar pushes on supports because the material needs to expand with an increase in temperature.
2. Supports push back.

3. Bar is restrained, can't move and the reaction causes internal stress.

(b)

Superposition Method

If we want to solve a statically indeterminate problem that has extra support forces:

- We can remove a support or supports that makes the problem look statically determinate
- Replace it with a reaction and treat it like it is an applied force
- Impose geometry restrictions that the support imposes

For Example:

$$
\begin{array}{ll}
\delta_{T}=\alpha(\Delta T) L & \delta_{p}=-\frac{P L}{A E} \\
\delta_{P}+\delta_{T}=0 & -\frac{P L}{A E}+\alpha(\Delta T) L=0 \\
P=\alpha(\Delta T) L \frac{A E}{L}=\alpha(\Delta T) A E \quad f=-\frac{P}{A}=-\alpha(\Delta T) E
\end{array}
$$

(c)

Example 1 (pg 228)

Example Problem 6.24 (Figures 6.58 and 6.59)

A W8 $\times 67$ steel beam, 20 ft . in length, is rigidly attached at one end of a concrete wall. If a gap of 0.010 in . exists at the opposite end when the temperature is $45^{\circ} \mathrm{F}$, what results when the temperature rises to $95^{\circ} \mathrm{F}$?

ALSO: If the beam is anchored to a concrete slab, and the steel sees a temperature change of $50^{\circ} \mathrm{F}$ while the concrete only sees a change of $30^{\circ} \mathrm{F}$, determine the compressive stress in the beam.

$$
\begin{array}{ll}
\alpha_{\mathrm{c}}=5.5 \times 10^{-6} /{ }^{\circ} \mathrm{F} & \mathrm{E}_{\mathrm{c}}=3 \times 10^{6} \mathrm{psi} \\
\alpha_{\mathrm{s}}=6.5 \times 10^{-6} /{ }^{\circ} \mathrm{F} & \mathrm{E}_{\mathrm{s}}=29 \times 10^{6} \mathrm{psi}
\end{array}
$$

Example 2
5.21 A short concrete column measuring 12 in . square is reinforced with four \#8 bars ($A_{s}=4 \times 0.79 \mathrm{in}^{2}=3.14 \mathrm{in}^{2}$) and supports an axial load of 250k. Steel bearing plates are used top and bottom to ensure equal deformations of steel and concrete. Calculate the stress developed in each material if:

$$
\begin{aligned}
& E_{c}=3 \times 10^{6} \mathrm{psi} \text { and } \\
& E_{s}=29 \times 10^{6} \mathrm{psi}
\end{aligned}
$$

Solution:

From equilibrium:

$$
\begin{aligned}
& {\left[\Sigma F_{y}=0\right]-250 \mathrm{k}+f_{s} A_{\mathrm{s}}+f_{c} A_{c}=0} \\
& A_{s}=3.14 \mathrm{in} .^{2} \\
& A_{c}=\left(12^{\prime \prime} \times 12^{\prime \prime}\right)-3.14 \mathrm{in} .^{2} \cong 141 \mathrm{in} .^{2} \\
& 3.14 f_{s}+141 f_{c}=250 \mathrm{k}
\end{aligned}
$$

From the deformation relationship:

$$
\begin{aligned}
& \delta_{s}=\delta_{c} ; L_{s}=L_{c} \\
& \therefore \frac{\delta_{s}}{L}=\frac{\delta_{c}}{L}
\end{aligned}
$$

and

$$
\varepsilon_{s}=\varepsilon_{c}
$$

Since

$$
E=\frac{f}{\varepsilon}
$$

and

$$
\begin{aligned}
& \frac{f_{s}}{E_{s}}=\frac{f_{c}}{E_{c}} \\
& f_{s}=f_{c} \frac{E_{s}}{E_{c}}=\frac{29 \times 10^{3}\left(f_{c}\right)}{3 \times 10^{3}}=9.67 f_{c}
\end{aligned}
$$

Substituting into the equilibrium equation:

$$
\begin{aligned}
& 3.14\left(9.76 f_{c}\right)+141 f_{c}=250 \\
& 30.4 f_{c}+141 f_{c}=250 \\
& 171.4 f_{c}=250 \\
& f_{c}=1.46 \mathrm{ksi} \\
& \therefore f_{s}=9.67(1.46) \mathrm{ksi} \\
& f_{s}=14.1 \mathrm{ksi}
\end{aligned}
$$

Sustainability Considerations in Materials

from Fundamentals of Building Construction Materials \& Methods, 5th ed., Allen and Iano (2008)

Considerations of Sustainabinty in Wood Construction

Wood: A Renewable Resource

- Wood is the only major structural material that is renewable.
- In the United States and Canada, tree growth each year greatly exceeds the volume of harvested trees, though many timberlands are not managed in a sustainable manner.
- On other continents, many countries long ago felled the last of their forests, and many forests in other countries are being depleted by poor management practices and slash-and-burn agriculture. Particularly in the case of tropical hardwoods, it is wise to investigate sources and to ensure that the trees were grown in a sustainable manner.
- Some panel products can be manufactured from rapidly renewable vegetable fibers, recoverable and recycled wood fibers, or recycled cellulose fibers.
- Bamboo, a rapidly renewable grass, can replace wood in the manufacture of flooring, interior paneling, and other finish carpentry applications. In other parts of the world, bamboo is used for the construction of scaffolding, concrete formwork, and even as the source of fibrous material for structural panels analogous to wood-based oriented strand board (OSB), particleboard, and fiberboard.

Forestry Practices

- Two basic forms of forest management are practiced in North America: sustainable forestry, and clearcutting and replanting. The clearcutting forest manager attains sustainable production by cutting all the trees in an area, leaving the stumps, tops, and limbs to decay and become compost, setting out new trees, and tending them until they are ready for harvest. In sustainable forestry, trees are harvested more selectively from a forest in such a way as to minimize damage to the forest environment and maintain the biodiversity of its natural ecosystem.
- Environmental problems often associated with logging of forests include loss of wildlife habitat, soil erosion, pollution of waterways, and air pollution from machinery exhausts and burning of tree wastes. A recently clearcut forest is a shockingly ugly tangle of stumps, branches, tops, and substandard logs left to decay. It is crisscrossed by deeply rutted, muddy haul roads. Within a few years, decay of the waste wood and new tree growth largely heal the scars. Loss of forest area may raise levels of carbon dioxide, a green-
house gas, in the atmosphere, because trees take up carbon dioxide from the air, utilize the carbon for growth, and give back pure oxygen to the atmosphere.
- The buyer of wood products can support sustainable forestry practices by specifying products certified as originating from sustainable forests, those that are managed in a socially responsible and environmentally sound manner. FSC-certified wood products, for example, satisfy the requirements of LEED and all other major green building assessment programs.

Mill Practices

- Skilled sawyers working with modern computerized systems can convert a high percentage of each log into marketable wood products. A measure of sawmill performance is the lumber recovery factor (LRF), which is the net volume of wood products produced from a cubic meter of log.
- Manufactured wood products such as oriented strand board, particleboard, I-joists, and laminated strand lumber efficiently utilize most of the wood fiber in a tree and can be produced from recycled or younger-growth, rapidly renewable materials; finger-jointed lumber is made by gluing end to end short pieces of lumber that might otherwise be treated as waste. The manufacturer of large, solid timbers generates more unused waste and yields fewer products from each log.
- Kiln drying uses large amounts of fuel but produces more stable, uniform lumber than air drying, which uses no fuel other than sunlight and wind.
- Mill wastes are voluminous: Bark may be shredded to sell as a landscape mulch, composted, burned, or buried in a landfill. Sawdust, chips, and wood scraps may be burned to generate steam to power the mill, used as livestock bedding, composted, burned, or buried in a landfill.
- Many wood products can be manufactured with significant percentages of recoverable or recycled wood, plant fiber, or paper materials.

Transportation

- Because the major commercial forests are located in concentrated regions of the United States and Canada, most lumber must be shipped considerable distances. Fuel consumption is minimized by planing and drying the
lumber before it is shipped, which reduces both weight and volume.
- Some wood products can be harvested or manufactured locally or regionally.

Energy Content

- Solid lumber has an embodied energy of roughly 1000 to 3000 BTU per pound (2.3 to $7.0 \mathrm{MJ} / \mathrm{kg}$). An average 8 -footlong 2×4 (2.4 -m-long $38 \times 89 \mathrm{~mm}$) has an embodied energy of about $17,000 \mathrm{BTU}$ (40 MJ). This includes the energy expended to fell the tree, transport the log, saw and surface the lumber, dry it in a kiln, and transport it to a building site.
- Manufactured wood products have higher embodied energy content than solid lumber, due to the glue and resin ingredients and the added energy required in their manufacture. The embodied energy of such products ranges from about 3000 to 7500 BTU per pound (7.0 to $17 \mathrm{MJ} / \mathrm{kg}$).
- Wood construction involves large numbers of steel fasteners of various kinds. Because steel is produced by relatively energy-intensive processes, fasteners add considerably to the total energy embodied in a wood frame building.
- Wood does not have the lowest embodied energy of the major structural materials when measured on a pound-forpound basis. However, when buildings of comparable size, but structured with either wood, light gauge steel studs, or concrete, are compared, most studies indicate that those of wood have the lowest total embodied energy of the three. This is due to wood's lighter weight (or, more precisely, its lesser density) in comparison to these other materials, as well as the relative efficiency of the wood light frame construction system.

Construction Process

- A significant fraction of the lumber delivered to a construction site is wasted: It is cut off when each piece is sawed to size and shape and ends up on the scrap heap, which is usually burned or taken to a landfill. On-site cutting of lumber also generates considerable quantities of sawdust. Construction site waste can be reduced by designing buildings that utilize full standard lengths of lumber and full sheets of wood panel materials.
- Wood construction lends itself to various types of prefabrication that can reduce waste and improve the efficiency of material usage in comparison to on-site building methods.

Indoor Air Quality (IAQ)

- Wood itself seldom causes IAQ problems. Very few people are sensitive to the odor of wood.
- Some of the adhesives and binders used in gluelaminated lumber, structural composite lumber, and wood panel products can cause serious IAQ problems by giving off volatile organic compounds such as formaldehyde. Alternative products with low-emitting binders and adhesives are also available.
- Some paints, varnishes, stains, and lacquers for wood also emit fumes that are unpleasant and/or unhealthful.
- In damp locations, molds and fungi may grow on wood members, creating unpleasant odors and releasing spores to which many people are allergic.

Building Life Cycle

- If the wood frame of a building is kept dry and away from fire, it will last indefinitely. However, if the building is poorly maintained and wood elements are frequently wet, wood components may decay and require replacement.
- Wood is combustible and gives off toxic gases when it burns. It is important to keep sources of ignition away from wood and to provide smoke alarms and easy escape routes to assist building occupants in escaping from burning buildings. Where justified by building size or type of occupancy, building codes require sprinkler systems to protect against the rapid spread of fire.
- When a building is demolished, wood framing members can be recycled directly into the frame of another building, sawn into new boards or timbers, or shredded as raw material for oriented-strand materials. There is a growing industry whose business is purchasing and demolishing old barns, mills, and factories and selling their timbers as reclaimed lumber.

A study commissioned by the Canadian Wood Council compares the full life cycle of three similar office buildings, one each framed with wood, steel, or concrete and all three operated in a typical Canadian climate. In this study, total embodied energy for the wood building is about half of that for the steel building and two-thirds of that for the concrete building. The wood building also outperforms the others in measures of greenhouse gas emissions, air pollution, solid waste generation, and ecological impact.

Considerations of Sustainability in Heavy Timber Construction

In addition to the issues of sustainability of wood production and use that were raised in the previous chapter, there are issues that pertain especially to heavy timber frame construction:

It is wasteful to saw large, solid timbers from logs: In most instances, only one or two timbers can be obtained from a log, and it is often difficult to saw smaller boards from the leftover slabs.

Glue-laminated timbers and composite timbers utilize wood fiber much more efficiently than solid timbers.

Recycled timbers from demolished mills, factories, and barns are often available. Most of these are from old-growth forests in which trees grew slowly, producing fine-grained, dense wood. As a result, many have structural properties that are superior to those of new-growth timbers. Recycled timbers may be used as is, resurfaced to give them a new appearance, or resawn into smaller members. However, they often contain old metal fasteners. Unless these are meticulously found and removed, they can damage saw blades and planer knives, causing expensive mill shutdowns while repairs are made.

Continuous bending action of beams may be created by splicing beams at points of inflection rather than over supports, as shown in Figures 4.15, 4.20 and 4.21. This reduces maximum bending moments, allowing timber sizes to be reduced substantially.

Timbers do not lose strength with age, although they do sag progressively if they are overloaded. When a heavy timber building is demolished at some time in the future, its timbers can be recycled, even if they were obtained as recycled material for the building that is being demolished.

A heavy timber frame enclosed with foam core sandwich or stressed-skin panels is relatively airtight and well insulated, with few thermal bridges. Heating and cooling of the building will consume relatively little energy.

The glues and finish coatings used with glue-laminated timbers may give off gases such as formaldehyde that can cause indoor air quality (IAQ) problems. It is wise to determine in advance what glues and coatings are to be used, and to avoid ones that may cause IAQ problems.

166 / Chapter 5 - Wood Light Frame Construction

Considerations of Sustainability in Wood Liget Frame Construction

In addition to the issues of sustainability of wood production and use that were raised in Chapter 3, there are issues that pertain especially to wood light frame construction:

- A wood light frame building can be designed to minimize waste in several ways. It can be dimensioned to utilize full sheets and lengths of wood products. Most small buildings can be framed with studs 24 inches (610 mm) o.c. rather than 16 inches (406 mm). A stud can be eliminated at each corner by using small, inexpensive metal clips to support the interior wall finish materials. If joists and rafters are aligned directly over studs, the top plate can be a single member rather than a double one. Floor joists can be spliced at points of inflection rather than over girders; this reduces bending moments and allows use of smaller joists. Roof trusses often use less wood than conventional rafters and ceiling joists.
- Laminated strand lumber and rim joists, wood I-joists, laminated veneer lumber beams and headers, glue-laminated girders, parallel strand lumber girders, and OSB
sheathing are all materials that utilize trees more efficiently than solid lumber. Finger-jointed studs made up of short lengths of scrap lumber glued together may replace solid full-length wood studs.
- Framing carpenters can waste less lumber by saving cutoffs and reusing them rather than throwing them automatically on the scrap heap. In some localities, scrap lumber can be recycled by shredding it for use in OSB production. The burning of construction scrap should be discouraged because of the air pollution it generates.
- Although the thermal efficiency of wood light frame construction is inherently high, it can be improved substantially by various means, as shown in Figures 7.177.21. Wood framing is much less conductive of heat than light-gauge steel framing. Steel framing of exterior walls is not a satisfactory substitute for wood framing unless the heat flow path through the steel framing members can be broken with a substantial thickness of insulating foam.

Considerations of Sustainability in Brick Masonry

Brick Masonry Materials

- Mortar is made of minerals that are generally abundant in the earth. Portland cement and lime are energy-intensive products. (For more information about the sustainability of cement production, see Chapter 13.)
- Clay and shale, the raw materials for bricks, are plentiful. They are usually obtained from open pits, with the attendant disruption of drainage, vegetation, and wildlife habitat.
- Clay brick can include recycled brick dust, postindustrial wastes such as fly ash, and a variety of other waste products in their manufacture.

Brick Manufacturing

- Brick manufacturing plants are usually located close to the sources of their raw materials.
- Brick manufacturing produces few waste materials. Unfired clay is easily recycled into the production process. Fired bricks that are unusable are ground up and recycled into the production process or used as landscaping material.
- Brick manufacturing requires relatively large amounts of water. Water that doesn't evaporate can be reused many times. Little if any water need be discharged as waste.
- Because of the energy used in its firing, brick is a relatively energy-intensive product. Its embodied energy may range from about 1000 to 4000 BTU per pound (2.3-9.3 $\mathrm{MJ} / \mathrm{kg}$).
- The most common energy source for brick kilns is natural gas, although oil and coal are also used. Firing of clay masonry produces fluorine and chlorine emissions. Other types of air pollution can result from improperly regulated kilns.
- Most bricks are sold for use in regional markets close to their point of manufacture. This reduces the energy
required for shipping and makes much brick eligible for credit as a regional material.

Brick Masonry Construction

- Relatively small amounts of waste are generated on a construction site during brick masonry work, including partial bricks, unsatisfactory bricks, and unused mortar. These wastes generally go into landfills or are buried on the site.
- Sealers applied to brick masonry to provide water reper lency and protection from staining are potential sources of emissions. Solvent-based sealers generally have higher emissions than water-based products.

Brick Masonry Buildings

- Brick masonry is not normally associated with any indoor air quality problems, although in rare circumstances it can be a source of radon gas.
- The thermal mass effect of brick masonry can be a useful component of fuel-saving heating and cooling strategies such as solar heating and nighttime cooling.
- Brick masonry is a durable form of construction that re quires relatively little maintenance and can last a very long time.
- Construction with brick masonry can reduce reliance on paint finishes, a source of volatile organic compounds.
- Brick masonry is resistant to moisture damage and mold growth.
- When a brick building is demolished, sound bricks may be cleaned of mortar and reused (once their physical properties have been verified as adequate for the new use) Brick waste can be crushed and used for landscaping. Brick and mortar waste can also be used as on-site fill. Much such waste, however, is disposed of off-site in landfills.

Considerations of Sustainability in Stone and Concrete Masonry

Stone and Concrete Masonry Materials

- Stone is a plentiful but finite resource. It is usually obtained from open pits, with the attendant disruption of drainage, vegetation, and wildlife habitat.
- The detrimental impacts of stone quarrying can long outlive the buildings for which the stone was extracted.
- Quarry reclamation practices, such as revegetation, land reshaping, and habitat restoration, can mitigate some of the adverse environmental impacts of stone quarrying and convert exhausted quarry sites to other beneficial uses.
- Concrete used in the manufacture of masonry units may include recycled materials such as fly ash, crushed glass, slag, and other postindustrial wastes. For more information regarding the sustainability of concrete, see Chapter 13.
- Mortar used for stone and concrete masonry is made from minerals that are generally abundant in the earth. However, portland cement and lime are energy-intensive products to manufacture. For more information about the sustainability of cement production, see Chapter 13.

Stone and Concrete Masonry Processing and Manufacturing

- Stone is heavy. It is expensive and energy intensive to transport. Stone may originate from local quarries or from sources in many places around the world. Fabrication may take place close to the source of the stone, close to the building site, or in some other location remote from both the stone's source and destination. Where uniquely sourced stones are desired or where specialized fabri-
cation processes or skills are required, shipping over long distances may be required.
- The cutting, shaping, and polishing operations that tale place during stone fabrication use large quantities of water that becomes contaminated with stone residue, lubricants and abrasives. Water filtration and recycling systems can prevent contaminants from entering the wastewater stream and minimize water consumption.
- As much as one-half of quarried stone may become waste during fabrication. Depending on the type of stone, waste may be crushed and used as fill material on construction sites or as aggregate in concrete or asphalt. Stone with a strong color or other unique appearance qualities may be processed into aggregate for use in the manufacture of terrazzo, architectural concrete masonry units, or synthelic stone products. Much stone waste, however, is disposed of as landfill.
- The embodied energy of building stone can vary sig nificantly with the source of the stone, fabrication processes, and distances and methods of shipping. Stone that is easily quarried and fabricated, and that is used locally, may have an embodied energy of as little as 300 to 400 BTU per pound ($0.7-0.9 \mathrm{MJ} / \mathrm{kg}$). On the other hand, stone that requires more effort and energy $t 0$ extract and fabricate, and that is transported over long distances before arriving at the building site, may have an embodied energy 10 or even 20 times greater.
- Most concrete masonry units are manufactured in regional plants relatively close to their final end-use destinations.
- The use of lightweight concrete masonry reducs transportation-related costs and energy consumption.
- The embodied energy of concrete masonry units is sighly higher than that of the concrete from which they are made, due to the additional energy consumed in the curing of the units. Ordinary concrete masonry units have in embodied energy of approximately 250 BTU per pound $(0.6 \mathrm{MJ} / \mathrm{kg})$.

Stone and Concrete Masonry Construction

- Relatively small amounts of waste are generated on a construction site during stone and concrete masonry construction, including, for example, stone cutoffs, partial blecks, and unused mortar. These wastes generally go into andfills or are buried on the site.
- Sealers applied to stone and concrete masonry to provide water repellency and protection from staining are potential sources of emissions. Solvent-based sealers generally emit more air pollutants than water-based products.

Stone and Concrete Masonry Buildings

- Stone and concrete masonry are not normally associated with indoor air quality problems. In rare instances, stone aggregate in concrete or stone used in stone masonry has been found to be a source of radon gas emissions.
- The thermal mass effect of stone and concrete masonry can be a useful component of fuel-saving heating and cooling strategies such as solar heating and nighttime cooling.
- Stone and concrete masonry are dense materials that an effectively reduce sound transmission between adjacent spaces.
- Stone and concrete masonry construction are noncombustible. Lightweight concrete masonry units are especially effective for construction of fire resistance rated assemblies.
- Lightweight concrete masonry units have greater thermal resistance than more dense concrete units, stone, or brick.
- Construction with stone or concrete masonry can reduce reliance on paint finishes, a source of volatile organic compounds.
- Stone and concrete masonry are durable forins of construction that require relatively little maintenance and can last a very long time.
- Stone and concrete masonry are resistant to moisture damage and mold growth.
- When a building with stone or concrete masonry is demolished, the stone or masonry units can be crushed and recycled for use as on-site fill or as aggregate for paving. Some building stone can be salvaged for new construction.

Concrete Masonry Sitework

- Concrete masonry permeable pavers can facilitate on-site capture of storm water.
- Light-colored concrete pavers can lessen urban heat island effects.
- Interlocking concrete masonry units used in earth retaining walls are easily disassembled and reused

Considerations of Sustainability in Steel Frame Construction

Manufacture

- The raw materials for steel are iron ore, coal, limestone, ir, and water. The ore, coal, and limestone are minerals hose mining and quarrying cause disruption of land and bss of wildlife habitat, often coupled with pollution of sreams and rivers. Coal, limestone, and low-grade iron ore are plentiful, but high-grade iron ore has been depleted in many areas of the earth.
- The steel industry has worked hard to reduce pollution d air, water, and soil, but much work remains to be done.
- Supplies of some alloying metals, such as manganese, dromium, and nickel, are becoming depleted.
- The manufacture of a ton of steel from iron ore by the tasic oxygen process consumes 3170 pounds (1440 kg) of are, 900 pounds (140 kg) of limestone, 900 pounds (410 kg) of coke (made from coal), 80 pounds (36 kg) of oxygen, and 2575 pounds (1170 kg) of air. In the process, 4550 pounds (2070 kg) of gaseous emissions are given off, and 600 pounds (270 kg) of slag and 50 pounds (23) of dust are generated. Further emissions emanate from the process of converting coal to coke.
- The embodied energy of steel produced from ore by the basic oxygen process is about 14,000 BTU per pound ($33 \mathrm{MJ} / \mathrm{kg}$). In modern facilities, scrap steel is typically added as an ingredient during this process, resulting in reccled materials content of 25 to 35 percent.
- Today, most structural steel in North America is made from recycled scrap by the electric arc furnace process; its embodied energy is approximately 4000 BTU per pound $(9.3 \mathrm{MJ} / \mathrm{kg})$, less than one-third that of steel made from ore. The recycled materials content of steel made by this precess is 90 percent or higher.
- In North America, virtually all hot-rolled structural steel shapes are manufactured by the electric arc furnace process. Steel plate and sheet, used in the manufacture, for example, of light gauge steel members, decking, and hollow structural sections, may be produced by either the electric arc furnace or basic oxygen processes.
- Ninety-five percent or more of all structural steel used m North American building construction is eventually reorled or reused, which is a very high rate. In a recent onevear period, 480 million tons (430 million metric tons) of <crap steel were consumed worldwide.
- Scrap used in the production of structural steel in minimills usually comes from sources within approximately 300 miles (500 km) of the mill. When the steel produced in such mills is then used for the construction of buildings not too far from the mill, the steel is potentially eligible for credit as a regionally extracted, processed, and produced material. This is most likely for the most commonly used steel alloys that are produced in the greatest number of mills. However, some less commonly produced steel alloys are only available from a limited number of mills or, in some cases, are produced solely overseas, and are not eligible for such a credit except for projects located fortuitously close to the mills where these particular types of steel are produced.

Construction

- Steel fabrication and erection are relatively clean, efficient processes, although the paints and oils used on steel members can cause air pollution.
- Steel frames are lighter in weight than concrete frames that would do the same job. This means that a steel building generally has smaller foundations and requires less excavation work.
- Some spray-on fireproofing materials can pollute the air with stray fibers.

In Service

- Steel framing, if protected from water and fire, will last for many generations with little or no maintenance.
- Steel exposed to weather needs to be repainted periodically unless it is galvanized, given a long-lasting polymer coating, or made of more expensive stainless steel.
- Steel framing members in building walls and roofs should be thermally broken or insulated in such a way that they do not conduct heat between indoors and outdoors.
- When a steel building frame is demolished, its material is almost always recycled.
- Steel seldom causes indoor air quality problems, although surface oils and protective coatings sometimes outgas and cause occupant discomfort.

Considerations of Sustainability in Liget Gauge Steel Framing

In addition to the sustainability issues raised in the previous chapter, which also apply here, the largest issue conserning the sustainability of light gauge steel construction sthe high thermal conductivity of the framing members. \forall a dwelling framed with light gauge steel members is tramed, insulated, and finished as if it were framed with sood, it will lose heat in winter at about double the rate d the equivalent wood structure. To overcome this limitason, energy codes now require light gauge steel framed buildings constructed in cold regions, including most of be continental United States, to be sheathed with plastic fam insulation panels in order to eliminate the extensive thermal bridging that can otherwise occur through the seel framing members.

Even with insulating sheathing, careful attention must be given to avoid undesired thermal bridges. For example, on a building with a sloped roof, a significant thermal bridge may remain through the ceilingjoist-rafter connections, as seen in Figure 12.4b. Foam sheathing on the inside wall and ceiling surfaces is one possible way to avoid this condition, but adding insulation to the inside of the metal framing exposes the studs and stud cavities to greater temperature extremes and increases the risk of condensation. It also still allows thermal bridging through the screws used to fasten interior gypsum wallboard to the framing. Though small in area, these thermal bridges can readily conduct heat and result in spots of condensation on interior finish surfaces in very cold weather.

Considerations of Sustannabiluty in Concrete Construction

- Worldwide each year, the making of concrete consumes 1.6 billion tons (1.5 billion metric tons) of portland cement, 10 billion tons (9 billion metric tons) of sand and rock, and 1 billion tons (0.9 billion metric tons) of water, making the concrete industry the largest user of natural resources in the world.
- The quarrying of the raw materials for concrete in open pits can result in soil erosion, pollutant runoff, habitat loss, and ugly scars on the landscape.
- Concrete construction also uses large quantities of other materials-wood, wood panel products, steel, aluminum, plastics-for formwork and reinforcing.
- The total energy embodied in a pound of concrete varies, especially with the design strength. This is because higher-strength concrete relies on a greater proportion of portland cement in its mix, and the energy required to produce portland cement is very high in comparison to concrete's other ingredients. For average-strength concrete, the embodied energy ranges from about 200 to 300 BTU per pound ($0.5-0.7 \mathrm{MJ} / \mathrm{kg}$).
- There are various useful approaches to increasing the sustainability of concrete construction:
- Use waste materials from other industries, such as fly ash from power plants, slag from iron furnaces, copper slag, foundry sand, mill scale, sandblasting grit, and others, as components of cement and concrete.
- Use concrete made from locally extracted materials and local processing plants to reduce the transportation of construction materials over long distances.
- Minimize the use of materials for formwork and reinforcing.
- Reduce energy consumption, waste, and pollutant emissions from every step of the process of concrete construction, from quarrying of raw materials through the eventual demolition of a concrete building.
- In regions where the quality of the construction materials is low, improve the quality of concrete so that concrete buildings will last longer, thus reducing the demand for concrete and the need to dispose of demolition waste.

Portland Cement

- The production of portland cement is by far the largest user of energy in the concrete construction process, accounting for about 85 percent of the total energy required. Portland cement production also accounts for roughly 5 percent of all carbon dioxide gas generated by
human activities worldwide and about 1.5 percent of such emissions in North America.
- Since 1970, the North American cement industry has reduced the amount of energy expended in cement production by one-third, and the industry continues to work toward further reductions.
- The manufacture of cement produces large amouns of air pollutants and dust. For every ton of cement clinker pro duced, almosta ton of carbon dioxide, a greenhouse gas, is releasedinto theatmosphere.Cementproductionaccounts for approximately 1.5 percent of carbon dioxide emis sions in the United States and 5 percent of carbon dioxide emissions worldwide.
- In the past 35 years, the emission of particulates from cement production has been reduced by more than 90 percent.
- The cement industry is committed to reducing greenhouse gas emissions per ton of product by 10 percent from 1990 levels by the year 2020. According to the Portand Cement Association, over concrete's lifetime, it reabsorbs roughly half of the carbon dioxide released during the original cement manufacturing process.
- The amount of portland cement used as an ingredent in concrete, and as a consequence, the energy re quired to produce the concrete, can be substantially reduced by the addition of certain industrial waste marerials with cementing properties to the concrete mix Substituting such supplementary cementitious materials, including fly ash, silica fume, and blast furnace slag, for up to half the portland cement in the concrete, can result in reductions in embodied energy of as great as one-third.
- When added to concrete, fly ash is most commonly substituted for portland cement at rates of between 15 and 25 percent. Mixes with even higher replacement rates, called high-volume-fly-ash (HVFA) concrete, are also finding increased acceptance. Concrete mixed with fly ash as an ingredient gains other benefits as well: It needs less water than normal concrete, its heat of hydration is lower, and it shrinks less, all characteristics that lead to a denser, more durable product. Research is underway to develop concrete mixes in which fly ash completely replaces all portland cement.
- Waste materials from other industries can also be used as cementing agents-wood ash and rice-husk ash are two examples. Used motor oil and used rubber vehicle ires can be employed as fuel in cement kilns. And while consuming waste products from other industries, a cement manufacturing plant can, if efficiently operated, generate virtually no solid waste itself.

Agrregates and Water

- Sand and crushed stone come from abundant sources in many parts of the world, but high-quality aggregates are becoming scarce in some countries.
- la rare instances, aggregate in concrete has been found to be a source of radon gas. Concrete itself is not associated with indoor air quality problems.
- Waste materials such as crushed, recycled glass, used foundry sand, and crushed, recycled concrete can substitute for a portion of the conventional aggregates in concrete.
- Water of a quality suitable for concrete is scarce in many developing countries. Concretes that use less water by using superplasticizers, air entrainment, and fly ash could be helpful.

Wastes

- A significant percentage of fresh concrete is not used because the truck that delivers it to the building site contains more than is needed for the job. This concrete is often dumped on the site, where it hardens and is later removed and taken to a landfill for disposal. An empty transit-mix truck must be washed out after transporting each batch, which produces a substantial velume of water that contains portland cement particles, admixtures, and aggregates. These wastes can be recovered and recycled as aggregates and mixing nater, but more concrete suppliers need to implement shemes for doing this.

Formwork

- Formwork components that can be reused many times have a clear advantage over single-use forms, which represent a large waste of constructien material.
- Form release compounds and curing compounds should be chosen for low volatile organic compound content and biedegradability.
- Insulating concrete forms eliminate most temporary formwork and produce concrete walls with high thermal insulating values.

Reinforcing

- In North America, reinforcing bars are made almost entirely from recycled steel scrap, primarily junked automobiles. This reduces resource depletion and energy consumption significantly.

Demolition and Recycling

- When a concrete building is demolished, its reinforcing steel can be recycled.
- In many if not most cases, fragments of demolished concrete can be crushed, sorted, and used as aggregates for new concrete. At present, however, most demolished concrete is buried on the site, used to fill other sites, or dumped in a landfill.

Green Uses of Concrete

- Pervious concrete, made with coarse aggregate only, can be used to make porous pavings that allow stormwater to filter into the ground, helping to recharge aquifers and reduce stormwater runoff.
- Concrete is a durable material that can be used to construct buildings that are long-lasting and suitable for adaptation and reuse, thereby reducing the environmental impacts of building demolition and new construction.
- In brownfield development, concrete fill materials can be used to stabilize soils and reduce leachate concentrations.
- Where structured parking garages (often constructed of concrete) replace surface parking, open space is preserved.
- Concrete's thermal mass can be exploited to reduce building heating and cooling costs by storing excess heat during overheated periods of the day or week and releasing it back to the interior of the building during underheated periods.
- Lighter-colored concrete paving reflects more solar radiation than darker asphalt paving, leading to lower paving surface temperatures and reduced urban heat island effects.
- Interior concrete slabs made with white concrete can improve illumination, visibility, and worker safety within interior spaces without the expense or added energy consumption of extra light fixtures or increasing the light output from existing fixtures. White concrete is made with white cement and white aggregates.
- Photocatalytic agents can be added to concrete used in the construction of roads and buildings. In the presence of sunlight, the concrete chemigally breaks down carbon monoxide, nitrogen oxide, benzene, and other air pollutants.

Considerations of Sustainability in Precast Concrete Construction

In addition to the issues of sustainability of concrete consnuction that were raised in Chapter 13, there are issues that pertain especially to precast concrete construction:

- Because of the higher-strength concrete mixes typically used in the production of precast concrete, its embodied energy is higher on a pound-for-pound basis than that of consentional concrete, generally falling in the range of 500
150 BTU per pound (1.1-1.4 MJ/kg).
- Precast concrete production encourages the reuse of formwork, reducing waste. Wood and fiberglass forms can be used up to 50 times without major maintenance. Conarte and steel forms can be reused hundreds or thousands «dimes.
- Because precast concrete is manufactured in a conrolled, factory-like setting, raw materials are used more efficiently and less waste is produced. Gray water used in anious production processes, sand used in finishing, and
large aggregate used to create voids in hollow planks can all be readily reused.
- In many cases, the optimized design of precast concrete results in elements that use less material than comparable sitecast concrete systems.
- Precast concrete elements with high-quality architectural finishes reduce the need for volatile organic com-pound-emitting paints or other finish coatings. Concrete is not easily damaged by moisture and does not support the growth of mold.
- Precast concrete wall panels with properly sealed joints have low permeability to air leakage, reducing building heating and cooling costs and contributing to good indoor air quality.
- Precast concrete wall panels can be reused when buildings are altered.

712 / Chapter $17 \cdot$ Glass and Glazing

Constiderations of Sustainabiuty Relating to Glass

Glass Production

- The major raw materials for glass-sand, limestone, and sodium carbonate-are finite but abundant minerals.
- The high embodied energy of glass manufactured using traditional methods, roughly 7000 BTU per pound ($16 \mathrm{MJ} / \mathrm{kg}$), can be reduced by as much as 30 to 65 percent as new, more energy efficient manufacturing technologies are introduced.
- Some glass production involves the generation of potentially unhealthful or pollution-causing waste materials. Traditional mirror glass manufacturing, for example, generates an acidic waste effluent with high concentrations of copper or lead. However, recently, mirror glass manufactured with more environmentally friendly production techniques has become available.
- Although glass bottles and containers are recycled into new containers at a high rate, there is little recycling of flat glass at the present time. Most old glass goes to landfills.
- Efforts are underway to find new uses for waste glass. For example, vitrified glass aggregate (glass that has been melted and rapidly quenched to trap heavy metals and other contaminants) can be reused in asphalt, concrete, construction backfill, roofing shingles, and ceramic tiles.

Uses of Glass

- If it is not broken by accident or improper installation, glass lasts for a very long time with little degradation of quality, often much longer than most other building components.
- Glass is inert and does not affect indoor air quality. It is easily kept clean and free of molds and bacteria.
- The impact of glass on energy consumption can be very detrimental, very beneficial, or anything in between, de pending on how intelligently it is used.
- If badly used, glass can contribute to summertime overheating from unwanted solar gain, excessive wintertime heat losses due to inherently low R -values, visual glare, wintertime discomfort caused by radiant heat loss from the body to cold glass surfaces, and condensation of moisture that can damage other building components.
- Well used, glass can bring solar heat into a building in winter and exclude it in summer, with attendant savings in heating and cooling energy. It can bring daylight into a building without glare, reducing both the use of electriciry for lighting and the cooling load produced by that lighting.
- These benefits accrue over the entire life of the building. and the payoffs can be huge. Thus, glass is a key component of every energy-efficient building and a chief accomplice of the ill-informed designer in most energy-wasting buildings.

Considerations of Sustainability in Aluminum Cladding

Manufacture

- The ore from which aluminum is refined, bauxite, is finite but relatively plentiful. The richest deposits are generally found in tropical areas, often where rain forests must be clearcut to facilitate mining operations.
- Aluminum is refined from bauxite by an electrolytic process that uses huge quantities of electricity. Aluminum smelters are often located near plentiful supplies of inexpensive hydroelectric power for this reason.
- The embodied energy in aluminum is roughly 100,000 BTU per pound ($230 \mathrm{MJ} / \mathrm{kg}$), seven times that of steel, making it one of the most energy-intensive materials used in construction.
- Large volumes of water are required for smelting. Wastewater from aluminum manufacture contains cyanide, antimony, nickel, fluorides, and other pollutants.
- Aluminum is recycled at a very high rate, due largely to industry efforts. Recycled aluminum is produced using only a fraction of the energy, approximately 5000 BTU per pound ($12 \mathrm{MJ} / \mathrm{kg}$), required to convert ore to aluminum.
- Aluminum extrusions are easy to produce and to form into cladding components. Their light weight saves transportation energy.
- Powder coatings for aluminum, which release no solvents into the atmosphere, are preferable environmentally to solvent-based coatings.

Construction

- Aluminum cladding is easy to erect because of its light weight and simple connections. Little waste or pollution is associated with the process. Scrap is readily recycled.

In Service

- Aluminum cladding seldom needs maintenance, lasts for a very long time, and can be recycled when a building is demolished.
- Because aluminum is highly conductive of heat, cladding components must be thermally broken.
- Aluminum foils used as vapor retarders, components of insulation systems, and radiant heat barriers save large amounts of heating and cooling energy. They are so thin that they consume little metal relative to the energy they can save over the lifetime of the building.

Considerations of Sustannability in Gypsum Products

Sources of Gypsum

- Naturally occurring gypsum is not renewable, but it is plentiful and widely distributed geographically.
- The majority of newly extracted gypsum is quarried in surface mines, with attendant risks of loss of wildlife habitat, surface erosion, and water pollution, as well as the problem of disposing of overburden and mine tailings.
- There is increasing use of synthetic gypsum, material recovered from power plant flue gases that would otherwise be sent to landfills, in the manufacture of gypsum construction materials. According to the Gypsum Association, approximately 1.5 million tons (1.4 million metric tons) of synthetic gypsum is used annually to produce about 7 percent of the U.S. construction industry's calcined gypsum. Some synthetic gypsums, however, contain toxic byproducts from the manufacturing processes in which they are produced and cannot be safely recycled into new construction materials.

Gypsum Products Manufacturing

- The calcining of gypsum involves temperatures that are not much higher than the boiling point of water, which means that the embodied energy of gypsum is relatively low, about 1200 BTU per pound ($2.8 \mathrm{MJ} / \mathrm{kg}$) for plaster and 2600 BTU per pound ($6.0 \mathrm{MJ} / \mathrm{kg}$) for gypsum board.
- The calcining process emits particulates of calcium sulfate, an inert, benign chemical, as dust.
- The paper faces of gypsum board are composed primarily of recycled newspapers.
- Some manufacturers produce gypsum board products made with as much as 95 percent recycled materials, including synthetic gypsum and recycled postconsumer waste paper.

Gypsum Products on the Building Site

- Approximately 15 million tons (14 million metric tons) of gypsum board are manufactured annually in the United States. On a typical construction site, about 10 to 12 percent of this material becomes waste.
- Gypsum board waste generated during construction can be minimized by sizing walls and ceilings to make efficient use of whole boards or by ordering custom-sized boards for nonstandard-size surfaces.
- Gypsum board scrap can be permanently stored in the hollow cavities of finished walls, eliminating disposal and transportation costs and reducing the amount of material destined for landfills (though care must be taken not to create interference with the pulling of electrical wires at a later date).
- Some dust is generated by the cutting and sanding of gypsum board and plaster. This dust has not been tied to any specific illnesses, but it is a nuisance and a source of discomfort until the work is done and all the dust has been swept up and removed from the building. Remodeling and demolition also create large quantities of gypsum dust.
- Most installed gypsum products have extremely low emissions. Some joint compounds, however, may also be sources of emissions.
- Additives used in the manufacture of moisture-resistant and fire-resistant gypsum board are potential sources of volatile organic compound (VOC) emissions.
- Paints, wallcovering adhesives, and other products used to finish gypsum surfaces can be significant emitters of VOCs, and thus require care in selection and specification.

Gypsum Disposal and Recycling

- Gypsum board waste can be recycled back into the manufacture of new gypsum board products. Current efforts limit recycled content to no more than 15 or 20 percent, due to the amount of paper waste that can be safely introduced into the new gypsum without impairing its fire resistance.
- Gypsum board waste from the demolition of older buildings may be contaminated with nails, drywall tape, joint compound, and paint. Gypsum board demolished from buildings constructed prior to 1978 may be coated with lead-based paint. These foreign materials must be removed from the waste; their presence may limit the material's recycling potential.
- Gypsum board waste can be used as a soil amendment and plant nutrient. With the recent advent of mobile grinders, construction site recycling of gypsum board waste for use as a soil amendment on the same building site is now feasible.
- Gypsum is an ingredient in many manufacturing and industrial processes. Studies and small-scale tests currently underway to identify potential uses of gypsum board waste in such processes are likely to lead to additional recycling opportunities in the future.

Beam Structures and Internal Forces

Notation:

a	$=$ algebraic quantity, as is b, c, d	R	$=$ name for reaction force vector
	$=$ name for area	(T)	$=$ shorthand for tension
b	= intercept of a straight line	V	= internal shear force
	$\begin{aligned} & =\text { calculus symbol for differentiation } \\ & =\text { shorthand for compression } \end{aligned}$	$V(x)$	$=\begin{aligned} & \text { internal shear force as a function of } \\ & \text { distance } x\end{aligned}$ distance x
F	$\begin{aligned} & =\text { name for force vectors, as is } P, F^{\prime}, P^{\prime} \\ & =\text { internal axial force } \end{aligned}$	$\begin{aligned} & w \\ & W \end{aligned}$	$\begin{aligned} & =\text { name for distributed load } \\ & =\text { name for total force due to distributed } \end{aligned}$
	= force component in the x direction		load
	$=$ force component in the y direction	x	= horizontal distance
$F B D$	$=$ free body diagram	y	= vertical distance
	= beam span length	o	$=$ symbol for order of curve
	$=$ slope of a straight line	1	= symbol for integration
	$=$ internal bending moment	Δ	= calculus symbol for small quantity
	$=$ internal bending moment as a function of distance x	Σ	$=$ summation symbol

- BEAMS
- Important type of structural members (floors, bridges, roofs)
- Usually long, straight and rectangular

- Have loads that are usually perpendicular applied at points along the length

Internal Forces 2

- Internal forces are those that hold the parts of the member together for equilibrium
- Truss members:

- For any member:

$$
\begin{aligned}
& \mathrm{F}=\begin{array}{l}
\text { internal axial force } \\
\text { (perpendicular to cut across section) } \\
\mathrm{V}= \\
=\begin{array}{l}
\text { internal shear force } \\
\text { (parallel to cut across section) }
\end{array} \\
\mathrm{M}=\text { internal bending moment }
\end{array} \\
& \hline
\end{aligned}
$$

Support Conditions \& Loading

- Most often loads are perpendicular to the beam and cause only internal shear forces and bending moments
- Knowing the internal forces and moments is necessary when designing beam size \& shape to resist those loads

- Types of loads
- Concentrated - single load, single moment
- Distributed - loading spread over a distance, uniform or non-uniform.
- Types of supports
- Statically determinate: simply supported, cantilever, overhang (number of unknowns < number of equilibrium equations)
- Statically indeterminate: continuous, fixed-roller, fixed-fixed (number of unknowns < number of equilibrium equations)

Propped

Restrained

Sign Conventions for Internal Shear and Bending Moment

 (different from statics and truss members!)When $\sum \mathrm{F}_{\mathrm{y}}{ }^{* *}$ excluding $\mathrm{V}^{* *}$ on the left hand side (LHS) section is positive, V will direct down and is considered POSITIVE.

When $\sum \mathrm{M}^{* *}$ excluding $\mathrm{M}^{* *}$ about the cut on the left hand side

(LHS) section causes a smile which could hold water (curl upward), M will be counter clockwise $(+)$ and is considered POSITIVE.

On the deflected shape of a beam, the point where the shape changes from smile up to frown is called the inflection point. The bending moment value at this point is zero.

Shear And Bending Moment Diagrams

The plot of shear and bending moment as they vary across a beam length are extremely important design tools: $\mathrm{V}(\mathrm{x})$ is plotted on the y axis of the shear diagram, $\mathrm{M}(\mathrm{x})$ is plotted on the y axis of the moment diagram.

The load diagram is essentially the free body diagram of the beam with the actual loading (not the equivalent of distributed loads.)

Maximum Shear and Bending - The maximum value, regardless of sign, is important for design.

Method 1: The Equilibrium Method

Isolate FDB sections at significant points along the beam and determine V and M at the cut section. The values for V and M can also be written in equation format as functions of the distance to the cut section.

Important Places for FBD cuts

- at supports
- at concentrated loads
- at start and end of distributed loads
- at concentrated moments

Method 2: The Semigraphical Method

Relationships exist between the loading and shear diagrams, and between the shear and bending diagrams.

Knowing the area of the loading gives the change in shear (V).
Knowing the area of the shear gives the change in bending moment (M).
Concentrated loads and moments cause a vertical jump in the diagram.
$\frac{\Delta V}{\frac{\Delta x}{\lim 0}}=\frac{d V}{d x}=-w \quad$ (the negative shows it is down because we give w a positive value)
$V_{D}-V_{C}=-\int_{x_{C}}^{x_{D}} w d x=$ the area under the load curve between $\mathrm{C} \& \mathrm{D}$
*These shear formulas are NOT VALID at discontinuities like concentrated loads
$\frac{\frac{\Delta M}{\Delta x}}{\frac{\Delta i m 0}{l i m}}=\frac{d M}{d x}=V$
$M_{D}-M_{C}=\int_{x_{C}}^{x_{D}} V d x=$ the area under the shear curve between $\mathrm{C} \& \mathrm{D}$

* These moment formulas ARE VALID even with concentrated loads.
*These moment formulas are NOT VALID at discontinuities like applied moments.

The MAXIMUM BENDING MOMENT from a curve that is continuous can be found when the slope is zero $\left(\frac{d M}{d x}=0\right)$, which is when the value of the shear is 0 .

Basic Curve Relationships (from calculus) for $\mathbf{y}(\mathbf{x})$

Horizontal Line: $\quad y=b$ (constant) and the area (change in shear) $=b \cdot x$, resulting in a:

Sloped Line: $\quad y=m x+b$ and the area (change in shear) $=\frac{\Delta y \cdot \Delta x}{2}$, resulting in a:

Parabolic Curve: $\quad y=a x^{2}+b \quad$ and the area $($ change in shear $)=\frac{\Delta y \cdot \Delta x}{3}$, resulting in a:

3 ${ }^{\text {rd }}$ Degree Curve: $\quad y=a x^{3}+b x^{2}+c x+d$

Free Software Site: http://www.rekenwonder.com/atlas.htm

BASIC PROCEDURE:

1. Find all support forces.

V diagram:

2. At free ends and at simply supported ends, the shear will have a zero value.
3. At the left support, the shear will equal the
 reaction force.
4. The shear will not change in x until there is another load, where the shear is reduced if the load is negative. If there is a distributed load, the change in shear is the area under the loading.
5. At the right support, the reaction is treated just like the loads of step 4 .
6. At the free end, the shear should go to zero.

M diagram:

7. At free ends and at simply supported ends, the moment will have a zero value.
8. At the left support, the moment will equal the reaction moment (if there is one).
9. The moment will not change in x until there is another load or applied moment, where the moment is reduced if the applied moment is negative. If there is a value for shear on the V diagram, the change in moment is the area under the shear diagram.

For a triangle in the shear diagram, the width will equal the height $\div w!$

10. At the right support, the moment reaction is treated just like the moments of step 9 .
11. At the free end, the moment should go to zero.

Parabolic Curve Shapes Based on Triangle Orientation

In order to tell if a parabola curves "up" or "down" from a triangular area in the preceding diagram, the orientation of the triangle is used as a reference.

Geometry of Right Triangles

Similar triangles show that four triangles, each with $1 / 4$ the area of the large triangle, fit within the large triangle. This means that $3 / 4$ of the area is on one side of the triangle, if a line is drawn though the middle of the base, and $1 / 4$ of the area is on the other side.

By how a triangle is oriented, we can determine the curve shape in the next diagram.
CASE 1: Positive triangle with fat side to the left.

CASE 2: Positive triangle with fat side to the right.

CASE 3: Negative triangle with fat side to the left.

CASE 4: Negative triangle with fat side to the right.

Example 1 (pg 273)

Example Problem 8.I (Equilibrium Method)

Draw the shear and moment diagram for a simply supported beam with a single concentrated load (Figure 8.8), using the equilibrium method. Verify the general equation from Beam Diagrams \& Formulas.

Example $2(\mathrm{pg} 275)$

Example Problem 8.2(Equilibrium Method)

Draw V and M diagrams for an overhang beam (Figure 8.12) loaded as shown. Determine the critical $V_{\max }$ and $M_{\max }$ locations and magnitudes.

Example 3 (pg 283)
Example Problem 8.4
Construct the V and M diagrams for the girder that supports three concentrated loads as shown in Figure 8.28.

Example 4 (pg 285)
Example Problem 8.6 (Semi-Graphical Method)
Construct V and M diagrams for the simply supported beam $A B C$, which is subjected to a partial uniform load (Figure 8.30).

Example 5 (pg 286)

Example Problem 8.7 (Figure 8.31)

For a cantilever beam with an upturned end, draw the load, shear, and moment diagrams.

Example 6 (changed from pg 284)

Example Problem 8.5 (Semi-Graphical Method)

A cantilever beam supports a uniform load of $\omega=2 \mathrm{kN} / \mathrm{m}$ over its entire span, plus a concentrated load of 10 kN at 0.75 m from the free end. Construct the V and M diagrams (Figure 8.29).

SOLUTION:
Determine the reactions:
$\sum F_{x}=R_{B x}=0 \quad \mathrm{R}_{\mathrm{Bx}}=0 \mathrm{kN}$
$\sum F_{y}=-10 \mathrm{kN}-(2 \mathrm{kN} / \mathrm{m})(3 m)+R_{B y}=0 \quad \mathrm{R}_{\mathrm{by}}=16 \mathrm{kN}$
$\sum M_{B}=(10 k N)(2.25 m)+(6 k N)(1.5 m)+M_{R B}=0 \quad M_{R B}=-31.5^{k N-m}$

Draw the load diagram with the distributed load as given with the reactions.

Shear Diagram:

Label the load areas and calculate:
Area $I=(-2 \mathrm{kN} / \mathrm{m})(0.75 \mathrm{~m})=-1.5 \mathrm{kN}$
Area II $=(-2 \mathrm{kN} / \mathrm{m})(2.25 \mathrm{~m})=-4.5 \mathrm{kN}$
$V_{A}=0$
$V_{C}=V_{A}+$ Area $I=0-1.5 \mathrm{kN}=-1.5 \mathrm{kN}$ and
$V_{C}=V_{C}+$ force at $C=-1.5 \mathrm{kN}-10 \mathrm{kN}=-11.5 \mathrm{kN}$
$V_{B}=V_{C}+$ Area II $=-11.5 \mathrm{kN}-4.5 \mathrm{kN}=-16 \mathrm{kN}$ and
$V_{B}=V_{B}+$ force at $B=-16 \mathrm{kN}+16 \mathrm{kN}=0 \mathrm{kN}$

Bending Moment Diagram:

Label the load areas and calculate:
Area III $=(-1.5 \mathrm{kN})(0.75 \mathrm{~m}) / 2=-0.5625^{\mathrm{kN}-\mathrm{m}}$
Area IV $=(-11.5 \mathrm{kN})(2.25 \mathrm{~m})=-25.875 \mathrm{kN}-\mathrm{m}$
Area $\mathrm{V}=(-16-11.5 \mathrm{kN})(2.25 \mathrm{~m}) / 2=-5.0625 \mathrm{kN}-\mathrm{m}$
$\mathrm{M}_{\mathrm{A}}=0$
$M_{C}=M_{A}+$ Area III $=0-0.5625 \mathrm{kN}-\mathrm{m}=-0.5625 \mathrm{kN}-\mathrm{m}$
$\mathrm{M}_{\mathrm{B}}=\mathrm{Mc}_{\mathrm{C}}+$ Area IV +Area $\mathrm{V}=-0.5625 \mathrm{kN}-\mathrm{m}-25.875 \mathrm{kN-m}-5.0625 \mathrm{kN-m}=$
$=-31.5 \mathrm{kN-m}$ and
$M_{B}=M_{B}+$ moment at $B=-31.5^{\mathrm{kN}-\mathrm{m}}+31.5^{\mathrm{kN}-\mathrm{m}}=0 \mathrm{kN}-\mathrm{m}$

Example 7 (pg 287)

Example Problem 8.9 (Figure 8.33)

A header beam spanning a large opening in an industrial building supports a triangular load as shown. Construct the V and M diagrams and label the peak values.

SOLUTION:
Determine the reactions:

$$
\begin{aligned}
& \sum F_{x}=R_{B x}=0 \quad \mathrm{R}_{\mathrm{Bx}}=0 \mathrm{kN} \\
& \sum F_{y}=R_{A y}-(300 \mathrm{~N} / \mathrm{m})(3 \mathrm{~m}) 1 / 2+-(300 \mathrm{~N} / \mathrm{m})(3 \mathrm{~m}) 1 / 2+R_{B y}=0
\end{aligned}
$$

or by load tracing Ray \& R $\mathrm{R}_{\mathrm{y}}=(\mathrm{wL} / 2) / 2=(300 \mathrm{~N} / \mathrm{m})(6 \mathrm{~m}) / 4=450 \mathrm{~N}$

$$
\begin{aligned}
\sum M_{A} & =-(450 N)(2 / 3 \times 3 m)-(450 N)(3+1 / 3 \times 3 m)+R_{B y}(6 m)=0 \\
R_{\text {By }} & =450 \mathrm{~N}
\end{aligned}
$$

$\mathrm{w}=300^{\mathrm{N} / \mathrm{m}}$
reactions.

Shear Diagram:

Label the load areas and calculate:
Area $\mathrm{I}=(-300 \mathrm{~N} / \mathrm{m})(3 \mathrm{~m}) / 2=-450 \mathrm{~N}$
Area II $=-300 \mathrm{~N} / \mathrm{m})(3 \mathrm{~m}) / 2=-450 \mathrm{~N}$
$\mathrm{V}_{\mathrm{A}}=0$ and $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{A}}+$ force at $\mathrm{A}=0+450 \mathrm{~N}=450 \mathrm{~N}$
$V_{C}=V_{A}+$ Area $I=450 \mathrm{~N}-450 \mathrm{~N}=0 \mathrm{~N}$
$V_{B}=V_{C}+$ Area II $=0 \mathrm{~N}-450 \mathrm{~N}=-450 \mathrm{~N}$ and
$V_{B}=V_{B}+$ force at $B=-450 N+450 N=0 N$

Bending Moment Diagram:

Label the load areas and calculate:
Areas III \& IV happen to be parabolic segments with an area of $2 \mathrm{bh} / 3$:
Area III $=2(3 \mathrm{~m})(450 \mathrm{~N}) / 3=900 \mathrm{~N}-\mathrm{m}$
Area IV $=-2(3 \mathrm{~m})(450 \mathrm{~N}) / 3=-900 \mathrm{~N}-\mathrm{m}$
$M_{A}=0$
$M_{C}=M_{A}+$ Area III $=0+900 \mathrm{~N}-\mathrm{m}=900 \mathrm{~N}-\mathrm{m}$
$M_{B}=M_{C}+$ Area IV $=900 \mathrm{~N}-\mathrm{m}-900 \mathrm{~N}-\mathrm{m}=0$
We can prove that the area is a parabolic segment by using the equilibrium method at C :

$$
\begin{gathered}
\sum M_{\text {sectioncut }}=M_{C}-(450 N)(3 m)+(450 N)(1 / 3 \times 3 m)=0 \\
\text { so } \mathrm{M}_{\mathrm{c}}=900 \mathrm{~N}-\mathrm{m} \\
\end{gathered}
$$

Beam Analysis Using Multiframe

1. The software is on the computers in the College of Architecture in Programs under the Windows Start menu (see https://wikis.arch.tamu.edu/display/HELPDESK/Computer+Accounts for lab locations). Multiframe is under the Bentley Engineering menu.
2. There available on line at http://www.formsys.com/mflearning that list the tasks and order in greater detail. The first task is to define the unit system:

- Choose Units... from the View menu. Unit sets are available, but specific units can also be selected by double clicking on a unit or format and making a selection from the menu.

Units						
Unit Ser:	Configuration:					
American Australian British Canadian European Japanese		Unit Type	Unit	Decimal Places	Format	\wedge
	1	Length	ft	3	Fixed Decimal	
	2	Angle	deg	3	Fixed Decimal	三
	3	Deflection	in	3	Fixed Decimal	
	4	Rotation	deg	3	Fixed Decimal	
	5	Force	kip	3	Fixed Decimal	
	6	Moment	1 b -ft	3	Fixed Decirnal	
	7	Dist. Force	lbfift	3	Fixed Decimal	
	8	Stress	ksi	3	Fixed Decimal	
	9	Mass	lb	3	Fixed Decimal	
	10	Mass/Length	$\mathrm{lb} / \mathrm{ft}$	3	Fixed Decimal	
	11	Area	in^{2}	3	Fixed Decimal	
	12	Mrnt of Inertia	in ${ }^{\wedge} 4$	3	Fixed Decimal	
	13	Density	$1 \mathrm{l} / \mathrm{ft}^{3}$	3	Fixed Decimal	
	14	Section Modulus	in ${ }^{3}$	3	Fixed Decimal	\checkmark
	$\stackrel{-1}{\square}$		III	-	-	
					OK	Cancel

3. To see the scale of the geometry, a grid option is available:

4. To create the geometry, you must be in the Frame window (default). The symbol is the frame in the window toolbar:

The Member toolbar shows ways to create members:

The Generate toolbar has convenient tools to create typical structural shapes.

- To create a beam with supports at one or both ends, use the add member button:

- Select a starting point and ending point with the cursor. The location of the cursor and the segment length is displayed at the bottom of the geometry window.
- To create a beam with supports NOT at the ends, use the add connected members button to create segments between
 supports and ends
- Select a starting point and ending point with the cursor. The location of the cursor and the segment length is displayed at the bottom of the geometry window. The ESC button will end the segmented drawing.
- The geometry can be set precisely by selecting the beam member, bringing up the specific menu (right click), choosing Member Properties to set the length.

- The support types can be set by selecting the joint (drag) and using the Joint Too bar (pin shown), or the Frame / Joint Restraint ... menu (right click).
NOTE: If the support appears at both ends of the beam, you had the beam selected rather than the joint. Select the joint to change the support for and right click to select the joint restraints menu or select the correct support on the joint toolbar.
The support forces will be determined in the analysis.

5. All members must have sections assigned (see section 6.) in order to calculate reactions and deflections. To use a standard steel section proceed to step 6. For custom sections, the section information must be entered. To define a section:

- Choose Edit Sections / Add Section... from the Edit menu
- Type a name for your new section
- Choose group Frame from the group names provided so that the section will remain with the file data
- Choose a shape. The Flat Bar shape is a rectangular section.
- Enter the cross section data.

Table values 1-9 must have values for a Flat Bar, but not all are used for every analysis. A recommendation is to put the value of 1 for those properties you don't know or care about. Properties like $\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{w}}$, etc. refer to wide flange sections.

- Answer any query. If the message says there is an error, the section will not be created until the error is corrected.

6. The standard sections library loaded is for the United States. If another section library is needed, use the Open Sections Library... command under the file menu, choose the library folder, and select the SectionsLibrary.slb file.

Select the members (drag to make bold) and assign sections with the Section button on the Member toolbar:

- Choose the group name and section name:
(STANDARD SHAPES)

(CUSTOM)

7. The beam geometry is complete, and in order to define the load conditions you must be in the Load window represented by the green arrow:

8. The Load toolbar allows a joint to be loaded with a force or a moment in global coordinates, shown by the first two buttons after the display numbers button. It allows a member to be loaded with a distributed load, concentrated load or moment (next three buttons) in global coordinates, as well as loading with distributed or single force or moment in the local coordinate system (next three buttons). It allows a load panel to be loaded with a distributed load in global or local coordinates (last two buttons).

- Choose the member to be loaded (drag) and select the load type (here shown for global distributed loading):

- Choose the distribution type and direction. Note that the arrow shown is the direction of the loading. There is no need to put in negative values for downward loading.
- Enter the values of the load and distances (if any). Distances can be entered as a function of the length, i.e. L/2, L/4...

NOTE: Do not put support reactions as applied loads. The analysis will determine the reaction values.

Multiframe will automatically generate a grouping called a Load Case named Load Case 1 when a load is created. All additional loads will be added to this load case unless a new load case is defined (Add case under the Case menu).
9. In order to run the analysis after the
 geometry, member properties and loading has been defined:

- Choose Linear from the Analyze menu

10. If the analysis is successful, you can view the results in the Plot window represented by the red moment diagram:

11. The Plot toolbar allows the numerical values to be shown (1.0 button), the reaction arrows to be shown (brown up arrow) and reaction moments to be shown (brown curved arrow):

- To show the moment diagram, Choose the red Moment button

- To show the shear diagram, Choose the green Shear button

- To show the axial force diagram, Choose the purple Axial Force button

- To show the deflection diagram, Choose the blue Deflection button

- To animate the deflection diagram, Choose Animate... from the Display menu. You can also save the animation to a avi file by checking the box.
- To plot the bending moment on the "top" choose Preferences from the Edit menu and under the Presentation tab Draw moments on the compression face
- To see exact values of shear, moment and deflection, double click on the member and move the vertical cross hair with the mouse. The ESC key will return you to the window.

12. The Data window (D) allows you to view all data "entered" for the geometry, sections and loading. These values can be edited.

13. The Results window (R) allows you to view all results of the analysis including displacements, reactions, member forces (actions) and stresses. These values can be cut and pasted into other Windows programs such as Word or Excel.

NOTE: Px' refers to the axial load (P) in the local axis x direction (x^{\prime}). Vy' refers to the shear perpendicular to the local x axis, and Mz^{\prime} refers to the bending moment.
14. To save the file Choose Save from the File menu.
15. To load an existing file Choose Open... from the File menu.
16. To print a plot Choose Print Window... from the File menu. As an alternative, you may copy the plot $(\mathrm{Ctrl}+\mathrm{c})$ and paste it in a word processing document $(\mathrm{Ctrl}+\mathrm{v})$.

BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions, AISC ASD $8^{\text {th }} \mathrm{ed}$.

1. SIMPLE BEAM-UNIFORMLY DISTRIBUTED LOAD

Total Equiv. Uniform Load
$=w l$
$\mathrm{R}=\mathrm{V}$. $=\frac{w l}{2}$
v_{X}. $=w\left(\frac{l}{2}-\mathrm{x}\right)$
$M_{\max }$ (at center)
$=\frac{w l^{2}}{8}$
M_{x}. $=\frac{w \mathrm{x}}{2}(l-\mathrm{x})$
Δ max. (at center)
$=\frac{5 \mathrm{wl}^{4}}{384 \mathrm{EI}}$
Δx
$=\frac{w \mathrm{X}}{24 \mathrm{EI}}\left(\mathrm{l}^{3}-2 l \mathrm{X}^{2}+\mathrm{x}^{3}\right)$
2. SIMPLE BEAM-LOAD INCREASING UNIFORMLY TO ONE END

3. SIMPLE BEAM—LOAD INCREASING UNIFORMLY TO CENTER

4. SIMPLE BEAM-UNIFORM LOAD PARTIALLY DISTRIBUTED

5. SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED AT ONE END

6. SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED AT EACH END

7. SIMPLE BEAM-CONCENTRATED LOAD AT CENTER

8. SIMPLE BEAM-CONCENTRATED LOAD AT ANY POINT

$=\frac{8 \mathrm{Pab}}{l^{2}}$
$=\frac{\mathrm{Pb}}{l}$
$=\frac{\mathrm{Pa}}{l}$
$=\frac{\mathrm{Pab}}{l}$
$=\frac{\mathrm{Pbx}}{l}$
$=\frac{\mathrm{Pab}(\mathrm{a}+2 \mathrm{~b}) \sqrt{3 \mathrm{a} \mathrm{(a+2b)}}}{27 \mathrm{EI} l}$
$=\frac{\mathrm{Pa}^{2} \mathrm{~b}^{2}}{3 \mathrm{EI} l}$
$=\frac{\mathrm{Pbx}}{6 \mathrm{EI} l}\left(l^{2}-\mathrm{b}^{2}-\mathrm{x}^{2}\right)$
9. SIMPLE BEAM-TWO EQUAL CONCENTRATED LOADS SYMMETRICALLY PLACED

18. CANTILEVER BEAM-LOAD INCREASING UNIFORMLY TO FIXED END Total Equiv. Uniform Load $=\frac{8}{3} \mathrm{w}$ $\mathrm{R}=\mathrm{V}$. $=\mathbf{w}$ $\mathrm{W}=\frac{\mathrm{wl}}{2}$ v_{x}. $=\mathrm{w} \frac{\mathrm{x}^{\mathbf{2}}}{l^{2}}$ $M_{m a x}$ (at fixed end) $=\frac{\mathrm{W} l}{3}$ M_{x}. $=\frac{W_{x^{3}}^{3}}{3 l^{2}}$ Δ max. (at free end) $=\frac{\mathrm{W}^{3}}{15 \mathrm{EI}}$ Δ_{x}. $=\frac{\mathrm{W}}{60 E 1 l^{2}}\left(\mathrm{x}^{5}-5 l^{4} \mathrm{x}+4 l^{5}\right)$	21. CANTILEVER BEAM-CONCENTRATED LOAD AT ANY POINT Total Equiv. Uniform Load $=\frac{8 \mathrm{~Pb}}{l}$ $R=\mathrm{V}$. = \mathbf{P} $\mathrm{M} \max .($ at fixed end) $=P b$ $M_{x} \quad($ when $x>a) \ldots \ldots(x-a)$ $\Delta \max$. (at free end) $=\frac{\mathrm{Pb}^{2}}{6 E I}(3 l-\mathrm{b})$ $\Delta a \quad$ (at point of load) . . . $=\frac{P_{b}{ }^{3}}{3 E I}$ $\Delta_{\mathrm{x}} \quad($ when $\mathrm{x}<\mathrm{a}) \cdot \cdots \cdot . \quad=\frac{\mathrm{Pb}^{2}}{6 \mathrm{EI}}(3 l-3 \mathrm{x}-\mathrm{b})$ $\Delta_{\mathrm{x}} \quad($ when $\mathrm{x}>\mathrm{a}) \cdots \cdots{ }^{2} \cdot \frac{\mathrm{P}(l-\mathrm{x})^{2}}{6 \mathrm{EI}}(3 \mathrm{~b}-l+\mathrm{x})$
19. CANTILEVER BEAM-UNIFORMLY DISTRIBUTED LOAD Total Equiv. Uniform Load $=4 w l$ $\mathbf{R}=\mathrm{V}$. $=w l$ \mathbf{V}_{x}. $=w \mathrm{x}$ $M \max .\left(\right.$ at fixed end) $=\frac{w l^{2}}{2}$ $\mathbf{M}_{\mathrm{X}} \quad$ • $=\frac{w \mathrm{X}^{2}}{2}$ $\Delta \max$. (at free end) $=\frac{w l^{4}}{8 \mathrm{EI}}$ Δ_{X}. $=\frac{w}{24 \mathrm{El}}\left(\mathrm{x}^{4}-4 l^{3} \mathrm{x}+3 l^{4}\right)$	22. CANTILEVER BEAM - CONCENTRATED LOAD AT FREE END Total Equiv. Uniform Load $=8 \mathrm{P}$ $R=V$. $=\mathbf{P}$ M max. (at fixed end) $=P l$ M_{x}. $=\mathrm{Px}_{\mathrm{x}}$ $\Delta \max$. (at free end) $\cdot \cdots \cdot=\frac{\mathrm{P} l^{3}}{3 E I}$ $\Delta \mathrm{x}$. $=\frac{\mathrm{P}}{6 \mathrm{EI}}\left(2 l^{3}-3 l^{2} \mathrm{x}+\mathrm{x}^{3}\right)$
20. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATE AT OTHER-UNIFORMLY DISTRIBUTED LOAD Total Equiv. Uniform Load $=\frac{8}{3} w l$ $\mathrm{R}=\mathrm{V}$. $=w l$ V_{x}. $=w \mathrm{x}$ $M_{\text {max. }}$ (at fixed end) $\cdot \cdots \cdot .=\frac{w l^{2}}{3}$ $M_{1} \quad$ (at deflected end) $=\frac{w l^{2}}{6}$ M_{X}. $=\frac{w}{6}\left(l^{2}-3 \mathrm{x}^{2}\right)$ Δ max. (at deflected end) $\cdot \cdots=\frac{w l^{4}}{24 E 1}$ $\Delta \mathrm{x}$. $=\frac{w\left(l^{2}-\mathbf{x}^{2}\right)^{\mathbf{2}}}{24 \mathrm{EI}}$	23. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATE AT OTHER-CONCENTRATED LOAD AT DEFLECTED END

Note Set 8.2 (page 5)

29. CONTINUOUS BEAM-TWO EQUAL SPANS—UNIFORM LOAD ON ONE SPAN

30. CONTINUOUS BEAM-TWO EQUAL SPANS-CONCENTRATED LOAD AT CENTER OF ONE SPAN

Total Equiv. Uniform Load
$=\frac{13}{8} \mathrm{P}$
$R_{1}=V_{1}$. $=\frac{13}{32} P$
$R_{2}=V_{2}+V_{3}=\frac{11}{16} P$
$R_{3}=V_{3}$. $=-\frac{3}{32} P$
V_{2}. $=\frac{19}{32} \mathrm{P}$
M max. (at point of load) $=\frac{13}{64} \mathrm{Pl}$
$\mathbf{M}_{\mathbf{1}} \quad\left(\right.$ at support $\left.\mathbf{R}_{2}\right) \quad=\frac{3}{32} \mathrm{Pl}$
Δ Max. $\left(0.480 l\right.$ from $\left.R_{1}\right) \quad=0.015 \mathrm{Pl}^{3} / E I$
31. CONTINUOUS BEAM-TWO EQUAL SPANS-CONCENTRATED LOAD AT ANY POINT

35. CONTINUOUS BEAM-THREE EQUAL SPANS-END SPANS LOADED

$\Delta \operatorname{Max} .(0.479 l$ from A or $D)=0.0099 w l^{4} / E l$
36. CONTINUOUS BEAM-THREE EQUAL SPANS—ALL SPANS LOADED .

Δ Max. (0.446 l from A or D) $=0.0069 w l^{4} / E I$

38. CONTINUOUS BEAM-FOUR EQUAL SPANS-LOAD FIRST AND THIRD SPANS

$\mathrm{R}_{\mathrm{A}}=0.446 w l \quad \mathrm{R}_{\mathrm{B}}=0.572 w l \quad \mathrm{R}_{\mathrm{C}}=0.464 w l \quad \mathrm{R}_{\mathrm{D}}=0.572 w l \quad \mathrm{RE}_{\mathrm{E}}=-0.054 w l$

$$
-0.0536 w l^{2} \quad-0.0357 w l^{2} \quad-0.0536 w l^{2}
$$

39. CONTINUOUS BEAM-FOUR EQUAL SPANS-ALL SPANS LOADED

Centers of Gravity - Centroids

Notation:

A	= name for area	x	$=$ the distance in the x direction from
C	$\begin{aligned} & =\text { designation for channel section } \\ & =\text { name for centroid } \end{aligned}$		a reference axis to the centroid of a composite shape
F_{z}	$=$ force component in the z direction	y	$=$ vertical distance
L	$=$ name for length	\bar{y}	$=$ the distance in the y direction from
O	$=$ name for reference origin		a reference axis to the centroid of a
Q_{x}	$\begin{aligned} = & \text { first moment area about an } \mathrm{x} \text { axis } \\ & \text { (using y distances) } \end{aligned}$	\hat{y}	$\begin{aligned} & \text { shape } \\ = & \text { the distance in the y direction from } \end{aligned}$
Q_{y}	$=$ first moment area about an y axis (using x distances)		a reference axis to the centroid of a composite shape
t	= name for thickness	z	$=$ distance perpendicular to $x-y$ plane
${ }_{\text {t }}^{W}$	$=$ thickness of web of wide flange	J	= symbol for integration
W	= name for force due to weight $=$ designation for wide flange section	Δ	= calculus symbol for small quantity
x	$=$ horizontal distance	γ	$=$ density of a material (unit weight)
\bar{x}	$=$ the distance in the x direction from a reference axis to the centroid of a shape	Σ	$=$ summation symbol

- The cross section shape and how it resists bending and twisting is important to understanding beam and column behavior.
- The center of gravity is the location of the equivalent force representing the total weight of a body comprised of particles that each have a mass gravity acts upon.

Resultant force: Over a body of constant thickness in x and y

$$
\sum F_{z}=\sum_{i=1}^{n} \Delta W_{i}=\boldsymbol{W} \quad \mathrm{W}=\int \mathrm{dW}
$$

Location: \bar{x}, \bar{y} is the equivalent location of the force W from all $\Delta \mathrm{W}_{\mathrm{i}}$'s over all $\mathrm{x} \& \mathrm{y}$ locations (with respect to the moment from each force) from:

$$
\begin{array}{lll}
\sum M_{y}=\sum_{i=1}^{n} x_{i} \Delta W_{i}=\bar{x} \boldsymbol{W} & \bar{x} \boldsymbol{W}=\int x d W \Rightarrow \bar{x}=\frac{\int x d W}{\boldsymbol{W}} \text { OR } & \bar{x}=\frac{\sum(x \Delta W)}{\boldsymbol{W}} \\
\sum M_{x}=\sum_{i=1}^{n} y_{i} \Delta W_{i}=\bar{y} \boldsymbol{W} & \bar{y} \boldsymbol{W}=\int y d W \Rightarrow \bar{y}=\frac{\int y d W}{\boldsymbol{W}} \text { OR } & \bar{y}=\frac{\sum(y \Delta W)}{\boldsymbol{W}}
\end{array}
$$

- The centroid of an area is the average x and y locations of the area particles

For a discrete shape $\left(\Delta \mathrm{A}_{\mathrm{i}}\right)$ of a uniform thickness and material, the weight can be defined as:
$\Delta \mathrm{W}_{\mathrm{i}}=\gamma \mathrm{t} \Delta \mathrm{A}_{\mathrm{i}} \quad$ where:
γ is weight per unit volume (= specific weight) with units of $\underline{\mathrm{N} / \mathrm{m}^{3}}$ or $\underline{\mathrm{lb} / \mathrm{ft}^{3}}$
$t \Delta A_{i}$ is the volume
So if $\boldsymbol{W}=\gamma t \boldsymbol{A}$:

$$
\bar{x} \not \imath \boldsymbol{A}=\int x \nmid t d A \Rightarrow \bar{x} \boldsymbol{A}=\int x d A \text { OR } \bar{x}=\frac{\sum(x \Delta A)}{\boldsymbol{A}} \text { and similarly } \bar{y}=\frac{\sum(y \Delta A)}{\boldsymbol{A}}
$$

Similarly, for a line with constant cross section, $a\left(\Delta W_{i}=\gamma a \Delta L_{i}\right)$:

$$
\bar{x} \boldsymbol{L}=\int x d L \text { OR } \quad \bar{x}=\frac{\sum(x \Delta L)}{\boldsymbol{L}} \quad \text { and } \quad \bar{y} \boldsymbol{L}=\int y d L \text { OR } \quad \bar{y}=\frac{\sum(y \Delta L)}{\boldsymbol{L}}
$$

- \bar{x}, \bar{y} with respect to an \mathbf{x}, \mathbf{y} coordinate system is the centroid of an area AND the center of gravity for a body of uniform material and thickness.
- The first moment of the area is like a force moment: and is the area multiplied by the perpendicular distance to an axis.

$$
\mathrm{Q}_{\mathrm{x}}=\int \mathrm{ydA}=\overline{\mathrm{y}} \mathrm{~A} \quad \mathrm{Q}_{\mathrm{y}}=\int \mathrm{xdA}=\overline{\mathrm{x}} \mathrm{~A}
$$

- Centroids of Common Shapes

Centroids of Common Shapes of Areas and Lines

- Symmetric Areas
- An area is symmetric with respect to a line when every point on one side is mirrored on the other. The line divides the area into equal parts and the centroid will be on that axis.
- An area can be symmetric to a center point when every (x, y) point is matched by a $(-\mathrm{x},-\mathrm{y})$ point. It does not necessarily have an axis of symmetry. The center point is the centroid.
- If the symmetry line is on an axis, the centroid location is on that axis (value of 0). With double symmetry, the centroid is at the intersection.
- Symmetry can also be defined by areas that match across a line, but are 180° to each other.

Basic Steps

1. Draw a reference origin.
2. Divide the area into basic shapes
3. Label the basic shapes (components)
4. Draw a table with headers of Component, Area, $\bar{x}, \bar{x} A, \bar{y}, \bar{y} A$
5. Fill in the table value
6. Draw a summation line. Sum all the areas, all the $\bar{x} A$ terms, and all the $\bar{y} A$ terms
7. Calculate \hat{x} and \hat{y}

- Composite Shapes

If we have a shape made up of basic shapes that we know centroid locations for, we can find an "average" centroid of the areas.
$\hat{x} \boldsymbol{A}=\hat{x} \sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} \bar{x}_{i} A_{i} \quad \hat{y} \boldsymbol{A}=\hat{y} \sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} \bar{y}_{i} A_{i}$

Centroid values can be negative.

 Area values can be negative (holes)

Example 1 (pg 243)
Example Problem 7.1: Centroids (Figures 7.5 and 7.6)
Determine the centroidal x and y distances for the composite area shown. Use the lower left corner of the trapezoid as the reference origin.

Component	Area (ΔA) (in. ${ }^{\text {2 }}$)	\bar{x} (in.)	$\bar{x} \Delta A\left(\right.$ in. $\left.{ }^{3}\right)$	\bar{y} (in.)	$\bar{y} \Delta A\left(\right.$ in. $\left.{ }^{3}\right)$
 (a)	$\frac{9^{\prime \prime}\left(3^{\prime \prime}\right)}{2}=13.5 \mathrm{in} .^{2}$	$6{ }^{\prime \prime}$	$81 \mathrm{in}^{3}$	$4{ }^{\prime \prime}$	$54 \mathrm{in} .^{3}$
(b)	$9^{\prime \prime}\left(3^{\prime \prime}\right)=27 \mathrm{in}.{ }^{2}$	4.5"	121.5 in. ${ }^{3}$	1.5"	40.5 in. ${ }^{3}$
	$A=\sum \Delta A=40.5$ in. ${ }^{2}$		$\sum \bar{x} \Delta A=202.5$ in. ${ }^{3}$		$\sum \bar{y} \Delta A=94.5 \mathrm{in} .^{3}$

$$
\begin{aligned}
\hat{x} & =\frac{2025 \mathrm{in}^{3}}{40.5 \mathrm{in}^{2}} \\
& =5 \mathrm{in} \\
\hat{y} & =\frac{94.5 \mathrm{in}^{3}}{40.5 \mathrm{in}^{2}} \\
& =2.33 \mathrm{in}
\end{aligned}
$$

Example 2 (pg 245)

Example Problem 7.3b (Figure 7.13)

An alternate method that can be employed in solving this problem is referred to as the negative area method.

A $6 "$ thick concrete wall panel is precast to the dimensions as shown. Using the lower left corner as the reference origin, determine the center of gravity (centroid) of the panel.

Moments of Inertia

Notation:

A	= name for area	r_{o}	polar radius of gyration
b	= name for a (base) width	r_{x}	$=$ radius of gyration with respect to an
d	$\begin{aligned} & =\text { calculus symbol for differentiation } \\ & =\text { name for a difference } \\ & =\text { name for a depth } \end{aligned}$	r_{y}	
d_{x}	$=$ difference in the x direction	t_{f}	$=$ thickness of a flange
	etween an area centroid ($\overline{\mathrm{x}}$) and	t_{w}	$=$ thickness of web of wide flange
	the centroid of the composite shape	x	= horizontal distance
	($\hat{\mathrm{x}}$)	\bar{x}	$=$ the distance in the x direction from
d_{y}	$=$ difference in the y direction between an area centroid ($\overline{\mathrm{y}}$) and the centroid of the composite shape ($\hat{\mathrm{y}}$)	\hat{x}	a reference axis to the centroid of a shape $=$ the distance in the x direction from a reference axis to the centroid of a
h	$=$ name for a height		composite shape
I	$=$ moment of inertia about the centroid	${ }^{\prime} \bar{y}$	= vertical distance $=$ the distance in the y direction from
I_{c}	$=$ moment of inertia about the centroid		a reference axis to the centroid of a shape
I_{x}	$\begin{aligned} & =\text { moment of inertia with respect to an } \\ & x \text {-axis } \end{aligned}$	\hat{y}	$=$ the distance in the y direction from a reference axis to the centroid of a
I_{y}	$\begin{aligned} & =\text { moment of inertia with respect to a } \\ & y \text {-axis } \end{aligned}$	L	composite shape = plate symbol
J_{o}	$=$ polar moment of inertia, as is J	I	= symbol for integration
O	$=$ name for reference origin	Σ	umation symbol

- The cross section shape and how it resists bending and twisting is important to understanding beam and column behavior.
- Definition: Moment of Inertia; the second area moment

$$
I_{y}=\int x^{2} d A \quad I_{x}=\int y^{2} d A
$$

We can define a single integral using a narrow strip:
for I_{x}, strip is parallel to $x \quad$ for I_{y}, strip is parallel to y

*I can be negative if the area is negative (a hole or subtraction).

- A shape that has area at a greater distance away from an axis through its centroid will have a larger value of I.

- Just like for center of gravity of an area, the moment of inertia can be determined with respect to any reference axis.
- Definition: Polar Moment of Inertia; the second area moment using polar coordinate axes

$$
\begin{aligned}
& J_{o}=\int r^{2} d A=\int x^{2} d A+\int y^{2} d A \\
& J_{o}=I_{x}+I_{y}
\end{aligned}
$$

- Definition: Radius of Gyration; the distance from the moment of inertia axis for an area at which the entire area could be considered as being concentrated at.

$I_{x}=r_{x}^{2} A \Rightarrow r_{x}=\sqrt{\frac{I_{x}}{A}}$ radius of gyration in x
$\mathrm{r}_{\mathrm{y}}=\sqrt{\frac{\mathrm{I}_{\mathrm{y}}}{\mathrm{A}}}$ radius of gyration in y
$r_{o}=\sqrt{\frac{J_{o}}{A}}$ polar radius of gyration, and $\mathrm{r}_{\mathrm{o}}{ }^{2}=\mathrm{r}_{\mathrm{x}}{ }^{2}+\mathrm{r}_{\mathrm{y}}{ }^{2}$

The Parallel-Axis Theorem

- The moment of inertia of an area with respect to any axis not through its centroid is equal to the moment of inertia of that area with respect to its own parallel centroidal axis plus the product of the area and the square of the distance between the two axes.

$$
\begin{aligned}
I & =\int y^{2} d A=\int\left(y^{\prime}-d\right)^{2} d A \\
& =\int y^{\prime 2} d A+2 d \int y^{\prime} d A+d^{2} \int d A
\end{aligned}
$$

but $\int y^{\prime} d A=0$, because the centroid is on this axis, resulting in:
$I_{x}=I_{c x}+A d_{y}{ }^{2} \quad$ (text notation) or $I_{x}=\bar{I}_{x}+A d_{y}{ }^{2}$
where $\mathrm{I}_{\mathrm{cx}}\left(\operatorname{or} \overline{\mathrm{I}}_{\mathrm{x}}\right)$ is the moment of inertia about the centroid of the area about an x axis and d_{y} is the y distance between the parallel axes

Similarly $\quad \begin{array}{ll}I_{y}=\bar{I}_{y}+A d_{x}^{2} & \text { Moment of inertia about a } y \text { axis } \\ J_{o}=\bar{J}_{c}+A d^{2} & \text { Polar moment of Inertia } \\ r_{o}^{2}=\bar{r}_{c}^{2}+d^{2} & \text { Polar radius of gyration } \\ r^{2}=\bar{r}^{2}+d^{2} & \text { Radius of gyration }\end{array}$

* I can be negative again if the area is negative (a hole or subtraction).
** If \bar{I} is not given in a chart, but $\bar{x} \& \bar{y}$ are: YOU MUST CALCULATE \bar{I} WITH $\bar{I}=I-A d^{2}$

Composite Areas:

$I=\sum \bar{I}+\sum A d^{2} \quad$ where $\quad \overline{\mathrm{I}}$ is the moment of inertia about the centroid of the component area d is the distance from the centroid of the component area to the centroid of the composite area (ie. $\mathrm{d}_{\mathrm{y}}=\hat{y}-\bar{y}$)

Basic Steps

1. Draw a reference origin.
2. Divide the area into basic shapes
3. Label the basic shapes (components)
4. Draw a table with headers of

$$
\text { Component, Area, } \bar{x}, \bar{x} A, \bar{y}, \bar{y} A, \bar{I}_{x}, d_{y}, A d_{y}^{2}, \bar{I}_{y}, d_{x}, A d_{x}^{2}
$$

5. Fill in the table values needed to calculate \hat{x} and \hat{y} for the composite
6. Fill in the rest of the table values.
7. Sum the moment of inertia ($\overline{\mathrm{I}}$'s) and Ad^{2} columns and add together.

Geometric Properties of Areas

Rectangle		$\begin{aligned} \bar{I}_{x^{\prime}} & =\frac{1}{12} b h^{3} \\ \bar{I}_{y^{\prime}} & =\frac{1}{12} b^{3} h \\ I_{x} & =\frac{1}{3} b h^{3} \\ I_{y} & =\frac{1}{3} b^{3} h \\ J_{C} & =\frac{1}{12} b h\left(b^{2}+h^{2}\right) \end{aligned}$	$\begin{aligned} & \text { Area }=b h \\ & \bar{x}=b / 2 \\ & \bar{y}=h / 2 \end{aligned}$
		$\begin{aligned} & \bar{I}_{x^{\prime}}=\frac{1}{31} b h^{3} \\ & I_{x}=\frac{1}{12} b h^{3} \\ & \bar{I}_{y^{\prime}}=\frac{1}{36} b^{3} h \end{aligned}$	$\begin{aligned} & \text { Area }=b h / 2 \\ & \bar{x}=b / 3 \\ & \bar{y}=h / 3 \end{aligned}$
Circle		$\begin{aligned} \bar{I}_{x} & =\bar{I}_{y}=\frac{1}{4} \pi r^{4} \\ J_{O} & =\frac{1}{2} \pi r^{4} \end{aligned}$	$\begin{aligned} & \text { Area }=\pi r^{2}=\pi d^{2} / 4 \\ & \bar{x}=0 \\ & \bar{y}=0 \end{aligned}$
Semicircle		$\begin{aligned} & \bar{I}_{x}=0.1098 r^{4} \\ & \bar{I}_{y}=\pi r^{4} / 8 \end{aligned}$	$\begin{aligned} & \text { Area }=\pi r^{2} / 2=\pi d^{2} / 8 \\ & \bar{x}=0 \quad \bar{y}=4 r / 3 \pi \end{aligned}$
Quarter circle		$\begin{aligned} & \bar{I}_{x}=0.0549 \mathrm{r}^{4} \\ & \bar{I}_{y}=0.0549 \mathrm{r}^{4} \end{aligned}$	$\begin{aligned} & \text { Area }=\pi r^{2} / 4=\pi d^{2} / 16 \\ & \bar{x}=4 r / 3 \pi \\ & \bar{y}=4 r / 3 \pi \end{aligned}$
Ellipse		$\begin{aligned} & \bar{I}_{x}=\frac{1}{4} \pi a b^{3} \\ & \bar{I}_{y}=\frac{1}{4} \pi a^{3} b \\ & J_{O}=\frac{1}{4} \pi a b\left(a^{2}+b^{2}\right) \end{aligned}$	$\begin{aligned} & \text { Area }=\pi a b \\ & \bar{x}=0 \\ & \bar{y}=0 \end{aligned}$
Semiparabolic area Parabolic area		$\begin{aligned} & \bar{I}_{x}=16 \mathrm{ah}^{3} / 175 \\ & \bar{I}_{y}=4 \mathrm{a} 3 \mathrm{~h} / 15 \end{aligned}$	$\begin{aligned} & \text { Area }=4 a h / 3 \\ & \bar{x}=0 \quad \bar{y}=3 h / 5 \end{aligned}$
Parabolic spandrel		$\begin{aligned} & \bar{I}_{x}=37 \mathrm{ah}^{3} / 2100 \\ & \bar{I}_{y}=\mathrm{a}^{3 \mathrm{~h}} / 80 \end{aligned}$	$\begin{aligned} & \text { Area }=a h / 3 \\ & \bar{x}=3 a / 4 \quad \bar{y}=3 h / 10 \end{aligned}$

Example 1 (pg 257)

Find the moments of inertia ($\left.\hat{x}=3.05 ", \hat{y}=1.05^{\prime}\right)$.

Component	$\begin{gathered} I_{x c} \\ \left(\text { in. }^{4}\right) \end{gathered}$	$\begin{gathered} d_{y} \\ \text { (in.) } \end{gathered}$	$\begin{aligned} & A d_{y_{y}}{ }^{2} \\ & \text { (in. }{ }^{4} \end{aligned}$	$\begin{gathered} I_{y c} \\ \left(\text { in. }_{4}\right) \end{gathered}$	$\begin{gathered} d_{x} \\ \text { (in.) } \end{gathered}$	$\begin{aligned} & A d_{x}{ }^{2} \\ & \left(\text { (in. }{ }^{4}\right) \end{aligned}$
	$\frac{(1)(4)^{3}}{12}=5.33$	0.95	3.61	$\frac{(4)(1)^{3}}{12}=0.33$	2.55	26.01
	$\frac{(7)(1)^{3}}{12}=0.58$	0.55	2.12	$\frac{(1)(7)^{3}}{12}=28.58$	1.45	14.72
	$\sum I_{x c}=5.91$		$\sum A d_{y}{ }^{2}=5.73$	$\sum I_{y c}=28.91$		$\sum A d_{x}=40.73$

Example 2 (pg 253)
Example Problem 7.6 (Figures 7.24 to 7.26)
Determine the I about the centroidal x-axis.

Example 3

Determine the moments of inertia about the centroid of the shape.

Solution:
There is no reference origin suggested in figure (a), so the bottom left corner is good.

In figure (b) area A will be a complete rectangle,

(a)

(b) while areas C and A are "holes" with negative area and negative moment of inertias.

Area $A=200 \mathrm{~mm} \times 100 \mathrm{~mm}=20000 \mathrm{~mm}^{2}$	$\mathrm{I}_{\mathrm{x}}=(200 \mathrm{~mm})(100 \mathrm{~mm})^{3} / 12=16.667 \times 10^{6} \mathrm{~mm}^{4}$ $\mathrm{I}_{\mathrm{y}}=(200 \mathrm{~mm})^{3}(100 \mathrm{~mm}) / 12=66.667 \times 10^{6} \mathrm{~mm}^{4}$
Area $B=-\pi(30 \mathrm{~mm})^{2}=-2827.4 \mathrm{~mm}^{2}$	$\mathrm{I}_{\mathrm{x}}=\mathrm{I}_{\mathrm{y}}=-\pi(30 \mathrm{~mm})^{4} / 4=-0.636 \times 10^{6} \mathrm{~mm}^{4}$
Area $C=-1 / 2 \pi(50 \mathrm{~mm})^{2}=3927.0 \mathrm{~mm}^{2}$	$\mathrm{I}_{\mathrm{x}}=-\pi(50 \mathrm{~mm})^{4 / 8=-2.454 \times 10^{6} \mathrm{~mm}^{4}}$
Area $D=100 \mathrm{~mm} \times 200 \mathrm{~mm} \times 1 / 2=10000 \mathrm{~mm}^{2}=-0.1098(50 \mathrm{~mm})^{4}=-0.686 \times 10^{6} \mathrm{~mm}^{4}$	
	$\mathrm{I}_{\mathrm{x}}=(200 \mathrm{~mm})(100 \mathrm{~mm})^{3} / 36=5.556 \times 10^{6} \mathrm{~mm}^{4}$ $\mathrm{I}_{\mathrm{y}}=(200 \mathrm{~mm})^{3}(100 \mathrm{~mm}) / 36=22.222 \times 10^{6} \mathrm{~mm}^{4}$

shape	$A\left(\mathrm{~mm}^{2}\right)$	$\overline{\mathrm{X}}(\mathrm{mm})$	$\overline{\mathrm{X}} \mathrm{A}\left(\mathrm{mm}^{3}\right)$	$\overline{\mathrm{y}}(\mathrm{mm})$	$\overline{\mathrm{y}} \mathrm{A}\left(\mathrm{mm}^{3}\right)$	
A	20000	100	2000000	50	1000000	$\hat{x}=\frac{2159218 \mathrm{~mm}^{3}}{23245.58 \mathrm{~mm}^{2}}=92.9 \mathrm{~mm}$
B	-2827.43	150	-424115	50	-141372	
C	-3926.99	21.22066	-83333.3	50	-196350	$\hat{y}=\frac{1995612 \mathrm{~mm}^{3}}{23245.58 \mathrm{~mm}^{2}}=85.8 \mathrm{~mm}$
D	10000	66.66667	666666.7	133.3333	1333333	
		2159218		1995612		

shape	$\mathrm{I}_{\mathrm{x}}\left(\mathrm{mm}^{4}\right)$	$\mathrm{d}_{\mathrm{y}}(\mathrm{mm})$	$\mathrm{Ad}_{\mathrm{y}}{ }^{2}\left(\mathrm{~mm}{ }^{4}\right)$	$\mathrm{I}_{\mathrm{y}}\left(\mathrm{mm}^{4}\right)$	$\mathrm{d}_{\mathrm{x}}(\mathrm{mm})$	$\operatorname{Ad}_{x}{ }^{2}\left(\mathrm{~mm}{ }^{4}\right)$
A	16666667	35.8	25632800	66666667	-7.1	1008200
B	-636173	35.8	-3623751.73	-636173	-57.1	-9218592.093
C	-2454369	35.8	-5032988.51	-686250	71.67934	-20176595.22
D	5555556	-47.5333	22594177.8	2222222	26.23333	6881876.029
	19131680		39570237.5	87566466		-21505111.29

So, $\quad \mathrm{I}_{\mathrm{x}}=19131680+39570237.5=58701918=58.7 \times 10^{6} \mathrm{~mm}^{4}$
$I_{x}=87566466+-21505111.3=43572025=66.1 \times 10^{6} \mathrm{~mm}^{4}$

Example 4 (pg 258)
Example Problem 7.10 (Figures 7.35 and 7.36)
Locate the centroidal x and y axes for the cross-section shown. Use the reference origin indicated and assume that the steel plate is centered over the flange of the wide-flange section. Compute the I_{x} and I_{y} about the major centroidal axes.

Example 5 (pg 249)*
Example Problem 7.5 (Figures 7.16 and 7.17)
A composite or built-up cross-section for a beam is fabricated using two $1 / 2^{\prime \prime} \times 10^{\prime \prime}$ vertical plates with a $\mathrm{C} 12 \times 20.7$ channel section welded to the top and a W12 $\times 16$ section welded to the bottom as shown. Determine the location of the major x-axis using the center of the W12 $\times 16$'s web as the reference origin. Also determine the moment of inertia about both major centroidal axes.

shape	$1_{x}\left(\mathrm{in}^{4}\right)$	d_{y} (in)	$\mathrm{Ad}_{\mathrm{y}}{ }^{2}\left(\mathrm{in}^{4}\right)$	$\mathrm{I}_{\mathrm{y}}\left(\mathrm{in}^{4}\right)$	d_{x} (in)	$A d_{x}{ }^{2}\left(\mathrm{in}^{4}\right)$
channel	3.880	-4.399	117.849	129.000	0.000	0.000
left plate	41.667	0.185	0.171	0.104	3.250	52.813
right plate	41.667	0.185	0.171	0.104	-3.250	52.813
wide flange	2.800	5.295	132.054	103.000	0.000	0.000
	90.013		250.245	232.208		105.625

$I_{x}=90.013+250.245=340.259=340.3 \mathrm{in}^{4}$
$I_{y}=232.208+105.625=337.833=337.8$ in 4

Beam Bending Stresses and Shear Stress

Notation:

Pure Bending in Beams

With bending moments along the axis of the member only, a beam is said to be in pure bending.

Normal stresses due to bending can be found for homogeneous
 materials having a plane of symmetry in the y axis that follow Hooke's law.

Maximum Moment and Stress Distribution

In a member of constant cross section, the maximum bending moment will govern the design of the section size when we know what kind of normal stress is caused by it.

For internal equilibrium to be maintained, the bending moment will be equal to the $\Sigma \mathrm{M}$ from the normal stresses \times the areas \times the moment arms. Geometric fit helps solve this statically indeterminate problem:

1. The normal planes remain normal for pure bending.
2. There is no net internal axial force.
3. Stress varies linearly over cross section.
4. Zero stress exists at the centroid and the line of centroids is the neutral axis (n. a)

Figure 8.5(a) Beam elevation before loading.
Beam cross section.

Figure 8.5(b) Beam bending under load.

Higure 8.8 Bending atresses on section b-b.

Relations for Beam Geometry and Stress

Pure bending results in a circular arc deflection. R is the distance to the center of the arc; θ is the angle of the arc (radians); c is the distance from the n.a. to the extreme fiber; $f_{\max }$ is the maximum normal stress at the extreme fiber; y is a distance in y from the n.a.; M is the bending moment; I is the moment of inertia; S is the section modulus.

$$
L=R \theta \quad \varepsilon=\frac{\delta}{L}=R \quad f=E \varepsilon=\frac{y}{c} f_{\max }
$$

$$
M=\Sigma f_{i} A_{i} \quad M=\frac{f_{\max }}{c} \Sigma y_{i}^{2} A_{i} \quad I=\Sigma y^{2} A \quad S=\frac{I}{c} \quad f_{\max }=\frac{M c}{I}=\frac{M}{S}
$$

Now: $\quad f_{b}=\frac{M y}{I} \quad$ for a rectangle of height h and width $b: \quad S=\frac{b h^{3}}{12 h / 2}=\frac{b h^{2}}{6}$

RELATIONS:

$$
\begin{array}{ll}
\frac{1}{R}=\frac{M}{E I} & f_{b}=\frac{M y^{*}}{I}
\end{array} \begin{array}{ll}
S=\frac{I}{c} \\
f_{b-\max }=\frac{M c}{I}=\frac{M}{S} & S_{\text {required }} \geq \frac{M}{F_{b}} \\
\end{array}
$$

*Note: y positive goes DOWN. With a positive M and y to the bottom fiber as positive, it results in a TENSION stress (we've called positive)

Transverse Loading in Beams

(a)

We are aware that transverse beam loadings result in internal shear and bending moments.

We designed sections based on bending stresses, since this stress dominates beam behavior.

There can be shear stresses horizontally within a beam member.
 It can be shown that $f_{\text {horizontal }}=f_{\text {verical }}$

Equilibrium and Derivation

In order for equilibrium for any element $\mathrm{CDD}^{\prime} \mathrm{C}^{\prime}$, there needs to be a horizontal force $\Delta \mathrm{H}$.

$$
V=f_{D} d A-f_{C} d A
$$

Q is a moment area with respect to the neutral axis of the area above or below the horizontal where the $\Delta \mathrm{H}$ occurs.

Q is a maximum when $\mathrm{y}=0$ (at the neutral axis).

$$
V_{\text {longitudiall }}=\frac{V_{T} Q}{I} \Delta x
$$

q is a horizontal shear per unit length \rightarrow shear flow

$$
q=\frac{V_{\text {longitudiall }}}{\Delta x}=\frac{V_{T} Q}{I}
$$

Shearing Stresses

$f_{v-a v e}=0$ on the beam's surface. Even if Q is a maximum at $\mathrm{y}=0$, we don't know that the thickness is a minimum there.

$$
\begin{array}{r}
f_{v}=\frac{V}{\Delta A}=\frac{V}{b \cdot \Delta x} \\
f_{v-a v e}=\frac{V Q}{I b}
\end{array}
$$

Rectangular Sections

$f_{v-\text { max }}$ occurs at the neutral axis:

$$
I=\frac{b h^{3}}{12} \quad Q=A \bar{y}=b h / 2 \cdot 1 / 2 h / 2=b h^{2} / 8
$$

then:

$$
f_{v}=\frac{V Q}{I b}=\frac{V 1 / 8 b h^{2}}{1 / 12 b h^{3} b}=\frac{3 V}{2 b h} \quad f_{v}=\frac{3 V}{2 A}
$$

Webs of Beams

In steel W or S sections the thickness varies from the flange to the web.

We neglect the shear stress in the flanges and consider the shear stress in the web to be constant:

$$
f_{v-\max }=\frac{3 V}{2 A} \approx \frac{V}{A_{w e b}}
$$

$$
f_{v-\max }=\frac{V}{t_{w e b} d}
$$

Webs of I beams can fail in tension shear across a panel with stiffeners or the web can buckle.

(a) Sheor Failure (b) Sheor Buckling

Shear Flow

Even if the cut we make to find Q is not horizontal, but arbitrary, we can still find the shear flow, q, as long as the loads on thin-walled sections are applied in a plane of symmetry, and the cut is made perpendicular to the surface of the member.

$$
q=\frac{V Q}{l}
$$

(a)

(d)

(b)

(b)

Connectors to Resist Horizontal Shear in Composite Members

Typical connections needing to resist shear are plates with nails or rivets or bolts in composite sections or splices.

The pitch (spacing) can be determined by the capacity in shear of the connector(s) to the shear flow over the spacing interval, p.

$$
\frac{V_{\text {longitudiall }}}{p}=\frac{V Q}{I} \quad V_{\text {longitudiall }}=\frac{V Q}{I} \cdot p
$$

where
$\mathrm{p}=$ pitch length

$$
n F_{\text {connector }} \geq \frac{V Q_{\text {connectedarea }}}{I} \cdot p
$$

$\mathrm{n}=$ number of connectors connecting the connected area to the rest of the cross section
$\mathrm{F}=$ force capacity in one connector
$Q_{\text {connected area }}=A_{\text {connected area }} \times y_{\text {connected area }}$
$y_{\text {connected area }}=$ distance from the centroid of the connected area to the neutral axis

Connectors to Resist Horizontal Shear in Composite Members

Even vertical connectors have shear flow across them.
The spacing can be determined by the capacity in shear of the connector(s) to the shear flow over the spacing interval, p .

$$
p \leq \frac{n F_{\text {connector }} I}{V Q_{\text {connected area }}}
$$

Unsymmetrical Sections or Shear

If the section is not symmetric, or has a shear not in that plane, the member can bend and twist.
If the load is applied at the shear center there will not be twisting. This is the location where the moment caused by shear flow $=$ the moment of the shear force about the shear center.

Example 1 (pg 303)
Example Problem 9.2 (Figures 9.15 to 9.18)
A beam must span a distance of 12 and carry a uniformly distributed load of $120 \mathrm{lb} . / \mathrm{ft}$. Determine which crosssection would be the least stressed: a, b, or c.

Example 2 (pg 309)

Example Problem 9.7 (Figures 9.31 to 9.33)

Design the roof and second-floor beams if $F_{b}=1550 \mathrm{psi}$
(Southern pine No. 1), and evaluate the shear stress.
Roof: Snow +DL = $200 \mathrm{lb} / \mathrm{ft}$
Walls: 400 lb on $2^{\text {nd }}$ floor beams
Railing: 100 lb on beam overhang
Second Floor: DL + LL = $300 \mathrm{lb} / \mathrm{ft}$
(including overhang)

Roof:

*Also select the most economical steel section for the second-floor when $S_{\text {req'd }} \geq 1650 \mathrm{in}^{3}$ and evaluate the shear stress when $V=60 \mathrm{k}$.

Second Floor:

Example 3 (pg 313)

Example Problem 9.8: Shear Stress
(Figures 9.43 to 9.47)
Calculate the maximum bending and shear stress for the beam shown.

ALSO: Determine the minimum nail spacing required (pitch) if the shear capacity of a nail (F) is 250 lb .

Component	A (in. ${ }^{2}$)	\bar{y} (in.)	$\bar{y} \Delta A$ (in. $\left.{ }^{3}\right)$
	12	7	84
	12	3	36

Example 4

8.11 A built-up plywood box beam with $2 \times 4 \mathrm{~S} 4 \mathrm{~S}$ top and bottom flanges is held together by nails. Determine the pitch (spacing) of the nails if the beam supports a uniform load of 200 \#/ft. along the 26 -foot span. Assume the nails have a shear capacity of 80\# each.

Solution:

Construct the shear (V) diagram to obtain the critical shear condition and its location
Note that the condition of shear is critical at the supports, and the shear intensity decreases as you approach the center line of the beam. This would indicate that the nail spacing P varies from the support to midspan. Nails are closely spaced at the support, but increasing spacing occurs toward midspan, following the shear diagram.

$$
\begin{aligned}
& f_{v}=\frac{V Q}{I b} \\
& I_{x}=\frac{\left(4.5^{\prime \prime}\right)\left(18^{\prime \prime}\right)^{3}}{12}-\frac{\left(3.5^{\prime \prime}\right)\left(15^{\prime \prime}\right)^{3}}{12}=1,202.6 \mathrm{in}^{4}{ }^{4} \\
& \begin{array}{c}
\text { SHEAR PLANES } \\
\left.(A=5.25 \mathrm{IN} .)^{2}\right)
\end{array} \\
&=\cdots
\end{aligned}
$$

$$
\begin{aligned}
& Q=\Sigma A \bar{y}=(9 ")\left(1 / 2^{\prime \prime}\right)\left(4.5^{\prime \prime}\right)+\left(9^{\prime \prime}\right)\left(1 / 2^{\prime \prime}\right)\left(4.5^{\prime \prime}\right)+\left(1.5^{\prime \prime}\right)\left(3.5^{\prime \prime}\right)\left(8.25^{\prime \prime}\right)=83.8 \mathrm{in}^{3} \\
& f_{v-\max }=\frac{(2,600 \#)\left(83.3 \mathrm{in} .^{3}\right)}{\left(1,202.6 \text { in. }^{4}\right)\left(1 / 2^{\prime \prime}+1 / 2^{\prime \prime}\right)}=180.2 \text { psi } \quad \text { Assume: }
\end{aligned}
$$

(n) $F=$ Capacity of two nails (one each side) at the flange; representing two shear surfaces

$$
Q=A \bar{y}=\left(5.25 \mathrm{in}^{2}{ }^{2}\right)\left(8.25^{\prime \prime}\right)=43.3 \mathrm{in} .^{3}
$$

Shear force $=f_{v} \times A_{v}$
where:

$$
A_{v}=\text { shear area }
$$

(n) $F \geq f_{v} \times b \times p=\frac{V Q}{I b} \times b p$

$$
\therefore(\mathrm{n}) F \geq p \times \frac{V Q}{I} ; \quad p \leq \frac{(\mathrm{n}) F I}{V Q}
$$

At the maximum shear location (support) where $V=2,600$ \#

$$
p=\frac{(2 \text { nails } \times 80 \# / \text { nail })\left(1,202.6 \text { in. }^{4}\right)}{(2,600 \#)\left(43.3 \text { in. }{ }^{3}\right)}=1.71^{\prime \prime}
$$

Introduction to Beam Stress Analysis and Preliminary Design

Beam Analysis

When the beam section is already known, beam analysis is used to calculate the maximum stresses. Beam design involves finding a trial section, recognizing that there is more load from the beam weight itself, performing analysis AND comparing stresses to some limits until the section satisfies all criteria.

Analysis Procedure

1. Solve for support forces and draw V \& M diagrams to obtain $\mathrm{V}_{\max }$ and $\mathrm{M}_{\max }$ (maximum magnitudes)
2. Determine the critical section geometry properties:

- centroid: \hat{y} (necessary to find the neutral axis, I_{x}, and to determine c - the distance from the neutral axis to the "extreme" fiber of the cross section) (Note Set 9.1)
- moment of inertia about axis of bending: I_{x} (Note Set 9.2)
- section modulus $S_{x}\left(S_{x}=I_{x} / c\right)$

NOTE: if the section is a standard shape, the properties will be pre-determined and available in reference charts.
3. Calculate maximum bending stress using $\mathrm{M}_{\max }: f_{b-\max }=\frac{M c}{I_{x}}=\frac{M}{S_{x}}$
4. Calculate maximum shear stress using $\mathrm{V}_{\text {max }}$:
a. For a rectangular section ONLY: $\quad f_{v}=\frac{3 V}{2 A}$

- A is the area (bh)
b. For a wide flange section ONLY: $f_{v}=\frac{V}{A_{w e b}}$
- $\quad A_{\text {web }}$ is the area determined from the thickness of the web and depth of the $\mathrm{W}\left(t_{w} d\right)$. These values are available in reference charts.
c. OTHERWISE: $f_{v-a v e}=\frac{V Q}{I_{x} b}$ where:
- Q is the first moment area of a section "cut" at the neutral axis. It is the sum of all the basic areas of the section multiplied by \mathbf{y} distances from the neutral axis for each to their centroids: $Q=\sum A \bar{y} \cdot \bar{y}$ is always measured from the neutral axis as the origin ($y=0$). (Note Set 10.1)
- b is the thickness of the section "cut" from the real material (voids aren't included).
- $\quad I_{x}$ is the moment of inertia about the x axis (neutral axis)

5. If a section is built-up, and the shear force across an interface or the spacing for nails across that interface to resist the shear force is needed, then the form of the shear stress equation becomes:

$$
n F_{\text {connector }} \geq \frac{V Q_{\text {connectedarea }}}{I_{x}} \cdot p
$$

- n is the number of nails or bolts connecting the parts at the interface(s) of interest
- $F_{\text {connector }}$ is the shear force per nail or bolt that the connector can resists (capacity)
- $Q_{\text {connected area }}$ is the first moment of area a section "cut" at the interface(s) of interest to isolate the connected part. It is the sum of all the basic areas of the section multiplied by \mathbf{y} distances from the neutral axis for each to their centroids: $Q=\sum A \bar{y} \cdot \bar{y}$ is always measured from the neutral axis as the origin $(y=0)$. (Note Set 10.1)
- $\quad p$ is the "pitch" spacing between connectors along the axis of the beam
- $\quad I_{x}$ is the moment of inertia about the x axis (neutral axis)

Beam Design

Design implies that the beam section has not yet been determined. Design involves choosing a trial section (preliminary design), then checking at every important computation of stress or deflection that the computed value does not exceed the acceptable limits. A finalized design means the section has been changed because of an unacceptable evaluation, but now meets all criteria.

Preliminary Design Procedure

The intent is to find the most light weight member satisfying the section modulus size.

1. Know F_{b} (allowable stress) for the material or $\mathrm{F}_{\mathrm{y}} \& \mathrm{~F}_{\mathrm{u}}$ for LRFD.
2. Draw V \& M , finding $\mathrm{M}_{\text {max }}$.
3. Calculate $\mathrm{S}_{\text {req'd }}$ using $\mathrm{M}_{\text {max }}: S_{\text {required }} \geq \frac{M}{F_{b}}$

- This step is equivalent to evaluating if $f_{b}=\frac{M_{\max }}{S_{x}} \leq F_{b}$

4. For rectangular beams $\quad S_{x}=\frac{b h^{2}}{6}$

- For steel or timber: use the section charts to find S that will work. And for steel, the design charts show the lightest section within a grouping of similar S's.
- For any thing else, try a nice value for b, and calculate h or the other way around.

Pinned Frames and Arches

Notation:

F	$=$ name for force vectors	R	$=$ name for reaction force vector
F_{x}	$=$ force component in the x direction	w	$=$ name for distributed load
F_{y}	$=$ force component in the y direction	W	$=$ name for total force due to
$F B D$	$=$ free body diagram		
M	$=$ name for reaction moment, as is M_{R}	Σ	$=$ summation symbol

- A FRAME is made up of members where at least one member has more than 3 forces on it
- Usually stationary and fully constrained

- A PINNED FRAME has member connected by pins
- Considered non-rigid if it would collapse when the supports are removed
- Considered rigid if it retains it's original shape when the supports are removed

- A RIGID FRAME is all one member with no internal pins
- Typically statically indeterminate
- Portal frames look like door frames
- Gable frames have a peak.

- INTERNAL PIN CONNECTIONS:
- Pin connection forces are equal and opposite between the bodies they connect.
- There are 2 unknown forces at a pin, but if we know a body is a two-force body, the direction of the resultant force is known.

- AN ARCH is a structural shape that can span large distances and sees compression along its slope. It may have no hinges (or pins), two hinges at the supports, or two hinges at the supports with a hinge at the apex. The three-hinged arch types are statically determinate with 2 bodies and $\mathbf{6}$ unknown forces.

- CONTINUOUS BEAMS WITH PINS:
- If pins within the span of a beam over multiple supports result in static determinacy (the right number of unknowns for the number of equilibrium equations), the internal forces at the pins are applied as reactions to the adjacent span.

- The location of the internal pins can be chosen to increase or decrease the moments in order to make the section economical for both positive bending and negative bending (similar values for the moments).

Solution Procedure

1. Solve for the support forces on the entire frame (FBD) if possible.
2. Draw a FBD of each member:

- Consider all two-force bodies first.
- Pins are integral with members
- Pins with applied forces should belong to members with greater than two forces [Same if pins connect 3 or more members]
- Draw forces on either side of a pin equal and opposite with arbitrary direction chosen for the first side
- Consider all multi-force bodies
- Represent connection forces not known by x \& y components
- There are still three equilibrium equations available, but the moment equations may be more helpful when the number of unknowns is greater than two.

Example 1 (pg 114)
Example Problem 4.12
A pinned frame with a fixed base at A supports a load at the over hang equal to 500 pounds, as shown in Figure 4.68. Draw free body diagrams and solve for the support reactions and the pin reactions at B, C, and E.

Example 2 (pg 115)
Example 4.13 (Three-Hinged Arch)
An industrial building is framed using tapered steel sections (haunches) and connected with three hinges (Figure 4.70). Assuming that the loads shown are from gravity loads and wind, determine the support reactions at A and D and the pin reactions at B.

Example 3 (pg 73)

Example Problem 3.16 (Figures 3.44 and 3.45)

A compound beam has three supports at $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{D} and an internal hinge at C. Two uniformly distributed loads cover the entire length of the beams. Draw the appropriate FBDs and determine the reactions at the supports and the internal pin forces at C.
Also construct the shear and bending moment diagrams.

Rigid and Braced Frames

Notation:

Rigid Frames

Rigid frames are identified by the lack of pinned joints within the frame. The joints are rigid and resist rotation. They may be supported by pins or fixed supports. They are typically statically indeterminate.

Frames are useful to resist lateral loads.
Frame members will see

- shear
- bending
- axial forces
and behave like beam-columns.

force legs inwa-d legs now in oenaing: betan begs less

fixea joint at botesom of leas:

Behavior

The relation between the joints has to be maintained, but the whole joint can rotate. The amount of rotation and distribution of moment depends on the stiffness (EI/L) of the members in the joint.

End restraints on columns reduce the effective length, allowing columns to be more slender. Because of the rigid joints, deflections and moments in beams are
 reduced as well.

Frames are sensitive to settlement because it induces strains and changes the stress distribution.

Types

Gabled - has a peak
Portal - resembles a door. Multi-story, multiple bay portal frames are commonly used for commercial and industrial construction. The floor behavior is similar to that of continuous beams.

Staggered Truss

Staggered Truss - Full story trusses are staggered through the frame bays, allowing larger clear stories.

Connections

Steel - Flanges of members are fully attached to the flanges of the other member. This can be done with welding, or bolted plates.
Reinforced Concrete - Joints are monolithic with continuous
 reinforcement for bending. Shear is resisted with stirrups and ties.

Braced Frames

Braced frames have beams and columns that are "pin" connected with bracing to resist lateral loads.

Types of Bracing

- knee-bracing
- diagonal (including eccentric)
- X
- K or chevron
- shear walls - which resist lateral forces in the plane of the wall

Rigid Frame Analysis

Structural analysis methods such as the portal method (approximate), the method of virtual work, Castigliano's theorem, the force method, the slope-displacement method, the stiffness method, and matrix analysis, can be used to solve for internal forces and moments and support reactions.

Shear and bending moment diagrams can be drawn for frame members by isolating the member from a joint and drawing a free body diagram. The internal forces at the end will be equal and opposite, just like for connections in pinned frames. Direction of the "beam-like" member is usually drawn by looking from the "inside" of the frame.

Frame Columns

Because joints can rotate in frames, the effective length of the column in a frame is harder to determine. The stiffness (EI/L) of each member in a joint determines how rigid or flexible it is. To find k , the relative stiffness, G or Ψ, must be found for both ends, plotted on the alignment charts, and connected by a line for braced and unbraced fames.

$$
G=\Psi=\frac{\Sigma E I / l_{c}}{\Sigma E I / l_{b}}
$$

where

$\mathrm{E}=$ modulus of elasticity for a member
$I=$ moment of inertia of for a member
$l_{c}=$ length of the column from center to center
$l_{\mathrm{b}}=$ length of the beam from center to center

- For pinned connections we typically use a value of 10 for Ψ.
- For fixed connections we typically use a value of 1 for Ψ.

Frame Design

The possible load combinations for frames with dead load, live load, wind load, etc. is critical to the design. The maximum moments (positive and negative) may be found from different combinations and at different locations. Lateral wind loads can significantly affect the maximum moments.

Plates and Slabs

If the frame is rigid or non-rigid, the floors can be a plate or slab (which has drop panels around columns). These elements behave differently depending on their supports and the ratio of the sides.

- one-way behavior: like a "wide" beam, when ratio of sides > 1.5
- two-way behavior: complex, non-determinate, look for handbook solutions

Floor Loading Patterns

With continuous beams or floors, the worst case loading typically occurs when alternate spans are loaded with live load (not every span). The maximum positive and negative moments may not be found for the same loading case! If you are designing with reinforced concrete, you must provide flexure reinforcement on the top and bottom and take into consideration that the maximum may move.

Example 1

The rigid frame shown has been analyzed using an advanced structural analysis technique. The reactions at support A are: $\mathrm{A}_{\mathrm{x}}=-28.6 \mathrm{k}, \mathrm{A}_{\mathrm{y}}=-15.3 \mathrm{k}$, $\mathrm{M}_{\mathrm{A}}=208 \mathrm{k}-\mathrm{ft}$. The reactions at support D are: $\mathrm{D}_{\mathrm{x}}=-11.4 \mathrm{k}, \mathrm{D}_{\mathrm{y}}=15.3 \mathrm{k}$, $\mathrm{M}_{\mathrm{D}}=110 \mathrm{ft}-\mathrm{k}$. Draw the shear and bending moment diagrams, and identify $\mathrm{V}_{\max } \& \mathrm{M}_{\max }$.

Solution:

NOTE: The joints are not shown, and the load at joint B is put on only one body.

Example 2

The rigid frame shown has been analyzed using an advanced structural analysis technique. The reactions at support A are: $\mathrm{A}_{\mathrm{x}}=2.37 \mathrm{kN}, \mathrm{A}_{\mathrm{y}}=21.59 \mathrm{kN}, \mathrm{M}_{\mathrm{A}}=-4.74$ $\mathrm{kN} \cdot \mathrm{m}$. The reactions at support C are: $\mathrm{C}_{\mathrm{x}}=-2.37 \mathrm{kN}, \mathrm{C}_{\mathrm{y}}=28.4 \mathrm{kN}, \mathrm{M}_{\mathrm{C}}=-26.52 \mathrm{kN} \cdot \mathrm{m}$. Draw the shear and bending moment diagrams, and identify $V_{\max } \& M_{\max }$.

Solution:

Reactions These values must be given or found from non-static analysis techniques. The values are given with respect to the global coordinate system we defined for positive and negative forces and moments for equilibrium.

Member End Forces The free-body diagrams of all the members and joints of the frame are shown above. The unknowns on the members are drawn positive, and the opposite directions are drawn on the joint. We can begin the computation of internal forces with either member AB or BC , both of which have only three unknowns.

Member $A B$ With the magnitudes of reaction forces at A know, the unknowns are at end B of $\mathrm{BA}_{\mathrm{x}}, \mathrm{BA}_{\mathrm{y}}$, and M_{BA}, which can get determined by applying $\sum F_{x}=0, \sum F_{y}=0$, and $\sum M_{B}=0$. Thus,

$$
\begin{gathered}
\sum F_{x}=2.37 \mathrm{kN}+B A_{x}=0 \quad \mathrm{BA}_{\mathrm{x}}=-2.37 \mathrm{kN}, \quad \sum F_{y}=21.59 \mathrm{kN}+B A_{y}=0 \quad \mathrm{BA}_{\mathrm{y}}=-21.59 \mathrm{kN} \\
\sum M_{B}=2.37 \mathrm{kN}(6 m)-4.74 \mathrm{kN} \cdot m+M_{B A}=0 \quad \mathrm{M}_{\mathrm{BA}}=-9.48 \mathrm{kN} \cdot \mathrm{~m}
\end{gathered}
$$

Joint B Because the forces and moments must be equal and opposite, $\mathrm{BC}_{\mathrm{x}}=2.37 \mathrm{kN}, \mathrm{BC}_{\mathrm{y}}=21.59 \mathrm{kN}$ and $\mathrm{M}_{\mathrm{BC}}=9.48 \mathrm{kN} \cdot \mathrm{m}$

Member $B C$ All forces are known, so equilibrium can be checked:

$$
\begin{gathered}
\sum F_{x}=2.37 k N-2.37 k N=0 \quad \sum F_{y}=21.59 k N+28.49 k N-(10 k N / m) 5 m=0 \\
\sum M_{B}=28.41 \mathrm{kN}(5 m)-10 \mathrm{kN} / m(5 m)(2.5 m)-26.52 k N \cdot m+9.48 k N \cdot m=0
\end{gathered}
$$

6

Example 3

Find the column effective lengths for a steel frame with 12 ft columns, a 15 ft beam when the support connections are pins for a) when it is braced and b) when it is allowed to sway. The relative stiffness of the beam is twice that of the columns (2I).

Columns and Stability

Notation:

A = name for area	$K \quad=$ effective length factor for columns
A36 = designation of steel grade	$L \quad=$ name for length
$b \quad=$ name for width	$L_{e} \quad=$ effective length that can buckle for
$C=$ symbol for compression	column design, as is $\ell_{e}, L_{\text {cfider }}$
$C_{c}=$ column slenderness classification constant for steel column design	$M \quad=$ internal bending moment, as is M^{\prime} N.A. = shorthand for neutral axis
$d \quad=$ name for dimension, or depth	$P=$ name for axial force vector, as is P^{\prime}
$=$ eccentric distance of application of a force (P) from the centroid of a cross section	$\begin{aligned} P_{\text {crit }}= & \text { critical buckling load in column } \\ & \text { calculations, as is } P_{\text {critical, }} P_{c r} \\ r & =\text { radius of gyration } \end{aligned}$
$E \quad=$ modulus of elasticity or Young's	$T \quad=$ symbol for compression
${ }_{\text {c }} \quad$ modulus	W = designation for wide flange section
$f_{a} \quad=$ axial stress	= vertical distance
$f_{b} \quad=$ bending stress	$=$ distance perpendicular to the $x-y$
$f_{\text {critical }}=$ critical buckling stress in column calculations from $P_{\text {critical }}$	$\Delta=\begin{aligned} & \text { plane } \\ & \text { calculus symbol for small quantity }\end{aligned}$
$f_{x} \quad=$ total stress in the x axis direction	$=$ displacement due to bending
$F_{a} \quad=$ allowable axial stress	$\theta=$ angle
$F_{b}=$ allowable bending stress	$\phi \quad=$ diameter symbol
$F_{y}=$ yield stress	$\pi \quad=\mathrm{pi}\left(3.1415\right.$ radians or $\left.180^{\circ}\right)$
$\begin{array}{ll}I & =\text { moment of inertia } \\ I^{\prime} & =\text { moment of inertia that is critical to }\end{array}$	$\begin{array}{cl}\pi & =\mathrm{pi} \\ \sigma & =\text { engineering symbol for normal }\end{array}$
$=$ moment of inertia that is critical to the calculation of slenderness ratio	stress

Design Criteria

Including strength (stresses) and servicability (including deflections), another requirement is that the structure or structural member be stable.

Stability is the ability of the structure to support a specified load without undergoing unacceptable (or sudden) deformations.

Physics

Recall that things like to be or prefer to be in their lowest energy state (potential energy).
Examples include water in a water tank. The energy it took to put the water up there is stored until it is released and can flow due to gravity.

Stable Equilibrium

When energy is added to an object in the form of a push or disturbance, the object will return to it's original position. Things don't change in the end.

Unstable Equilibrium

When energy is added to an object, the object will move and get more "disturbed". Things change rapidly.

Neutral Equilibrium

When energy is added to an object, the object will move some then stop.. Things change.

Column with Axial Loading

A column loaded centrically can experience unstable equilibrium, called buckling, because of how tall and slender they are. This instability is sudden and not good.

Buckling can occur in sheets (like my "memory metal" cookie sheet), pressure vessels or slender (narrow) beams not braced laterally.

Buckling can be thought of with the loads and motion of a column having a stiff spring at mid-height. There exists a load where the
 spring can't resist the moment in it any longer.

Short (stubby) columns will experience crushing before buckling.

Critical Buckling Load

The critical axial load to cause buckling is related to the deflected shape we could get (or determine from bending moment of $\mathrm{P} \cdot \Delta$).

The buckled shape will be in the form of a sine wave.

Euler Formula

Swiss mathematician Euler determined the relationship between the critical
 buckling load, the material, section and effective length (as long as the material stays in the elastic range):

$$
P_{\text {critical }}=\frac{\pi^{2} E I_{\min }}{(L)^{2}} \quad \text { or } \quad P_{c r}=\frac{\pi^{2} E I}{\left(L_{e}\right)^{2}}=\frac{\pi^{2} E A}{\left(L_{e} / r\right)^{2}}
$$

and the critical stress (if less than the normal stress) is:

$$
f_{\text {critical }}=\frac{P_{\text {critical }}}{A}=\frac{\pi^{2} E A r^{2}}{A\left(L_{e}\right)^{2}}=\frac{\pi^{2} E}{\left(L_{e} / r\right)^{2}}
$$

where $\mathrm{I}=\mathrm{Ar}^{2}$ and L_{e} / r is called the slenderness ratio. The smallest I of the section will govern.

Yield Stress and Buckling Stress

The two design criteria for columns are that they do not buckle and the strength is not exceeded. Depending on slenderness, one will control over the other.

But, because in the real world, things are rarely perfect - and columns will not actually be loaded concentrically, but will see eccentricity - Euler's formula is used only if the critical stress is less than half of the yield point stress:

$$
P_{\text {critical }}=\frac{\pi^{2} E I_{\text {min }}}{(L)^{2}} ; \quad f_{\text {critical }}=\frac{P_{\text {critical }}}{A}<\frac{F_{y}}{2}
$$

to be used for $L_{e} / r>C_{c}=\sqrt{\frac{2 \pi^{2} E}{F_{y}}}$
where C_{c} is the column slenderness classification constant and is the slenderness ratio of a column for
 which the critical stress is equal to half the yield point stress.

Effective Length and Bracing

Depending on the end support conditions for a column, the effective length can be found from the deflected shape (elastic equations). If a very long column is braced intermittently along its length, the column length that will buckle can be determined. The effective length can be found by multiplying the column length by an effective length factor, $\mathrm{K} . L_{e}=K \cdot L$

(a) No bracing.

(b) Braced at midpoint.

(c) Third-point bracing.
(d) Asymmetric bracing.

Buckled shape of column shown by dashed line				(d)	(e)	(f)
Theoretical K value	0.5	0.7	1.0	1.0	2.0	2.0
Recommended design values when ideal conditions are approximated	0.65	0.80	1.0	1.2	2.10	2.0
End conditions code		Rotation fixed, Translation fixed Rotation free, Translation fixed Rotation fixed, Translation free Rotation free, Translation free				

Loading Location

Centric loading: The load is applied at the centroid of the cross section. The limiting allowable stress is determined from strength (P/A) or buckling.

Eccentric loading: The load is offset from the centroid of the cross section because of how the
 beam load comes into the column. This offset introduces bending along with axial stress. (This can also happen with continuous bea or wind loading.)

Eccentric Load Left Tension Left

Eccentric Loading

The eccentricity causes bending stresses by a moment of value $\mathrm{P} \times \mathrm{e}$. Within the elastic range (linear stresses) we can superposition or add up the normal and bending stresses:

$$
f_{x}=f_{a}+f_{b}=\frac{P}{A}+\frac{M y}{I}
$$

The resulting stress distribution is still linear. And the n.a. moves (if there is one).

The value of e (or location of P) that causes the stress at an edge to become zero is at the edge of the kern. As long as P stays within the kern, there will not be any tension stress.

If there is bending in two directions (bi-axial bending), there will be one more bending stress added to the total:

$f_{x}=f_{a}+f_{b x}+f_{b y}=\frac{P}{A}+\frac{M_{1} y}{I_{z}}+\frac{M_{2} z}{I_{y}}$

result

$$
M_{2} \xlongequal{G} P \cdot e_{2} \quad M_{1}^{=}=P \cdot e_{1}
$$

Eccentric Loading Design

Because there are combined stresses, we can't just compare the axial stress to a limit axial stress or a bending stress to a limit bending stress. We use a limit called the interaction diagram. The diagram can be simplified as a straight line from the ratio of axial stress to allowable stress= 1 (no bending) to the ratio of bending stress to allowable stress $=1$ (no axial load).

The interaction diagram can be more sophisticated (represented by a curve instead of a straight line). These type of diagrams take the effect of the bending moment increasing because the beam deflects. This is called the $\mathbf{P}-\Delta$ (P-delta) effect.

Limit Criteria Methods

1) $\frac{f_{a}}{F_{a}}+\frac{f_{b}}{F_{b}} \leq 1.0 \quad$ interaction formula (bending in one direction)
2) $\frac{f_{a}}{F_{a}}+\frac{f_{b x}}{F_{b x}}+\frac{f_{b y}}{F_{b y}} \leq 1.0 \quad$ interaction formula (biaxial bending)
3) $\frac{f_{a}}{F_{a}}+\frac{f_{b} \times(\text { Magnification factor })}{F_{b}} \leq 1.0$ interaction formula (P- Δ effect)

Example 1 (pg 346)

Example Problem 10.1: Short and Long ColumnsModes of Failure (Figures 10.11 and 10.12)

Determine the critical buckling load for a $3^{\prime \prime} \phi$ standard weight steel pipe column that is 16 ft . tall and pin connected. Assume that $E=29 \times 10^{6} \mathrm{psi}$

Example 2 (pg 346)

Example Problem 10.2 (Figure I0.13)

Determine the critical buckling stress for a 30 -foot-long, W12×65 steel column. Assume simple pin connections at the top and bottom.

$$
F_{y}=36 \mathrm{ksi}(\mathrm{~A} 36 \text { steel }) ; \quad E=29 \times 10^{3} \mathrm{ksi}
$$

Example 3 (pg357)

Example Problem I0.8 (Figures I0.33 and I0.34a, b)
Determine the buckling load capacity of a 2×4 stud 12 feet high if blocking is provided at midheight. Assume $E=$ $1.2 \times 10^{6} \mathrm{psi}$.

Figure 10.34 (a) Weak axis. (b) Strong axis.

Frame Analysis Using Multiframe

1. The software is on the computers in the College of Architecture in Programs under the Windows Start menu (see https://wikis.arch.tamu.edu/display/HELPDESK/Computer+Accounts for lab locations). Multiframe is under the Bentley Engineering menu.
2. There are tutorials available on line at http://www.formsys.com/mflearning that list the tasks and order in greater detail. The first task is to define the unit system:

- Choose Units... from the View menu. Unit sets are available, but specific units can also be selected by double clicking on a unit or format and making a selection from the menu. Pressure units are used for distributed area loads on load panels.

Units						X
Unit Set:	Configuration:					
		Unit Type	Uni	Decimal Places	Format	\wedge
	1	Length	ft	3	Fixed Decimal	
	2	Angle	deg	3	Fixed Decimal	
	3	Deflection	in	3	Fixed Decimal	
	4	Rotation	deg	3	Fixed Decimal	
	5	Force	kip	3	Fixed Decimal	
	6	Moment	lbt-ft	3	Fixed Decimal	
	7	Dist. Force	lbt/ft	3	Fixed Decimal	
	8	Stress	ksi	3	Fixed Decimal	
	9	Mass	1 b	3	Fixed Decimal	
	10	Mass/Length	lb/ft	3	Fixed Decimal	
	11	Area	in^{2}	3	Fixed Decimal	
	12	Mint of Inertia	in^4	3	Fixed Decimal	
	13	Density	$1 \mathrm{~b} / \mathrm{ft}^{3}$	3	Fixed Decimal	
	14	Section Modulus	in ${ }^{3}$	3	Fixed Decimal	
	\leqslant		IIII			\checkmark
					OK	

3. To see the scale of the geometry, a grid option is available:

4. To create the geometry, you must be in the Frame window (default). The symbol is the frame in the window toolbar:

The Member toolbar shows ways to create members:

- Choose Grid... from the View menu

The Generate toolbar has convenient tools to create typical structural shapes.

- To create a frame, use the multi-bay frame button:

Enter the number of bays (horizontally), number of stories (vertically) and the corresponding spacings:

- If the frame does not have regular bays, use the add connected members button to create segments:

- Select a starting point and ending point with the cursor. The location of the cursor and the segment length is displayed at the bottom of the geometry window. The ESC button will end the segmented drawing.
- The geometry can be set precisely by selecting the joint (drag), and bringing up the joint properties menu (right click) to set the coordinates.
- The support types can be set by selecting the joint (drag) and using the Joint Toolbar (fixed shown), or the Frame / Joint Restraint ... menu (right click).

NOTE: If the support appears at both ends of the member, you had the member selected rather than the joint. Select the joint to change support for and right click to select the joint restraints menu or select the correct support on the joint toolbar.

The support forces will be determined in the analysis.
5. All members must have sections assigned (see section 6.) in order to calculate reactions and deflections. To use a standard steel section proceed to step 6. For custom sections the section information must be entered. To define a section:

- Choose Edit Sections / Add Section... from the Edit menu
- Type a name for your new section
- Choose group Frame from the group names provided so that the section will remain with the file data
- Choose a shape. The Flat Bar shape is a rectangular section.
- Enter the cross section data.

Table values 1-9 must have values for a Flat Bar, but not all are used for every analysis. A recommendation is to put the value of 1 for those properties you don't know or care about. Properties like $\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{w}}$, etc. refer to wide flange sections.

- Answer any query. If the message says there is an error, the section will not be created until the error is corrected.

6. The standard sections library loaded is for the United States. If another section library is needed, use the Open Sections Library... command under the file menu, choose the library folder, and select the SectionsLibrary.slb file.

Select the members (drag to make bold) and assign sections with the Section button on the Member toolbar:

- Choose the group name and section name:
(STANDARD SHAPES)

(CUSTOM)

7. If there is an area that has a uniformly distributed load, load panels may be defined in the Frame window. Because the loaded area may not be visible in the current view, choose the View button at the lower left of the Frame window. The options for view are shown. (See 3D Frames, last page.)

- Choose the panel type (rectangular, 4-node, or 3-node) from the menu and select the corners. If the area is rectangular, only the opposite corners need to be selected.

- Select the panel and from the pop-up menu, or the Frame menu, specify the load panel supports. The default supports are on all sides. If the panel is one way, chose the corresponding picture

8. The frame geometry is complete, and in order to define the load conditions you must be in the Load window represented by the green arrow:

9. The Load toolbar allows a joint to be loaded with a force or a moment in global coordinates, shown by the first two buttons after the display numbers button. It allows a member to be loaded with a distributed load, concentrated load or moment (next three buttons) in global coordinates, as well as loading with distributed or single force or moment in the local coordinate system (next three buttons). It allows a load panel to be loaded with a distributed load in global or local coordinates (last two buttons).

- Choose the member to be loaded (drag) and select the load type (here shown for global distributed loading):

- Choose the distribution type and direction. Note that the arrow shown is the direction of the loading. There is no need to put in negative values for downward loading.
- Enter the values of the load and distances (if any). Distances can be entered as a function of the length , i.e. L/2, L/4...
- Area load units may have to be changed in the View Units dialogue.

> NOTE: Do not put support reactions as applied loads. The analysis will determine the reaction values.

Multiframe will automatically generate a grouping called a Load Case named Load Case 1 when a load is created. All additional loads will be added to this load case unless a new load case is defined (Add case under the Case menu).
10. In order to run the analysis after the geometry, member
 properties and loading has been defined:

- Choose Linear from the Analyze menu

11. If the analysis is successful, you can view the results in the Plot window represented by the red moment diagram:
12. The Plot toolbar allows the numerical values to be shown (1.0 button), the reaction arrows to be shown (brown up arrow) and reaction moments to be shown (brown curved arrow):

- To show the moment diagram, Choose the red Moment button

- To show the shear diagram, Choose the green Shear button
- To show the axial force diagram, Choose the purple Axial Force button

- To show the deflection diagram, Choose the blue Deflection button
- To animate the deflection diagram, Choose Animate... from
 the Display menu. You can also save the animation to a avi file by checking the box.
- To plot the bending moment on the "top" choose Preferences from the Edit menu and under the Presentation tab Draw moments on the compression face
- To see exact values of shear, moment and deflection, double click on the member and move the vertical cross hair with the mouse. The ESC key will return you to the window.

13. The Data window (D) allows you to view all data "entered" for the geometry, sections and loading. These values can be edited.

14. The Results window (R) allows you to view all results of the analysis including displacements, reactions, member forces (actions)
and stresses. These values can be cut and pasted into other Windows programs such as Word or Excel.
NOTE: Px' refers to the axial load (P) in the local axis x direction (x^{\prime}). Vy' refers to the shear perpendicular to the local x axis, and Mz ' refers to the bending moment.

15. To save the file Choose Save from the File menu.
16. To load an existing file Choose Open... from the File menu.
17. To print a plot Choose Print Window... from the File menu. As an alternative, you may copy the plot $(\mathrm{Ctrl}+\mathrm{c})$ and paste it in a word processing document $(\mathrm{Ctrl}+\mathrm{v})$.

Example of Combined Stresses:

for member 3: $\mathrm{M}_{\max }=19.6 \mathrm{k}-\mathrm{ft}, \mathrm{P}=1.76 \mathrm{k}$
knowing $\mathrm{A}=21.46 \mathrm{in}^{2}, \mathrm{I}=796.0 \mathrm{in}^{4}, \mathrm{c}=7.08$ in

$$
f_{\max }=\frac{1.76 k}{21.46 i i^{2}}+\frac{19.6^{k-f t} \cdot 7.08 i n}{796 i n^{4}} \cdot \frac{12 i n}{f t}=0.082 k s i+2.092 k s i=2.174 k s i
$$

Results window:

where Sx' refers to the axial stress, Sy' refers to the bending stress around the local vertical axis and Sz^{\prime} refers to the bending stress around the local horizontal axis.

For 3D Frames:

- There are tutorials available on line at http://www.formsys.com/mflearning that list the tasks and order in greater detail. It expects that you have been through the 2D tutorial to build on the steps already mastered.
- There are standard 3D frame shapes on the frame toolbar.

- It is very useful to change the view to isometric with the View Button

- If you wish to have additional beams supported by the beams of your frame, choose the beam and use the Subdivide Member menu under Geometry. This will make additional joints, but keep the segments together.

- In order to model a beam end as simply supported, you must release the restraint preventing rotation about the x -x axis of the beam. The pinned ends menu is useful for segments or subdivided members.

Or, by selecting a segment and right clicking for a menu, you can use Member Releases (also under the Frame menu) to release the Major Bending ($\mathrm{M}_{\mathrm{z}}^{\prime}$) for one end or both.

- It is necessary to understand the local member axes to assign the correct load direction. Choosing the local loading types will show the member orientation with respect to the load direction.

Common Design Loads in Building Codes

Notation:

```
A = name for area R = rainwater load or ice water load
AASHTO = American Association of State
    Highway and Transportation
    Officials
ASCE = American Society of Civil
    Engineers
ASD = allowable stress design
D = dead load symbol
E = earthquake load symbol
F = hydraulic loads from fluids symbol
H = hydraulic loads from soil symbol
L = live load symbol
L
LRFD = load and resistance factor design < = density or unit weight
```


Design Codes in General

Design codes are issued by a professional organization interested in insuring safety and standards. They are legally backed by the engineering profession. Different design methods are used, but they typically defined the load cases or combination, stress or strength limits, and deflection limits.

Load Types

Loads used in design load equations are given letters by type:
D = dead load
$\mathrm{L}=$ live load
$\mathrm{L}_{\mathrm{r}}=$ live roof load
$\mathrm{W}=$ wind load
$\mathrm{S}=$ snow load
$\mathrm{E}=$ earthquake load
$\mathrm{R}=$ rainwater load or ice water load
$\mathrm{T}=$ effect of material \& temperature
$\mathrm{H}=$ hydraulic loads from soil
$\mathrm{F}=$ hydraulic loads from fluids

Determining Dead Load from Material Weights

Material density is a measure of how much mass in a unit volume causes a force due to gravity. The common symbol for density is γ. When volume, V , is multiplied by density, a force value results:

$$
W=\gamma \cdot V
$$

Materials "weight" can also be presented as a weight per unit area or length. This takes into account that the volume is a thickness times an area: $V=t \cdot A$; so the calculation becomes:
$W=($ weight/unit area) $\cdot A$
$w=($ weight/unit volume $) \cdot t$ which is a weight per unit area
$w=($ weight/unit volume $) \cdot A$ which is a weight per unit length

Minimum Concentrated Loads

adapted from SEI/ASCE 7-10: Minimum Design Loads for Buildings and Other Structures

Location	Concentrated load lb (kN)
Catwalks for maintenance access	300 (1.33)
Elevator machine room grating (on area of 2 in . by 2 in . (50 mm by 50 mm))	300 (1.33)
Finish light floor plate construction (on area of 1 in . by 1 in . $(25 \mathrm{~mm} \text { by } 25 \mathrm{~mm}))$	200 (0.89)
Hospital floors	1,000 (4.45)
Library floors	1,000 (4.45)
Manufacturing	
Light	2,000 (8.90)
Heavy	3,000 (13.40)
Office floors	2,000 (8.90)
Awnings and canopies	
Skeleton structure with fabric	300 (1.33)
Support frame with screen enclosure	200 (0.89)
Roofs - primary members and subject to maintenance workers	300 (1.33)
School floors	1,000 (4.45)
Sidewalks, vehicular driveways, and yards subject to trucking (over wheel area of 4.5 in . by 4.5 in . ($114 \mathrm{~mm} \times 114 \mathrm{~mm}$)	8,000 (35.60)
Stairs and exit ways on area of 2 in . by 2 in . (50 mm by 50 mm) nonconcurrent with uniform load	300 (1.33)
Store floors	1,000 (4.45)

Allowable Stress Design (ASD)

Combinations of service (also referred to as working) loads are evaluated for maximum stresses and compared to allowable stresses. When wind loads are involved, the allowable stresses are typically allowed to increase by $1 / 3$. The allowed stresses are some fraction of limit stresses.

ASCE-7 (2010) combinations of loads:

1. D
2. $D+L$
3. $D+0.75\left(L_{r}\right.$ or S or $\left.R\right)$
4. $D+0.75 L+0.75\left(L_{r}\right.$ or S or $\left.R\right)$
5. $D+(0.6 W$ or $0.7 E)$

6a. $D+0.75 L+0.75(0.6 W)+0.75\left(L_{r}\right.$ or S or $\left.R\right)$
6b. $D+0.75 L+0.75(0.7 E)+0.75 S$
7. $0.6 D+0.6 W$
8. $0.6 D+0.7 E$

When F loads are present, they shall be included with the same load factor as dead load D in 1 through 6 and 8 .

When H loads are present, they shall have a load factor of 1.0 when adding to load
effect, or 0.6 when resisting the load when permanent.

Load and Resistance Factor Design - LRFD

Combinations of loads that have been factored are evaluated for maximum loads, moments or stresses. These factors take into consideration how likely the load is to happen and how often. This "imaginary" worse case load, moment or stress is compared to a limit value that has been modified by a resistance factor. The resistance factor is a function of how "comfortable" the design community is with the type of limit, ie. yielding or rupture...

ASCE-7 (2010) combinations of factored nominal loads:

1. 1.4 D
2. $1.2 D+1.6 L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$
3. $1.2 D+1.6\left(L_{r}\right.$ or S or $\left.R\right)+(L$ or $0.5 W)$
4. $1.2 D+1.0 W+L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$
5. $1.2 D+1.0 E+L+0.2 S$
6. $0.9 D+1.0 W$
7. $0.9 D+1.0 E$

When F loads are present, they shall be included with the same load factor as dead load D in 1 through 5 and 7 .

When H loads are present, they shall have a load factor of 1.6 when adding to load effect, or 0.9 when resisting the load when permanent.

Minimum Uniformly Distributed Live Loads
adapted from SEI/ASCE 7-10: Minimum Design Loads for Buildings and Other Structures

Location	Uniform load $\mathrm{psf}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
Apartments (see Residential)	
Access floor systems	$50(2.4)$
Office use	$100(4.79)$
Computer use	$150(7.18)$
Armories and drill rooms	$60(2.87)$
Assembly areas and theaters	$100(4.79)$
Fixed seats (fastened to floor)	$100(4.79)$
Lobbies	$100(4.79)$
Movable seats	$150(7.18)$
Platforms (assembly)	
Stage floors	

Location	Uniform load psf ($\mathrm{kN} / \mathrm{m}^{2}$)
Balconies and decks	1.5 times the live load for the occupancy served. Not required to exceed 100 psf ($4.79 \mathrm{kN} / \mathrm{m} 2$)
Catwalks for maintenance access	40 (1.92)
Corridors	
First floor	100 (4.79)
Other floors, same as occupancy served except as indicated	
Dining rooms and restaurants	100 (4.79)
Dwellings (see Residential)	
Elevator machine room grating (on area of 2 in . by 2 in . (50 mm by 50 mm)	300 (1.33)
Finish light floor plate construction (on area of 1 in . by 1 in . (25 mm by 25 mm))	200 (0.89)
Fire escapes	100 (4.79)
On single-family dwellings only	40 (1.92)
Garages	
Passenger vehicles only	40 (1.92)
Helipads	60 (2.87)
Hospitals	
Operating rooms, laboratories	60 (2.87)
Patient rooms	40 (1.92)
Corridors above first floor	80 (3.83)
Hotels (see Residential)	
Libraries	
Reading rooms	60 (2.87)
Stack rooms	150 (7.18)
Corridors above first floor	80 (3.83)
Manufacturing	
Light	125 (6.00)
Heavy	250 (11.97)
Office buildings	
File and computer rooms shall be designed for heavier loads based on anticipated occupancy	
Lobbies and first floor corridors	100 (4.79)
Offices	50 (2.40)
Corridors above first floor	80 (3.83)
Penal institutions	
Cell blocks	40 (1.92)
Corridors	100 (4.79)
Recreational uses	
Bowling alleys, poolrooms, and similar uses	75 (3.59)
Dance halls and ballrooms	100 (4.79)
Gymnasiums	100 (4.79)
Reviewing stands, grandstands, and bleachers	100 (4.79)
Stadiums and arenas with fixed seats (fastened to the floor)	60 (2.87)
Residential	
One- and two-family dwellings	
Uninhabitable attics without storage	10 (0.48)
Uninhabitable attics with storage	20 (0.96)
Habitable attics and sleeping areas	30 (1.44)
All other areas except stairs	40 (1.92)
All other residential occupancies	
Private rooms and corridors serving them	40 (1.92)
Public rooms and corridors serving them	100 (4.79)

Location	Uniform load psf(kN/m$\left.{ }^{2}\right)$
Roofs	$20(0.96 \mathrm{n}$
Ordinary flat, pitched, and curved roofs	$100(4.79)$
Roofs used for roof gardens	Same as occupancy served
Roofs used for assembly purposes	As approved by authority having jurisdiction
Roofs used for other occupancies	$5(0.24)$ nonreducible
Awnings and canopies	$5(0.24)$ nonreducible
Fabric construction supported by a skeleton structure	and applied to the roof frame
Screen enclosure support frame	members only, not the screen
All other construction	$20(0.96)$
Classrooms	$40(1.92)$
Corridors above first floor	$80(3.83)$
First-floor corridors	$100(4.79)$
Scuttles, skylight ribs, and accessible ceilings	$200(0.89)$
Sidewalks, vehicular driveways, and yards subject to trucking	$250(11.97)$
Stairs and exit ways	$100(4.79)$
One- and two-family dwellings only	$40(1.92)$
Storage areas above ceilings	$20(0.96)$
Storage warehouses (shall be designed for heavier loads if required for	
anticipated storage)	$125(6.00)$
Light	$250(11.97)$
Heavy	
Stores	
Retail	$100(4.79)$
First floor	$75(3.59)$
Upper floors	$125(6.00)$
Wholesale, all floors	$60(2.87)$
Walkways and elevated platforms (other than exit ways)	$100(4.79)$
Yards and terraces, pedestrian	
Live load reductions are not permitted for specific types (see code).	
Some occupancies must be designed for appropriate loads as approved by the authority having jurisdiction.	
Library stack room floors have specified limitations (see code)	
AASHTO lane loads should also be considered where appropriate.	

Building Material Weights-AISC Manual of Load and Resistance Factor Design, $3^{\text {rd }}$ ed.

					훟
			Sí		
					se of gases to air at $0^{\circ} \mathrm{C}$ and 760 xcept where stated that weights

Example 1
Determine the controlling load combinations(s) using AISC-LRFD for a building column subject to the following service or nominal (unfactored) axial compressive loads: $D=30 \mathrm{k}, L=50 \mathrm{k}, L_{r}=10 \mathrm{k}, W=25 \mathrm{k}, E=40 \mathrm{k}$

Using a spreadsheet analysis:

LRFD (ASCE-7)		FACTORED LOAD
$1.4 D$		
$1.4 D$	=	42 kips
$\begin{gathered} 1.2 D+1.6 L+0.5\left(L_{r} \text { or } S \text { or } R\right) \\ 1.2 D+1.6 L+0.5 L_{r} \end{gathered}$	=	121
$1.2 D+1.6\left(L_{r}\right.$ or S or $\left.R\right)+(L$ or $0.5 W)$		
$1.2 D+1.6 L_{r}+L$	=	102
$1.2 D+1.6 L_{r}+0.5 W$	=	64.5
$1.2 D+1.6 L_{r}-0.5 W$	=	39.5
$1.2 D+1.0 W+L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$		
$1.2 D+1.0 W+L+0.5 L_{r}$	$=$	116
$1.2 D-1.0 W+L+0.5 L_{r}$	=	66
$1.2 D+1.0 E+L+0.2 S$		
$1.2 D+1.0 E+L$	=	126
$1.2 D-1.0 E+L$	=	46
$0.9 D+1.0 W$		
$0.9 \mathrm{D}+1.0 \mathrm{~W}$	=	52
0.9D-1.0W	=	2
$0.9 D+1.0 E$		
$0.9 D+1.0 E$	$=$	67
$0.9 D-1.0 E$	=	-13

Critical Factored Load 126 kips (C) -13 kips (T)

Example 2

EXAMPLE 2-4

Determine factored loads for the beam shown in Figure 2-16.

Solution

For the left half of the beam:

$$
\begin{aligned}
& w_{u 1}=1.2 w_{D}+1.6 w_{L} \\
& w_{u 1}=1.2 \times 1.0+1.6 \times 2.0=4.4 \mathrm{kip} / \mathrm{ft}
\end{aligned}
$$

For the right half of the beam:

$$
\begin{aligned}
& w_{u 2}=1.2 w_{D}+1.6 w_{L} \\
& w_{u}=1.2 \times 1.0+1.6 \times 0=1.2 \mathrm{kip} / \mathrm{ft}
\end{aligned}
$$

FIGURE 2-16 Example 2-4 (service loads).

FIGURE 2-17 Example 2-4 (factored loads).

The concentrated load is a live load only:

$$
\begin{aligned}
& P_{u}=1.2 P_{D}+1.6 P_{L} \\
& P_{u}=1.2 \times 0+1.6 \times 10=16 \mathrm{kip}
\end{aligned}
$$

The factored loads on the beam are shown in Figure 2-17.

Structural Load Requirements
 International Building Code (2012)

TABLE 1607.1

		\%		1
	,	is 8	\%	发
	砝			

5. Balconies and decks ${ }^{\text {b }}$

$\left.\begin{array}{|l|c|c|}\hline \text { 22. Marquees } & & - \\ \hline \begin{array}{c}\text { Office buildings } \\ \text { Corridors above first floor } \\ \text { File } \\ \text { and computer rooms shall }\end{array} & 80 & 2,000 \\ \text { be designed for heavier loads } \\ \text { based on anticipated occupancy }\end{array}\right)$

Live Loads \& Allowed Reductions

1607.10 Reduction in uniform live loads. Except for uniform live loads at roofs, all other minimum uniformly distributed live loads, L_{o}, in Table 1607.1 are permitted to be reduced in accordance with Section 1607.10.1 or 1607.10.2. Uniform live loads at roofs are permitted to be reduced in | accordance with Section 1607.12.2.
1607.10.1 Basic uniform live load reduction. Subject to 【 the limitations of Sections 1607.10.1.1 through 1607.10.1.3 and Table 1607.1, members for which a value of $K_{L} A_{T}$ is 400 square feet $\left(37.16 \mathrm{~m}^{2}\right)$ or more are permitted to be designed for a reduced uniformly distributed live load, L, in accordance with the following equation:

$$
L=L_{o}\left(0.25+\frac{15}{\sqrt{K_{L L} A_{T}}}\right)
$$

(Equation 16-23)

For SI: $\quad L=L_{o}\left(0.25+\frac{4.57}{\sqrt{K_{L L} A_{T}}}\right)$
where:
$L=$ Reduced design live load per square foot (m^{2}) of area supported by the member.
$L_{\mathrm{o}}=$ Unreduced design live load per square foot $\left(\mathrm{m}^{2}\right)$ of area supported by the member (see Table 1607.1).
$K_{L L}=$ Live load element factor (see Table 1607.10.1).
$A_{T}=$ Tributary area, in square feet $\left(\mathrm{m}^{2}\right)$.
L shall not be less than $0.50 L_{6}$ for members supporting one floor and L shall not be less than $0.40 L_{0}$ for members supporting two or more floors.

TABLE 1607.10.1
LIVE LOAD ELEMENT FACTOR, $\boldsymbol{K}_{\text {LL }}$

ELEMENT	$\boldsymbol{K}_{\mathrm{L}}$
Interior columns	4
Exterior columns without cantilever slabs	4
Edge columns with cantilever slabs	3
Coner columns with cantilever slabs	2
Edge beams without cantilever slabs	2
Interior beams	2
All other members not identified above including: Edge beams with cantilever slabs Cantilever beams One-way slabs Two-way slabs Members without provisions for continuous shear transfer normal to their span	

1607.10.1.1 One-way slabs. The tributary area, A_{T}, for use in Equation 16-23 for one-way slabs shall not exceed an area defined by the slab span times a width normal to the span of 1.5 times the slab span.
1607.10.1.2 Heavy live loads. Live loads that exceed $100 \mathrm{psf}\left(4.79 \mathrm{kN} / \mathrm{m}^{2}\right)$ shall not be reduced.

Exceptions:

1. The live loads for members supporting two or more floors are permitted to be reduced by a maximum of 20 percent, but the live load shall not be less than L as calculated in Section 1607.10.1.
2. For uses other than storage, where approved, additional live load reductions shall be permitted where shown by the registered design professional that a rational approach has been used and that such reductions are warranted.
1607.10.1.3 Passenger vehicle garages. The live loads shall not be reduced in passenger vehicle garages.

Exception: The live loads for members supporting two or more floors are permitted to be reduced by a maximum of 20 percent, but the live load shall not be less than L as calculated in Section 1607.10.1.
1607.10.2 Alternative uniform live load reduction. As an alternative to Section 1607.10 .1 and subject to the limitations of Table 1607.1, uniformly distributed live loads are permitted to be reduced in accordance with the following provisions. Such reductions shall apply to slab systems, beams, girders, columns, piers, walls and foundations.

1. A reduction shall not be permitted where the live load exceeds $100 \mathrm{psf}\left(4.79 \mathrm{kN} / \mathrm{m}^{2}\right)$ except that the design live load for members supporting two or more floors is permitted to be reduced by a maximum of 20 percent.

Exception: For uses other than storage, where approved, additional live load reductions shall be permitted where shown by the registered design professional that a rational approach has been used and that such reductions are warranted.
2. A reduction shall not be permitted in passenger vehicle parking garages except that the live loads for members supporting two or more floors are permitted to be reduced by a maximum of 20 percent.
3. For live loads not exceeding $100 \mathrm{psf}\left(4.79 \mathrm{kN} / \mathrm{m}^{2}\right)$, the design live load for any structural member supporting 150 square feet $\left(13.94 \mathrm{~m}^{2}\right)$ or more is permitted to be reduced in accordance with Equation 16-24.
4. For one-way slabs, the area, A, for use in Equation $16-24$ shall not exceed the product of the slab span and a width normal to the span of 0.5 times the slab span.
$R=0.08(A-150) \quad$ (Equation 16-24)
For SI: $R=0.861(A-13.94)$
Such reduction shall not exceed the smallest of:

1. 40 percent for horizontal members;
2. 60 percent for vertical members; or
3. R as determined by the following equation.
$R=23.1\left(1+D / L_{o}\right)$
(Equation 16-25)
where:

$$
\begin{aligned}
A= & \begin{array}{l}
\text { Area of floor supported by the member, square } \\
\\
\text { feet }\left(\mathrm{m}^{2}\right) .
\end{array} \\
D= & \begin{array}{l}
\text { Dead load per square foot }\left(\mathrm{m}^{2}\right) \text { of area } \\
\text { supported. }
\end{array} \\
L_{\mathrm{o}}= & \begin{array}{l}
\text { Unreduced live load per square foot }\left(\mathrm{m}^{2}\right) \text { of } \\
\text { area supported. }
\end{array} \\
R= & \text { Reduction in percent. }
\end{aligned}
$$

1607.11 Distribution of floor loads. Where uniform floor live loads are involved in the design of structural members arranged so as to create continuity, the minimum applied loads shall be the full dead loads on all spans in combination with the floor live loads on spans selected to produce the greatest load effect at each location under consideration. Floor live loads are permitted to be reduced in accordance with Section 1607.10.

Minimum Roof Loads

1607.12 Roof loads. The structural supports of roofs and marquees shall be designed to resist wind and, where applicable, snow and earthquake loads, in addition to the dead load of construction and the appropriate live loads as prescribed in this section, or as set forth in Table 1607.1. The live loads acting on a sloping surface shall be assumed to act vertically on the horizontal projection of that surface.
1607.12.1 Distribution of roof loads. Where uniform roof live loads are reduced to less than $20 \mathrm{psf}\left(0.96 \mathrm{kN} / \mathrm{m}^{2}\right)$ in accordance with Section 1607.12.2.1 and are applied to the design of structural members arranged so as to create continuity, the reduced roof live load shall be applied to adjacent spans or to alternate spans, whichever produces the most unfavorable load effect. See Section 1607.12.2 for reductions in minimum roof live loads and Section 7.5 of ASCE 7 for partial snow loading.
1607.12.2 General. The minimum uniformly distributed live loads of roofs and marquees, L_{0}, in Table 1607.1 are permitted to be reduced in accordance with Section 1607.12.2.1.
1607.12.2 1 Ordinary roofs, awnings and canopies. Ordinary flat, pitched and curved roofs, and awnings and canopies other than of fabric construction supported by a skeleton structure, are permitted to be designed for a reduced uniformly distributed roof live load, L_{r}, as specified in the following equations or other controlling combinations of loads as specified in Section 1605, whichever produces the greater load effect.

In structures such as greenhouses, where special scaffolding is used as a work surface for workers and materials during maintenance and repair operations, a lower roof load than specified in the following equations shall not be used unless approved by the building official. Such structures shall be designed for a minimum roof live load of $12 \mathrm{psf}\left(0.58 \mathrm{kN} / \mathrm{m}^{2}\right)$.
$L_{r}=L_{o} R_{1} R_{2}$
(Equation 16-26)
where: $12 \leq L_{\mathrm{r}} \leq 20$
For SI: $L_{\mathrm{r}}=L_{0} R_{1} R_{2}$
where: $0.58 \leq L_{r} \leq 0.96$
$L_{o}=$ Unreduced roof live load per square foot (m^{2}) of horizontal projection supported by the member (see Table 1607.1).
$L_{r}=$ Reduced roof live load per square foot $\left(\mathrm{m}^{2}\right)$ of horizontal projection supported by the member.

The reduction factors R_{1} and R_{2} shall be determined as follows:

$$
\begin{aligned}
& R_{l}=1 \text { for } A_{1} \leq 200 \text { square feet }\left(18.58 \mathrm{~m}^{2}\right) \\
& (\text { Equation 16-27) } \\
& R_{l}=1.2-0.001 A_{t} \text { for } 200 \text { square feet } \\
& \quad<A_{t}<600 \text { square feet } \quad \text { (Equation 16-28) } \\
& \text { For SI: } 1.2-0.011 A_{t} \text { for } 18.58 \text { square meters }<A_{t}< \\
& 55.74 \text { square meters } \\
& R_{l}=0.6 \text { for } A_{t} \geq 600 \text { square feet }\left(55.74 \mathrm{~m}^{2}\right)
\end{aligned}
$$

(Equation 16-29)
where:
$A_{t}=$ Tributary area (span length multiplied by effective width) in square feet (m^{2}) supported by the nember, and
$R_{2}=1$ for $F \leq 4$
(Equation 16-30)
$R_{2}=1.2-0.05 F$ for $4<F<12$ (Equation 16-31)
$R_{2}=0.6$ for $F \geq 12$
(Equation 16-32)
where:
$F=$ For a sloped roof, the number of inches of rise per foot (for SI: $F=0.12 \times$ slope, with slope expressed as a percentage), or for an arch or dome, the rise-to-span ratio multiplied by 32 .
1607.12.3 Occupiable roofs. Areas of roofs that are occupiable, such as roof gardens, or for assembly or other similar purposes, and marquees are permitted to have their uniformly distributed live loads reduced in accordance with Section 1607.10.
1607.12.3.1 Landscaped roofs. The uniform design live load in unoccupied landscaped areas on roofs shall be $20 \mathrm{psf}\left(0.958 \mathrm{kN} / \mathrm{m}^{2}\right)$. The weight of all landscaping materials shall be considered as dead load and shall be computed on the basis of saturation of the soil.
1607.12.4 Awnings and canopies. Awnings and canopies shall be designed for uniform live loads as required in Table 1607.1 as well as for snow loads and wind loads as specified in Sections 1608 and 1609.

Minimum Snow Loads

Documentation of Loads

SECTION 1603 CONSTRUCTION DOCUMENTS

1603.1 General. Construction documents shall show the size, section and relative locations of structural members with floor levels, column centers and offsets dimensioned. The design loads and other information pertinent to the structural design required by Sections 1603.1.1 through 1603.1.9 shall be indicated on the construction documents.

Exception: Construction documents for buildings constructed in accordance with the conventional light-frame construction provisions of Section 2308 shall indicate the following structural design information:

1. Floor and roof live loads.
2. Ground snow load, P_{g}.
3. Ultimate design wind speed, $V_{u l t}$ (3 -second gust), miles per hour (mph) ($\mathrm{km} / \mathrm{hr}$) and nominal design wind speed, $V_{\text {asd }}$, as determined in accordance with Section 1609.3.1 and wind exposure.
4. Seismic design category and site class.
5. Flood design data, if located in flood hazard areas established in Section 1612.3.
6. Design load-bearing values of soils.
1603.1.1 Floor live load. The uniformly distributed, concentrated and impact floor live load used in the design shall be indicated for floor areas. Use of live load reduction in accordance with Section 1607.10 shall be indicated for each type of live load used in the design.
1603.1.2 Roof live load. The roof live load used in the design shall be indicated for roof areas (Section 1607.12).
1 1603.1.3 Roof snow load data. The ground snow load, P_{g}, shall be indicated. In areas where the ground snow load, P_{g}, exceeds 10 pounds per square foot (psf) $\left(0.479 \mathrm{kN} / \mathrm{m}^{2}\right)$, the following additional information shall also be provided, regardless of whether snow loads govern the design of the roof:
7. Flat-roof snow load, P_{f}
8. Snow exposure factor, C_{e}.
9. Snow load importance factor, I.
10. Thermal factor, C_{r}.
1603.1.4 Wind design data. The following information related to wind loads shall be shown, regardless of whether wind loads govern the design of the lateral forceresisting system of the structure:
11. Ultimate design wind speed, $V_{\text {utr }}$ (3 -second gust), miles per hour ($\mathrm{km} / \mathrm{hr}$) and nominal design wind speed, $V_{a s d}$, as determined in accordance with Section 1609.3.1.
12. Risk category.
13. Wind exposure. Where more than one wind exposure is utilized, the wind exposure and applicable wind direction shall be indicated.
14. The applicable internal pressure coefficient.
15. Components and cladding. The design wind pressures in terms of $\mathrm{psf}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ to be used for the design of exterior component and cladding materials not specifically designed by the registered design professional.
1603.1.5 Earthquake design data. The following information related to seismic loads shall be shown, regardless of whether seismic loads govern the design of the lateral force-resisting system of the structure:

1. Risk category.

2. Seismic importance factor, I_{e}.
3. Mapped spectral response acceleration parameters, S_{s} and S_{l}.
4. Site class.
5. Design spectral response acceleration parameters, $S_{D S}$ and $S_{D I}$.
6. Seismic design category.
7. Basic seismic force-resisting system(s).
8. Design base shear(s).
9. Seismic response coefficient(s), C_{S}.
10. Response modification coefficient(s), R.
11. Analysis procedure used.
1603.1.6 Geotechnical information. The design loadbearing values of soils shall be shown on the construction documents.
1603.1.7 Flood design data. For buildings located in whole or in part in flood hazard areas as established in Section 1612.3, the documentation pertaining to design, if required in Section 1612.5, shall be included and the following information, referenced to the datum on the community's Flood Insurance Rate Map (FIRM), shall be shown, regardless of whether flood loads govern the design of the building:
12. In flood hazard areas not subject to high-velocity wave action, the elevation of the proposed lowest floor, including the basement.
13. In flood hazard areas not subject to high-velocity wave action, the elevation to which any nonresidential building will be dry flood proofed.
14. In flood hazard areas subject to high-velocity wave action, the proposed elevation of the bottom of the lowest horizontal structural member of the lowest floor, including the basement.
1603.1.8 Special loads. Special loads that are applicable to the design of the building, structure or portions thereof shall be indicated along with the specified section of this code that addresses the special loading condition.
1603.1.9 Systems and components requiring special inspections for seismic resistance. Construction documents or specifications shall be prepared for those systems and components requiring special inspection for seismic resistance as specified in Section 1705.11 by the registered design professional responsible for their design and shall be submitted for approval in accordance with Section 107.1. Reference to seismic standards in lieu of detailed drawings is acceptable.

Design Wind Pressures - Envelope Procedure SEI/ASCE 7-10:

Velocity pressure, p, irrespective of terrain and height above ground or recurrence probability is related to the wind speed, V, by $p=0.00256 V^{2}$. Wind codes also consider the effect of the geometry of the building and location on the surface, wind gusts or turbulence, the local terrain, and annual probability of exceeding the design wind speed.

Main Wind Force Resisting System - Method 2								$\mathrm{h} \leq 60 \mathrm{ft}$.				
Figure 28.6-1 (cont'd)		Design Wind Pressures						Walls \& Roofs				
Enclosed Buildings												
Simplified Design Wind Pressure , $\mathbf{p s} 30^{\text {(psf) (Exposure B ath }}=30 \mathrm{ft}$. with $I=1.0$)												
Basic Wind Speed (mph)	Roof Angle (degrees)		Zones									
			Horizontal Pressures				Vertical Pressures				Overhangs	
			A	B	C	D	E	F	G	H	EOH	GoH
110	0 to 5°	1	19.2	-10.0	12.7	-5.9	-23.1	-13.1	-16.0	-10.1	-32.3	-25.3
	10°	1	21.6	-9.0	14.4	-5.2	-23.1	-14.1	-16.0	-10.8	-32.3	-25.3
	15°	1	24.1	-8.0	16.0	-4.6	-23.1	-15.1	-16.0	-11.5	-32.3	-25.3
	20°	1	26.6	-7.0	17.7	-3.9	-23.1	-16.0	-16.0	-12.2	-32.3	-25.3
	25°	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	24.1	3.9 .---	17.4 ----7	4.0	$\begin{gathered} -10.7 \\ -4.1 \\ \hline \end{gathered}$	$\begin{gathered} \hline-14.6 \\ -7.9 \\ \hline \end{gathered}$	$\begin{aligned} & -7.7 \\ & -1.1 \\ & \hline \end{aligned}$	$\begin{gathered} \hline-11.7 \\ -5.1 \\ \hline \end{gathered}$	-19.9	-17.0
	30 to 45	1	21.6	14.8	17.2	11.8	1.7	-13.1	0.6	-11.3	-7.6	-8.7
		2	21.6	14.8	17.2	11.8	8.3	-6.5	7.2	-4.6	-7.6	-8.7
115	0 to 5°	1	21.0	-10.9	13.9	-6.5	-25.2	-14.3	-17.5	-11.1	-35.3	-27.6
	10°	1	23.7	-9.8	15.7	-5.7	-25.2	-15.4	-17.5	-11.8	-35.3	-27.6
	15°	1	26.3	-8.7	17.5	-5.0	-25.2	-16.5	-17.5	-12.6	-35.3	-27.6
	20°	1	29.0	-7.7	19.4	-4.2	-25.2	-17.5	-17.5	-13.3	-35.3	-27.6
	25°	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	26.3	4.2 .--	19.1 -----	4.3 ----3	$\begin{aligned} & -11.7 \\ & -4.4 \end{aligned}$	$\begin{gathered} \hline-15.9 \\ -8.7 \\ \hline \end{gathered}$	$\begin{aligned} & \hline-8.5 \\ & -1.2 \end{aligned}$	$\begin{gathered} \hline-12.8 \\ -5.5 \\ \hline \end{gathered}$	-21.8 ----3	-18.5 ..---
	30 to 45	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 23.6 \\ & 23.6 \end{aligned}$	$\begin{aligned} & 16.1 \\ & 16.1 \end{aligned}$	$\begin{aligned} & 18.8 \\ & 18.8 \end{aligned}$	$\begin{aligned} & 12.9 \\ & 12.9 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 9.1 \end{aligned}$	$\begin{aligned} & \hline-14.3 \\ & -7.1 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.6 \\ & 7.9 \end{aligned}$	$\begin{aligned} & \hline-12.3 \\ & -5.0 \end{aligned}$	$\begin{aligned} & \hline-8.3 \\ & -8.3 \end{aligned}$	$\begin{aligned} & \hline-9.5 \\ & -9.5 \end{aligned}$
120	0 to 5°	1	22.8	-11.9	15.1	-7.0	-27.4	-15.6	-19.1	-12.1	-38.4	-30.1
	10°	1	25.8	-10.7	17.1	-6.2	-27.4	-16.8	-19.1	-12.9	-38.4	-30.1
	15°	1	28.7	-9.5	19.1	-5.4	-27.4	-17.9	-19.1	-13.7	-38.4	-30.1
	20°	1	31.6	-8.3	21.1	-4.6	-27.4	-19.1	-19.1	-14.5	-38.4	-30.1
	25°	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	28.6	4.6 -	20.7	4.7 ----1	$\begin{gathered} \hline-12.7 \\ -4.8 \end{gathered}$	$\begin{gathered} -17.3 \\ -9.4 \end{gathered}$	$\begin{aligned} & -9.2 \\ & -1.3 \end{aligned}$	$\begin{gathered} \hline-13.9 \\ -6.0 \end{gathered}$	-23.7	-20.2
	30 to 45	$\begin{aligned} & 2 \\ & \hline 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 25.7 \\ & 25.7 \end{aligned}$	$\begin{aligned} & 17.6 \\ & 176 \end{aligned}$	20.4	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	2.0	$\begin{aligned} & -15.6 \\ & -7.7 \end{aligned}$	0.7	$\begin{gathered} \hline-13.4 \\ -5.5 \end{gathered}$	$\begin{aligned} & \hline-9.0 \\ & -9.0 \end{aligned}$	$\begin{aligned} & \hline-10.3 \\ & -103 \end{aligned}$
130	0 to 5°	1	26.8	-13.9	17.8	-8.2	-32.2	-18.7	-22.4	-5.5	-9.0	-10.3
	10°	1	30.2	-12.5	20.1	-7.3	-32.2	-19.7	-22.4	-15.1	-45.1	-35.3
	15°	1	33.7	-11.2	22.4	-6.4	-32.2	-21.0	-22.4	-16.1	-45.1	-35.3
	20°	1	37.1	-9.8	24.7	-5.4	-32.2	-22.4	-22.4	-17.0	-45.1	-35.3
	25°	1	33.6	5.4	24.3	5.5	-14.9	-20.4	-10.8	-16.4	-27.8	-23.7
		2	-------	------	-------	-------	-5.7	-11.1	-1.5	-7.1	-------	------
	30 to 45	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 30.1 \\ & 30.1 \end{aligned}$	$\begin{aligned} & \hline 20.6 \\ & 20.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 24.0 \\ & 24.0 \end{aligned}$	$\begin{aligned} & \hline 16.5 \\ & 16.5 \end{aligned}$	$\begin{gathered} \hline 2.3 \\ 11.6 \end{gathered}$	$\begin{aligned} & \hline-18.3 \\ & -9.0 \end{aligned}$	$\begin{gathered} \hline 0.8 \\ 10.0 \\ \hline \end{gathered}$	$\begin{gathered} -15.7 \\ -6.4 \end{gathered}$	$\begin{aligned} & \hline-10.6 \\ & -10.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-12.1 \\ & -12.1 \end{aligned}$
140	0 to 5°	1	31.1	-16.1	20.6	-9.6	-37.3	-21.2	-26.0	-16.4	-52.3	-40.9
	10°	1	35.1	-14.5	23.3	-8.5	-37.3	-22.8	-26.0	-17.5	-52.3	-40.9
	15°	1	39.0	-12.9	26.0	-7.4	-37.3	-24.4	-26.0	-18.6	-52.3	-40.9
	20°	1	43.0	-11.4	28.7	-6.3	-37.3	-26.0	-26.0	-19.7	-52.3	-40.9
	25°	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	39.0 ----1	6.3 ---2.	28.2 ---7.	6.4 ----1	$\begin{gathered} -17.3 \\ -6.6 \\ \hline \end{gathered}$	$\begin{array}{r} -23.6 \\ -12.8 \end{array}$	$\begin{gathered} \hline-12.5 \\ -1.8 \end{gathered}$	$\begin{gathered} -19.0 \\ -8.2 \\ \hline \end{gathered}$	-32.3	-27.5 ----3
	30 to 45	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 35.0 \\ & 35.0 \end{aligned}$	$\begin{aligned} & 23.9 \\ & 23.9 \end{aligned}$	$\begin{aligned} & 27.8 \\ & 27.8 \end{aligned}$	$\begin{aligned} & 19.1 \\ & 19.1 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 13.4 \end{aligned}$	$\begin{aligned} & -21.2 \\ & -10.5 \end{aligned}$	$\begin{array}{r} 0.9 \\ 11.7 \end{array}$	$\begin{gathered} -18.2 \\ -7.5 \end{gathered}$	$\begin{aligned} & -12.3 \\ & -12.3 \end{aligned}$	$\begin{aligned} & \hline-14.0 \\ & -14.0 \end{aligned}$
150	0 to 5°	1	35.7	-18.5	23.7	-11.0	-42.9	-24.4	-29.8	-18.9	-60.0	-47.0
	10°	1	40.2	-16.7	26.8	-9.7	-42.9	-26.2	-29.8	-20.1	-60.0	-47.0
	15°	1	44.8	-14.9	29.8	-8.5	-42.9	-28.0	-29.8	-21.4	-60.0	-47.0
	20°	1	49.4	-13.0	32.9	-7.2	-42.9	-29.8	-29.8	-22.6	-60.0	-47.0
	25°	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	44.8 -----1	7.2 ---2.	32.4 -----1	7.4 -----	$\begin{gathered} -19.9 \\ -7.5 \end{gathered}$	$\begin{aligned} & -27.1 \\ & -14.7 \end{aligned}$	$\begin{gathered} \hline-14.4 \\ -2.1 \\ \hline \end{gathered}$	$\begin{gathered} -21.8 \\ -9.4 \\ \hline \end{gathered}$	-37.0 -----1.	-31.6 ----3
	30 to 45	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 40.1 \\ & 40.1 \end{aligned}$	$\begin{aligned} & 27.4 \\ & 27.4 \end{aligned}$	$\begin{aligned} & 31.9 \\ & 31.9 \end{aligned}$	$\begin{aligned} & \hline 22.0 \\ & 22.0 \end{aligned}$	$\begin{gathered} 3.1 \\ 15.4 \end{gathered}$	$\begin{array}{r} -24.4 \\ -12.0 \\ \hline \end{array}$	$\begin{gathered} 1.0 \\ 13.4 \end{gathered}$	$\begin{gathered} -20.9 \\ -8.6 \end{gathered}$	$\begin{aligned} & \hline-14.1 \\ & -14.1 \end{aligned}$	$\begin{aligned} & \hline-16.1 \\ & -16.1 \end{aligned}$
Unit Conversions - $1.0 \mathrm{ft}=0.3048 \mathrm{~m} ; 1.0 \mathrm{psf}=0.0479 \mathrm{kN} / \mathrm{m}^{2}$												

Unit Conversions - $1.0 \mathrm{ft}=0.3048 \mathrm{~m} ; 1.0 \mathrm{psf}=0.0479 \mathrm{kN} / \mathrm{m}^{2}$

Table 1.5-1 Risk Category of Buildings and Other Structures for Flood, Wind, Snow, Earthquake, and Ice Loads

Use or Occupancy of Buildings and Structures				Risk Category
Buildings and other structures that represent a low risk to human life in the event of failure	I			
All buildings and other structures except those listed in Risk Categories I, III, and IV	II			
Buildings and other structures, the failure of which could pose a substantial risk to human life.	III			
Buildings and other structures, not included in Risk Category IV, with potential to cause a substantial				
economic impact and/or mass disruption of day-to-day civilian life in the event of failure.				
Buildings and other structures not included in Risk Category IV (including, but not limited to, facilities that				
manufacture, process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous				
chemicals, hazardous waste, or explosives) containing toxic or explosive substances where their quantity				
exceeds a threshold quantity established by the authority having jurisdiction and is sufficient to pose a threat				
to the public if released.				
Buildings and other structures designated as essential facilities.				

Buildings and other structures, the failure of which could pose a substantial hazard to the community.
Buildings and other structures (including, but not limited to, facilities that manufacture, process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous chemicals, or hazardous waste) containing sufficient quantities of highly toxic substances where the quantity exceeds a threshold quantity established by the authority having jurisdiction to be dangerous to the public if released and is sufficient to pose a threat to the public if released. ${ }^{a}$
Buildings and other structures required to maintain the functionality of other Risk Category IV structures.
${ }^{a}$ Buildings and other structures containing toxic, highly toxic, or explosive substances shall be eligible for classification to a lower Risk Category if it can be demonstrated to the satisfaction of the authority having jurisdiction by a hazard assessment as described in Section 1.5.2 that a release of the substances is commensurate with the risk associated with that Risk Category.

Earthquake Ground Motion, 0.2 Second Spectral Response International Building Code 2012:

[^2]
US Geological Survey, Earthquake Hazards Program, ShakeMap Scientific Background at http://earthquake.usgs.gov/eqcenter/shakemap/background.php

Spectral Response Maps
Following earthquakes larger than magnitude 5.5, spectral response maps are made. Response spectra portray the response of a damped, single-degree-of-freedom oscillator to the recorded ground motions. This data representation is useful for engineers determining how a structure will react to ground motions. The response is calculated for a range of periods. Within that range, the International Building Code (IBC) refers to particular reference periods that help define the shape of the "design spectra" that reflects the building code.

CHAPTER 2 ALLOWABLE STRESS DESIGN OF MASONRY

CODE

2.1 - General

2.1.1 Scope

This chapter provides requirements for allowable stress design of masonry. Masonry design in accordance with this chapter shall comply with the requirements of Chapter 1, Sections 2.1.2 through 2.1.7, and either Section 2.2 or 2.3.

2.1.2 Load combinations

When the legally adopted building code does not provide allowable stress load combinations, structures and members shall be designed to resist the combinations of load specified by the building official.

2.1.3 Design strength

2.1.3.1 Project drawings shall show the specified compressive strength of masonry, $f^{\prime}{ }_{m}$, for each part of the structure.
2.1.3.2 Each portion of the structure shall be designed based on the specified compressive strength of masonry, f_{m}^{\prime}, for that part of the work.
2.1.3.3 Computed stresses shall not exceed the allowable stress requirements of this Chapter.

2.1.4 Anchor bolts embedded in grout

2.1.4.1 Design requirements - Anchor bolts shall be designed using either the provisions of Section 2.1.4.2 or, for headed and bent-bar anchor bolts, by the

COMMENTARY

2.1-General

2.1.1 Scope

Historically, a one-third increase in allowable stress has been permitted for load combinations that include wind or seismic loads. The origin and the reason for the one-third stress increase are unclear ${ }^{2.1}$. From a structural reliability standpoint, the one-third stress increase is a poor way to handle load combination effects. Therefore, the one-third stress increase is no longer permitted in this Code. The allowable stresses of this Chapter should not be increased by one-third for wind and load combinations.

2.1.2 Load combinations

When there is no legally adopted building code or the legally adopted building code does not have allowable stress load combinations, possible sources of allowable stress load combinations are ASCE $7^{2.2}$ and IBC ${ }^{2.3}$.

2.1.3 Design strength

The structural adequacy of masonry construction requires that the compressive strength of masonry equal or exceed the specified strength. The specified compressive strength f_{m}^{\prime} on which design is based for each part of the structure must be shown on the project drawings.

The 1995, 1999, 2002, and 2005 editions of the Code contained provisions to permit use of strength-level load combinations in allowable stress design, to compensate for lack of service-level load combinations in previously referenced load standards. This procedure, which enabled the calculation of 'pseudo-strengths' on the basis of allowable stresses, is no longer included in the Code because recent editions of ASCE 7 include both service-level and strengthlevel load combinations. The 2005 edition of the Code provides guidance for using strength-level load combinations whenever the legally adopted building code does not provide service-level load combinations.

2.1.4 Anchor bolts embedded in grout

Allowable Stress Design anchor bolt provisions were obtained by calibrating corresponding Strength Design provisions to produce similar results. See Code

Code Requirements for Steel Construction, AISC $14^{\text {th }}$ ed.
Design by elastic, inelastic or plastic analysis is permitted. Provisions for inelastic and plastic analysis are as stipulated in Appendix 1, Inelastic Analysis and Design. The provisions for moment redistribution in continuous beams in Appendix 1,
Section 1.3 are permitted for elastic analysis only.

Limit States

Design shall be based on the principle that no applicable strength or serviceability limit state shall be exceeded when the structure is subjected to all appropriate load combinations.
3. Design for Strength Using Load and Resistance Factor Design
Design according to the provisions for Load and Resistance Factor Design (LRFD) satisfies the requirements of this Specification when the design strength of each structural component equals or exceeds the required strength determined on the basis of the LRFD load combinations. All provisions of this Specification, except for those in Section B3.4, shall apply.
Design shall be performed in accordance with Equation $\mathrm{B} 3-1:$

$$
R_{u} \leq \phi R_{n}
$$

(B3-1)
where
$R_{u}=$ required strength (LRFD)
$R_{n}=$ nominal strength, specified in Chapters B through K
$\phi \quad=$ resistance factor, specified in Chapters B through K
$\phi R_{n}=$ design strength
4. Design for Strength Using Allowable Strength Design (ASD)
Design according to the provisions for Allowable Strength Design (ASD) satisfies the requirements of this Specification when the allowable strength of each structural component equals or exceeds the required strength determined on the basis of the ASD load combinations. All provisions of this Specification, except those of Section B3.3, shall apply.
> ccordance with Equation B3-2:
$R_{a} \leq R_{n} / \Omega$
$R_{a}=$ required strength (ASD) $\begin{array}{ll}R_{n} & =\text { nominal strength, specified in Chapters B through K } \\ \Omega & =\text { safety factor, specified in Chapters B through K }\end{array}$ $R_{n} / \Omega=$ allowable strength
 \title{
CHAPTER B
}
 \title{
CHAPTER B
}
The general requirements for the analysis and design of steel structures that are applica ble to all chapters of the specification are given in this chapter.

The chapter is organized as follows:

B1. GENERAL PROVISIONS
The design of members and connections shall be consistent with the intended behavior of the framing system and the assumptions made in the structural analysis. Unless restricted by the applicable building code, lateral load resistance and stability may be provided by any combination of members and connections.
B2. LOADS AND LOAD COMBINATIONS
The loads and load combinations shall be as stipulated by the applicable building code. In the absence of a building code, the loads and load combinations shall be those stipulated in SEI/ASCE 7. For design purposes, the nominal loads shall be taken as the loads stipulated by the applicable building code.

User Note: For LRFD designs, the load combinations in SEI/ASCE 7, Section

 2.3 apply. For ASD designs, the load combinations in SEI/ASCE 7, Section 2.4 apply.> B3. DESIGN BASIS
Designs shall be made according to the provisions for Load and Resistance Factor
Design (LRFD) or to the provisions for Allowable Strength Design (ASD).

1. Required Strength
The required strength of structural members and connections shall be determined by structural analysis for the appropriate load combinations as stipulated in Section B2.

Code Requirements for Structural Concrete, ACI 318-11

CHAPTER 9 - STRENGTH AND SERVICEABILITY REQUIREMENTS

CODE

9.1-General

9.1.1 - Structures and structural members shall be designed to have design strengths at all sections at least equal to the required strengths calculated for the factored loads and forces in such combinations as are stipulated in this Code.
9.1.2 - Members also shall meet all other requirements of this Code to ensure adequate performance at service load levels.
9.1.3 - Design of structures and structural members using the load factor combinations and strength reduction factors of Appendix C shall be permitted. Use of load factor combinations from this chapter in conjunction with strength reduction factors of Appendix C shall not be permitted.

9.2 - Required strength

9.2.1 - Required strength \boldsymbol{U} shall be at least equal to the effects of factored loads in Eq. (9-1) through (9-7). The effect of one or more loads not acting simultaneously shall be investigated.

$$
\begin{gather*}
U=1.4 D \tag{9-1}\\
U=1.2 D+1.6 L+0.5\left(L_{r} \text { or } S \text { or } R\right) \tag{9-2}\\
U=1.2 D+1.6\left(L_{r} \text { or } S \text { or } R\right)+(1.0 L \text { or } 0.5 W) \tag{9-3}\\
U=1.2 D+1.0 W+1.0 L+0.5\left(L_{r} \text { or } S \text { or } R\right) \tag{9-4}\\
U=1.2 D+1.0 E+1.0 L+0.2 S \tag{9-5}
\end{gather*}
$$

COMMENTARY

R9.1 - General

In the 2002 Code, the factored load combinations and strength reduction factors of the 1999 Code were revised and moved to Appendix C. The 1999 combinations were replaced with those of SEI/ASCE 7-02. ${ }^{9.1}$ The strength reduction factors were replaced with those of the 1999 Appendix C, except that the factor for flexure was increased. In the 2011 Code, the factored load combinations were revised for consistency with ASCE/SEI 7-10.9.2

The changes were made to further unify the design profession on one set of load factors and combinations, and to facilitate the proportioning of concrete building structures that include members of materials other than concrete. When used with the strength reduction factors in 9.3, the designs for gravity loads will be comparable to those obtained using the strength reduction and load factors of the 1999 and earlier Codes. For combinations with lateral loads, some designs will be different, but the results of either set of load factors are considered acceptable.

Chapter 9 defines the basic strength and serviceability conditions for proportioning structural concrete members.

The basic requirement for strength design may be expressed as follows:

Design Strength \geq Required Strength
$\phi($ Nominal Strength $) \geq \boldsymbol{U}$
In the strength design procedure, the margin of safety is provided by multiplying the service load by a load factor and the nominal strength by a strength reduction factor.

R9.2 - Required strength

The required strength \boldsymbol{U} is expressed in terms of factored loads, or related internal moments and forces. Factored loads are the loads specified in the general building code multiplied by appropriate load factors.

The factor assigned to each load is influenced by the degree of accuracy to which the load effect usually can be calculated and the variation that might be expected in the load during the lifetime of the structure. Dead loads, because they are more accurately determined and less variable, are assigned a lower load factor than live loads. Load factors also account for variability in the structural analysis used to compute moments and shears.

Code Requirements for Structural Concrete, ACI 318-11 (continued)

CODE

$$
\begin{align*}
& U=0.9 D+1.0 W \\
& U=0.9 D+1.0 E \tag{9-7}
\end{align*}
$$

except as follows:
(a) The load factor on the live load L in Eq. (9-3) to $(9-5)$ shall be permitted to be reduced to 0.5 except for garages, areas occupied as places of public assembly, and all areas where L is greater than $100 \mathrm{lb} / \mathrm{t}^{2}$.
(b) Where \boldsymbol{W} is based on service-level wind loads, $1.6 W$ shall be used in place of $1.0 W$ in Eq. (9-4) and (9-6), and 0.8 W shall be used in place of 0.5 W in Eq. (9-3).
(c) Where E is based on service-level forces, $1.4 E$ shall be used in place of 1.0 E in Eq. (9-5) and (9-7).

COMMENTARY

The Code gives load factors for specific combinations of loads In assigning factors to combinations of loading, some consideration is given to the probability of simultaneous occurrence. While most of the usual combinations of loadings are included, it should not be assumed that all cases are covered.

Due regard is to be given to sign in determining U for combinations of loadings, as one type of loading may produce effects of opposite sense to that produced by another type. The load combinations with $\mathbf{0 . 9 D}$ are specifically included for the case where a higher dead load reduces the effects of other loads. The loading case may also be critical for tension-controlled column sections. In such a case, a reduction in axial load and an increase in moment may result in a critical load combination.

Consideration should be given to various combinations of loading to determine the most critical design condition. This is particularly true when strength is dependent on more than one load effect, such as strength for combined flexure and axial load or shear strength in members with axial load.

If unusual circumstances require greater reliance on the strength of particular members than encountered in usual practice, some reduction in the stipulated strength reduction factors ϕ or increase in the stipulated load factors may be appropriate for such members.

In 2011, the Code removed the weight of soil and other fill materials as part of the definition of \boldsymbol{H}. Consistent with ASCE/SEI 7-10, the weight of these materials is part of dead load, \boldsymbol{D}. The load factors for \boldsymbol{D} are appropriate provided the unit weight and thickness of earth or other fill materials are well controlled. If the weight of earth stabilizes the structure, a load factor of zero may be appropriate.

R9.2.1(a) - The load modification factor of 9.2.1(a) is different than the live load reductions based on the loaded area that may be allowed in the legally adopted general building code. The live load reduction, based on loaded area, adjusts the nominal live load (L_{0} in ASCE/SEI 7) to L. The live load reduction as specified in the legally adopted general building code can be used in combination with the 0.5 load factor specified in $9.2 .1(\mathrm{a})$.

R9.2.1(b) - ASCE/SEI 7-10 has converted wind loads to strength level, and reduced the wind load factor to 1.0. ACl 318 requires use of the previous load factor for wind loads. 1.6, when service-level wind loads are used. For serviceability checks, the commentary to Appendix C of ASCE SEI 7-10 provides service-level wind loads, \boldsymbol{W}_{a}.

R9.2.1(c) - In 1993, ASCE $7^{9.3}$ converted earthquake forces to strength level, and reduced the earthquake load factor to 1.0. Model building codes ${ }^{9.49 .6}$ followed. ACI 318 requires use of the previous load factor for earthquake effects, approximately 1.4 , when service-level earthquake effects are used.

SEI/ASCE 7-10:
 Minimum Design Loads for Buildings and Other Structures
 Chapter 1
 GENERAL

1.1 SCOPE

This standard provides minimum load requirements for the design of buildings and other structures that are subject to building code requirements. Loads and appropriate load combinations, which have been developed to be used together, are set forth for strength design and allowable stress design. For design strengths and allowable stress limits, design specifications for conventional structural materials used in buildings and modifications contained in this standard shall be followed.

1.2 DEFINITIONS AND NOTATIONS

1.2.1 Definitions

The following definitions apply to the provisions of the entire standard.

ALLOWABLE STRESS DESIGN: A method of proportioning structural members such that elastically computed stresses produced in the members by nominal loads do not exceed specified allowable stresses (also called "working stress design").

AUTHORITY HAVING JURISDICTION: The organization, political subdivision, office, or individual charged with the responsibility of administering and enforcing the provisions of this standard.

BUILDINGS: Structures, usually enclosed by walls and a roof, constructed to provide support or shelter for an intended occupancy.

DESIGN STRENGTH: The product of the nominal strength and a resistance factor.

ESSENTIAL FACILITIES: Buildings and other structures that are intended to remain operational in the event of extreme environmental loading from flood, wind, snow, or earthquakes.

FACTORED LOAD: The product of the nominal load and a load factor.

HIGHLY TOXIC SUBSTANCE: As defined in 29 CFR 1910.1200 Appendix A with Amendments as of February 1, 2000.

IMPORTANCE FACTOR: A factor that accounts for the degree of risk to human life, health, and welfare associated with damage to property or loss of use or functionality.

LIMIT STATE: A condition beyond which a structure or member becomes unfit for service and is
judged either to be no longer useful for its intended function (serviceability limit state) or to be unsafe (strength limit state).

LOAD EFFECTS: Forces and deformations produced in structural members by the applied loads.

LOAD FACTOR: A factor that accounts for deviations of the actual load from the nominal load, for uncertainties in the analysis that transforms the load into a load effect, and for the probability that more than one extreme load will occur simultaneously.

LOADS: Forces or other actions that result from the weight of all building materials, occupants and their possessions, environmental effects, differential movement, and restrained dimensional changes. Permanent loads are those loads in which variations over time are rare or of small magnitude. All other loads are variable loads (see also "nominal loads").

NOMINAL LOADS: The magnitudes of the loads specified in this standard for dead, live, soil, wind, snow, rain, flood, and earthquake.

NOMINAL STRENGTH: The capacity of a structure or member to resist the effects of loads, as determined by computations using specified material strengths and dimensions and formulas derived from accepted principles of structural mechanics or by field tests or laboratory tests of scaled models, allowing for modeling effects and differences between laboratory and field conditions.

OCCUPANCY: The purpose for which a building or other structure, or part thereof, is used or intended to be used.

OTHER STRUCTURES: Structures, other than buildings, for which loads are specified in this standard.

P-DELTA EFFECT: The second order effect on shears and moments of frame members induced by axial loads on a laterally displaced building frame.

RESISTANCE FACTOR: A factor that accounts for deviations of the actual strength from the nominal strength and the manner and consequences of failure (also called "strength reduction factor").

RISK CATEGORY: A categorization of buildings and other structures for determination of flood, wind, snow, ice, and earthquake loads based on the risk associated with unacceptable performance. See Table 1.5-1.

STRENGTH DESIGN: A method of proportioning structural members such that the computed forces produced in the members by the factored loads do not

CHAPTER 1 GENERAL

Table 1.5-1 Risk Category of Buildings and Other Structures for Flood, Wind, Snow, Earthquake, and Ice Loads

Use or Occupancy of Buildings and Structures
Buildings and other structures that represent a low risk to human life in the event of failure
All buildings and other structures except those listed in Risk Categories I, III, and IV
Buildings and other structures, the failure of which could pose a substantial risk to human life.
Buildings and other structures, not included in Risk Category IV, with potential to cause a substantial
economic impact and/or mass disruption of day-to-day civilian life in the event of failure.
Buildings and other structures not included in Risk Category IV (including, but not limited to, facilities that
manufacture, process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous
chemicals, hazardous waste, or explosives) containing toxic or explosive substances where their quantity
exceeds a threshold quantity established by the authority having jurisdiction and is sufficient to pose a threat
to the public if released.
Buildings and other structures designated as essential facilities.
Buildings and other structures, the failure of which could pose a substantial hazard to the community.
Buildings and other structures (including, but not limited to, facilities that manufacture, process, handle, store,
use, or dispose of such substances as hazardous fuels, hazardous chemicals, or hazardous waste) containing
sufficient quantities of highly toxic substances where the quantity exceeds a threshold quantity established by
the authority having jurisdiction to be dangerous to the public if released and is sufficient to pose a threat to
the public if released. ${ }^{\text {a }}$
Buildings and other structures required to maintain the functionality of other Risk Category IV structures.
IV
Buildings and other structures containing toxic, highly toxic, or explosive substances shall be eligible for classification to a lower Risk Category
if it can be demonstrated to the satisfaction of the authority having jurisdiction by a hazard assessment as described in Section 1.5 .2 that a
release of the substances is commensurate with the risk associated with that Risk Category.
exceed the member design strength (also called "load and resistance factor design").

TEMPORARY FACILITIES: Buildings or other structures that are to be in service for a limited time and have a limited exposure period for environmental loadings.

TOXIC SUBSTANCE: As defined in 29 CFR 1910.1200 Appendix A with Amendments as of February 1, 2000.

1.1.2 Symbols and Notations

\boldsymbol{F}_{x} A minimum design lateral force applied to level x of the structure and used for purposes of evaluating structural integrity in accordance with Section 1.4.2.
$\boldsymbol{W}_{\boldsymbol{x}}$ The portion of the total dead load of the structure, D, located or assigned to Level x.
D Dead load.
L Live load.
$L_{r} \quad$ Roof live load.
N Notional load used to evaluate conformance with minimum structural integrity criteria.
$\boldsymbol{R} \quad$ Rain load.
\boldsymbol{S} Snow load.

1.3 BASIC REQUIREMENTS

1.3.1 Strength and Stiffness

Buildings and other structures, and all parts thereof, shall be designed and constructed with adequate strength and stiffness to provide structural stability, protect nonstructural components and systems from unacceptable damage, and meet the serviceability requirements of Section 1.3.2.

Acceptable strength shall be demonstrated using one or more of the following procedures:
a. the Strength Procedures of Section 1.3.1.1,
b. the Allowable Stress Procedures of Section 1.3.1.2, or
c. subject to the approval of the authority having jurisdiction for individual projects, the Performance-Based Procedures of Section 1.3.1.3.

MINIMUM DESIGN LOADS

It shall be permitted to use alternative procedures for different parts of a structure and for different load combinations, subject to the limitations of Chapter 2. Where resistance to extraordinary events is considered, the procedures of Section 2.5 shall be used.

1.3.1.1 Strength Procedures

Structural and nonstructural components and their connections shall have adequate strength to resist the applicable load combinations of Section 2.3 of this Standard without exceeding the applicable strength limit states for the materials of construction.

1.3.1.2 Allowable Stress Procedures

Structural and nonstructural components and their connections shall have adequate strength to resist the applicable load combinations of Section 2.4 of this Standard without exceeding the applicable allowable stresses for the materials of construction.

1.3.1.3 Performance-Based Procedures

Structural and nonstructural components and their connections shall be demonstrated by analysis or by a combination of analysis and testing to provide a reliability not less than that expected for similar components designed in accordance with the Strength Procedures of Section 1.3.1.1 when subject to the influence of dead, live, environmental, and other loads. Consideration shall be given to uncertainties in loading and resistance.
1.3.1.3.1 Analysis Analysis shall employ rational methods based on accepted principles of engineering mechanics and shall consider all significant sources of deformation and resistance. Assumptions of stiffness, strength, damping, and other properties of components and connections incorporated in the analysis shall be based on approved test data or referenced Standards.
1.3.1.3.2 Testing Testing used to substantiate the performance capability of structural and nonstructural components and their connections under load shall accurately represent the materials, configuration, construction, loading intensity, and boundary conditions anticipated in the structure. Where an approved industry standard or practice that governs the testing of similar components exists, the test program and determination of design values from the test program shall be in accordance with those industry standards and practices. Where such standards or practices do not exist, specimens shall be constructed to a scale similar to that of the intended application unless it can
be demonstrated that scale effects are not significant to the indicated performance. Evaluation of test results shall be made on the basis of the values obtained from not less than 3 tests, provided that the deviation of any value obtained from any single test does not vary from the average value for all tests by more than 15%. If such deviaton from the average value for any test exceeds 15%, then additional tests shall be performed until the deviation of any test from the average value does not exceed 15% or a minimum of 6 tests have been performed. No test shall be eliminated unless a rationale for its exclusion is given. Test reports shall document the location, the time and date of the test, the characteristics of the tested specimen, the laboratory facilities, the test configuration, the applied loading and deformation under load, and the occurrence of any damage sustained by the specimen, together with the loading and deformation at which such damage occurred.
1.3.1.3.3 Documentation The procedures used to demonstrate compliance with this section and the results of analysis and testing shall be documented in one or more reports submitted to the authority having jurisdiction and to an independent peer review.
1.3.1.3.4 Peer Review The procedures and results of analysis, testing, and calculation used to demonstrate compliance with the requirements of this section shall be subject to an independent peer review approved by the authority having jurisdiction. The peer review shall comprise one or more persons having the necessary expertise and knowledge to evaluate compliance, including knowledge of the expected performance, the structural and component behavior, the particular loads considered, structural analysis of the type performed, the materials of construction, and laboratory testing of elements and components to determine structural resistance and performance characteristics. The review shall include the assumptions, criteria, procedures, calculations, analytical models, test setup, test data, final drawings, and reports. Upon satisfactory completion, the peer review shall submit a letter to the authority having jurisdiction indicating the scope of their review and their findings.

1.3.2 Serviceability

Structural systems, and members thereof, shall be designed to have adequate stiffness to limit deflections, lateral drift, vibration, or any other deformations that adversely affect the intended use and performance of buildings and other structures.

Chapter 2 COMBINATIONS OF LOADS

2.1 GENERAL

Buildings and other structures shall be designed using the provisions of either Section 2.3 or 2.4. Where elements of a structure are designed by a particular material standard or specification, they shall be designed exclusively by either Section 2.3 or 2.4 .

2.2 SYMBOLS

$A_{k}=$ load or load effect arising from extra ordinary event A
$D=$ dead load
$D_{i}=$ weight of ice
$E=$ earthquake load
$F=$ load due to fluids with well-defined pressures and maximum heights
$F_{a}=$ flood load
$H=$ load due to lateral earth pressure, ground water pressure, or pressure of bulk materials
$L=$ live load
$L_{r}=$ roof live load
$R=$ rain load
$S=$ snow load
$T=$ self-straining load
$W=$ wind load
$W_{i}=$ wind-on-ice determined in accordance with Chapter 10

2.3 COMBINING FACTORED LOADS USING STRENGTH DESIGN

2.3.1 Applicability

The load combinations and load factors given in Section 2.3.2 shall be used only in those cases in which they are specifically authorized by the applicable material design standard.

2.3.2 Basic Combinations

Structures, components, and foundations shall be designed so that their design strength equals or exceeds the effects of the factored loads in the following combinations:

1. $1.4 D$
2. $1.2 D+1.6 L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$
3. $1.2 D+1.6\left(L_{r}\right.$ or S or $\left.R\right)+(L$ or $0.5 W)$
4. $1.2 D+1.0 W+L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$
5. $1.2 D+1.0 E+L+0.2 S$
6. $0.9 D+1.0 W$
7. $0.9 D+1.0 E$

EXCEPTIONS:

1. The load factor on L in combinations 3,4 , and 5 is permitted to equal 0.5 for all occupancies in which L_{o} in Table $4-1$ is less than or equal to 100 psf , with the exception of garages or areas occupied as places of public assembly.
2. In combinations 2,4 , and 5 , the companion load S shall be taken as either the flat roof snow load $\left(p_{f}\right)$ or the sloped roof snow load $\left(p_{s}\right)$.
Where fluid loads F are present, they shall be included with the same load factor as dead load D in combinations 1 through 5 and 7.

Where load H are present, they shall be included as follows:

1. where the effect of H adds to the primary variable load effect, include H with a load factor of 1.6 ;
2. where the effect of H resists the primary variable load effect, include H with a load factor of 0.9 where the load is permanent or a load factor of 0 for all other conditions.
Effects of one or more loads not acting shall be investigated. The most unfavorable effects from both wind and earthquake loads shall be investigated, where appropriate, but they need not be considered to act simultaneously. Refer to Section 12.4 for specific definition of the earthquake load effect $E .{ }^{1}$

Each relevant strength limit state shall be investigated.

2.3.3 Load Combinations Including Flood Load

When a structure is located in a flood zone (Section 5.3.1), the following load combinations shall be considered in addition to the basic combinations in Section 2.3.2:

1. In V-Zones or Coastal A-Zones, 1.0 W in combinations 4 and 6 shall be replaced by $1.0 W+2.0 F_{a}$.
2. In noncoastal A-Zones, 1.0W in combinations 4 and 6 shall be replaced by $0.5 W+1.0 F_{a}$.
[^3]
CHAPTER 2 COMBINATIONS OF LOADS

2.3.4. Load Combinations Including Atmospheric Ice Loads

When a structure is subjected to atmospheric ice and wind-on-ice loads, the following load combinations shall be considered:

1. $0.5\left(L_{r}\right.$ or S or $\left.R\right)$ in combination 2 shall be replaced by $0.2 D_{i}+0.5 S$.
2. $1.0 W+0.5\left(L_{r}\right.$ or S or $\left.R\right)$ in combination 4 shall be replaced by $D_{i}+W_{i}+0.5 S$.
3. 1.0 W in combination 6 shall be replaced by $D_{i}+W_{i}$.

2.3.5 Load Combinations Including Self-Straining Loads

Where applicable, the structural effects of load T shall be considered in combination with other loads. The load factor on load T shall be established considering the uncertainty associated with the likely magnitude of the load, the probability that the maximum effect of T will occur simultaneously with other applied loadings, and the potential adverse consequences if the effect of T is greater than assumed. The load factor on T shall not have a value less than 1.0.

2.3.6 Load Combinations for Nonspecified Loads
 Where approved by the Authority Having

 Jurisdiction, the Responsible Design Professional is permitted to determine the combined load effect for strength design using a method that is consistent with the method on which the load combination requirements in Section 2.3.2 are based. Such a method must be probability-based and must be accompanied by documentation regarding the analysis and collection of supporting data that is acceptable to the Authority Having Jurisdiction.
2.4 COMBINING NOMINAL LOADS USING ALLOWABLE STRESS DESIGN

2.4.1 Basic Combinations

Loads listed herein shall be considered to act in the following combinations; whichever produces the most unfavorable effect in the building, foundation, or structural member being considered. Effects of one or more loads not acting shall be considered.

[^4]4. $D+0.75 L+0.75\left(L_{r}\right.$ or S or $\left.R\right)$
5. $D+(0.6 W$ or $0.7 E)$

6a. $D+0.75 L+0.75(0.6 W)+0.75\left(L_{r}\right.$ or S or $\left.R\right)$
6b. $D+0.75 L+0.75(0.7 E)+0.75 S$
7. $0.6 D+0.6 W$
8. $0.6 D+0.7 E$

EXCEPTIONS:

1. In combinations 4 and 6 , the companion load S shall be taken as either the flat roof snow load $\left(p_{f}\right)$ or the sloped roof snow load $\left(p_{s}\right)$.
2. For nonbuilding structures, in which the wind load is determined from force coefficients, C_{f}, identified in Figures 29.5-1, 29.5-2 and 29.5-3 and the projected area contributing wind force to a foundation element exceeds 1,000 square feet on either a vertical or a horizontal plane, it shall be permitted to replace W with $0.9 W$ in combination 7 for design of the foundation, excluding anchorage of the structure to the foundation.
3. It shall be permitted to replace 0.6 D with 0.9 D in combination 8 for the design of Special Reinforced Masonry Shear Walls, where the walls satisfy the requirement of Section 14.4.2.
Where fluid loads F are present, they shall be included in combinations 1 through 6 and 8 with the same factor as that used for dead load D.

Where load H is present, it shall be included as follows:

1. where the effect of H adds to the primary variable load effect, include H with a load factor of 1.0 ;
2. where the effect of H resists the primary variable load effect, include H with a load factor of 0.6 where the load is permanent or a load factor of 0 for all other conditions.
The most unfavorable effects from both wind and earthquake loads shall be considered, where appropriate, but they need not be assumed to act simultaneously. Refer to Section 1.4 and 12.4 for the specific definition of the earthquake load effect $E .{ }^{2}$

Increases in allowable stress shall not be used with the loads or load combinations given in this standard unless it can be demonstrated that such an increase is justified by structural behavior caused by rate or duration of load.

[^5]
MINIMUM DESIGN LOADS

2.4.2 Load Combinations Including Flood Load

When a structure is located in a flood zone, the following load combinations shall be considered in addition to the basic combinations in Section 2.4.1:

1. In V-Zones or Coastal A-Zones (Section 5.3.1), $1.5 F_{a}$ shall be added to other loads in combinations 5,6 , and 7 , and E shall be set equal to zero in 5 and 6.
2. In non-coastal A-Zones, $0.75 F_{a}$ shall be added to combinations 5, 6, and 7, and E shall be set equal to zero in 5 and 6 .

2.4.3 Load Combinations Including Atmospheric Ice Loads

When a structure is subjected to atmospheric ice and wind-on-ice loads, the following load combinations shall be considered:

1. $0.7 D_{i}$ shall be added to combination 2 .
2. (L_{r} or S or R) in combination 3 shall be replaced by $0.7 D_{i}+0.7 W_{i}+S$.
3. 0.6 W in combination 7 shall be replaced by $0.7 D_{i}+$ $0.7 W_{i}$.

2.4.4 Load Combinations Including Self-Straining Loads

Where applicable, the structural effects of load T shall be considered in combination with other loads. Where the maximum effect of load T is unlikely to occur simultaneously with the maximum effects of other variable loads, it shall be permitted to reduce the magnitude of T considered in combination with these other loads. The fraction of T considered in combination with other loads shall not be less than 0.75 .

2.5 LOAD COMBINATIONS FOR EXTRAORDINARY EVENTS

2.5.1 Applicability

Where required by the owner or applicable code, strength and stability shall be checked to ensure that structures are capable of withstanding the effects of extraordinary (i.e., low-probability) events, such as fires, explosions, and vehicular impact without disproportionate collapse.

2.5.2 Load Combinations

2.5.2.1 Capacity

For checking the capacity of a structure or structural element to withstand the effect of an extraordinary event, the following gravity load combination shall be considered:

$$
\begin{equation*}
(0.9 \text { or } 1.2) D+A_{k}+0.5 L+0.2 S \tag{2.5-1}
\end{equation*}
$$

in which $A_{k}=$ the load or load effect resulting from extraordinary event A.

2.5.2.2 Residual Capacity

For checking the residual load-carrying capacity of a structure or structural element following the occurrence of a damaging event, selected load-bearing elements identified by the Responsible Design Professional shall be notionally removed, and the capacity of the damaged structure shall be evaluated using the following gravity load combination:

$$
\begin{equation*}
(0.9 \text { or } 1.2) D+0.5 L+0.2\left(L_{r} \text { or } S \text { or } R\right) \tag{2.5-2}
\end{equation*}
$$

2.5.3 Stability Requirements

Stability shall be provided for the structure as a whole and for each of its elements. Any method that considers the influence of second-order effects is permitted.

System Assemblies \& Load Tracing

Notation:

$a \quad=$ name for a dimension
$C=$ symbol for compression
$D L=$ shorthand for dead load
$F_{\text {horizontal-resisting }}=$ total force resisting
horizontal sliding
$F_{\text {sliding }}=$ total sliding force
$F_{y}=$ force component in the y direction
$F B D=$ free body diagram
$h \quad=$ name for height
$L \quad=$ name for length
$L L \quad=$ shorthand for live load
$M \quad=$ moment due to a force
$M_{\text {overturning }}=$ total overturning moment
$M_{\text {resisting }}=$ total moment resisting
overturning about a point
$N \quad=$ name for normal force to a surface
o.c. $=$ shorthand for on center
$p \quad=$ pressure
$P \quad=$ force due to a pressure
$S F=$ shorthand for factor of safety
$R \quad=$ name for reaction force

$$
\begin{aligned}
& T \quad=\text { symbol for tension } \\
& =\text { name of a tension force } \\
& v=\text { distributed shear } \\
& V \quad=\text { name for shear (horizontal) force } \\
& w=\text { name for distributed load/length, as } \\
& \text { is } \omega \\
& =\text { name for distributed load/area } \\
& w_{\text {self } w t}=\text { name for distributed load from self } \\
& \text { weight of member } \\
& w_{\text {selfwt equiv }}=\text { name for equivalent distributed } \\
& \text { vertical load from self weight of } \\
& \text { slanted member } \\
& W \quad=\text { name for total force due to } \\
& \text { distributed load } \\
& =\text { force due to a weight } \\
& x \quad=\text { horizontal distance } \\
& \mu=\text { coefficient of static friction } \\
& \gamma \quad=\text { density or unit weight } \\
& \omega^{\prime} \quad=\text { equivalent fluid density of a soil } \\
& \Sigma=\text { summation symbol }
\end{aligned}
$$

Load Tracing

- LOAD TRACING is the term used to describe how the loads on and in the structure are transferred through the members (load paths) to the foundation, and ultimately supported by the ground.
- It is a sequence of actions, NOT reactions. Reactions in statically determinate members (using FBD's) can be solved for to determine the actions on the next member in the hierarchy.
- The tributary area is a loaded area that contributes to the load on the
 member supporting that area, ex. the area from the center between two beams to the center of the next two beams for the full span is the load on the center beam
- The tributary load on the member is found by concentrating (or consolidating) the load into the center.

$$
w=\left(\frac{\text { load }}{\text { area }}\right) x(\text { tributary width })
$$

where $\mathrm{w}=$ distributed load in units of load/length.

plan

Distributed Loads

Distributed loads may be replaced by concentrated loads acting through the balance/center of the distribution or load area: THIS IS AN EQUIVALENT FORCE SYSTEM.

- $\quad w$ is the symbol used to describe the load per unit length.
Note: It can also represent a load per unit area.
- W is the symbol used to describe the total load.

Framing Systems

Horizontal levels must transfer loads to vertical elements. There are many ways to configure the systems. The horizontal levels can be classified by how many elements transfer loads in the plane. Decking is not usually considered a level in a multiple level system because it isn't significantly load-bearing. It is considered a level when it is the only horizontal element and must resist loads.

Foundations

The final path of the load for the structure is to the foundation. The foundation must transfer the loads to the soil, which is a "natural" structural material. The soil conditions will determine if a shallow foundation (most economical an easy to construct) can be used, or a deep foundation (for larger loads or poorer soil capacities) must be considered.

Distribution of Loads with Irregular Configurations

When a bay (defined by the area bounded by vertical supports) is not rectangular, it is commonly constructed with parallel or non-parallel spanning members of non-uniform lengths. With parallel spanning members, the tributary width is uniform. With non-parallel members, the tributary width at each end is different, but still defined as half the distance (each side) to the next member. The resulting distribution will be linear (and not uniform).

The most efficient one-way systems have regular, rectangular bays. Two way systems are most efficient when they are square. With irregular bays, attempts are made to get as many parallel members as possible with similar lengths, resulting in an economy of scale.

Distribution of Loads on Edge Supported Slabs

Distributed loads on two-way slabs (i.e. not one-way like beams) do not have obvious tributary "widths". The distribution is modeled using a 45 degree tributary "boundary" in addition to the tributary boundary that is half way between supporting elements, in this case, edge beams.

Figure 2-16: Supporting beams' contributing areas for reinforced concrete floor system.

The tributary distribution from the area loads result in a trapezoidal distribution. Self weight will be a uniform distributed load, and will also have to be included for design of beam $A B$.

Figure 2-17: Trapezoidal distributed load for Beam $A B$ of Fig. 2-16.

Openings in Floor/Roof Plans

Openings in a horizontal system usually are framed on all sides. This provides for stiffness and limiting the deflection. The edge beams may not be supporting the flooring, however, so care needs to be taken to determine if an opening edge beam must support tributary area, or just itself.

- Any edge beam supporting a load has load on only one side to the next supporting element.

Beams Supported by Other Beams

Joists are commenly supported by beams with beam hangers. The reaction at the support is transferred to the beam as a single force. A beam, in turn, can be supported by a larger beam or girder, and the reaction from this beam having a uniform distributed self weight, and the forces, will be an action on the girder.

Horizontal Projection of Gravity Load on a Rafter

When an angled member, such as a rafter has a self weight per unit length, that weight is usually converted to a weight per horizontal length:

$$
w_{\text {selfwt.equiv. }}=w_{\text {selfwt. }}\left(\frac{\text { length }}{\text { horizontal dis tance }}\right) \text { or }^{w_{\text {self } w t .} / \cos \alpha}
$$

FBD of the inclined rafter.

$F B D$ of the equivalent horizontally projected rafter.

Framing Plans

Framing plans are diagrams representing the placement and organization of structural members. Until the final architecture has been determined, framing plans are often drawn freehand with respect to the floor plans, and quite often use the formal conventions for structural construction drawings.

Parts of the building are identified by letter symbols:

$B-$ Beams	$F-$ Footings	$L-$ Lintels	$U-$ Stirrups
C - Columns	$G-$ Girders	$S-$ Slabs	$W-$ Walls
$D-$ Dowels	$J-$ Joists	$T-$ Ties	

Other parts are represented with lines (beams and joists), dots, squares, rectangles or wide-flange shapes for columns. Column and footing locations in structural drawings are referred to by letters and numbers, with vertical lines at column centers given letters $-A, B, C$, etc., and horizontal lines at columns given numbers $-1,2,3$, etc. The designation do may be used to show like members (like ditto).

Breaks in the lines are commonly used to indicate the end of a beam that is supported by another member, such as a girder or column. Beams can span over a support (as a continuous beam) and therefore, there is no break shown at the column.

Joists can span over a supporting beam, and the lines will cross. (Looking for the ends of the crossing members give information about which is below and which is above.)

Concrete systems often have slabs, ribs or drop panels or strips, which aren't easily represented by centerlines, so hidden lines represent the edges. Commonly isolated "patches" of repeated geometry are used for brevity.

Two-way joist construction

Two-way flat slab.

Layout of flat plate test structure.

Retaining Walls

Retaining walls are used to hold back soil or other material with the wall. The other key components include bases, counterforts, buttresses or keys. Gravity loads help provide resistance to movement, while the walls with lateral loads behave like cantilever beams.

(c) Counterfort wall

(d) Buttress wall

Loads

The design of retaining walls must consider overturning, settlement, sliding and bearing pressure. The water in the retained soil can significantly affect the loading and the active pressure of the soil. The lateral force, P , acting at a height of $h / 3$ is determined from the equivalent fluid weight (density), ω ', (in force/cubic area) as:

$$
P=\frac{\omega^{\prime} h^{2}}{2} \text { or } \frac{p h}{2}
$$

where p is the maximum pressure at the base: $p=\omega^{\prime} \cdot h$

Overturning is considered the same as for eccentric footings:

$$
S F=\frac{M_{\text {resist }}}{M_{\text {overtuming }}} \geq 1.5-2
$$

where
$\mathrm{M}_{\text {resist }}=$ summation of moments about " 0 " to resist rotation, typically including the moment due to the weight of the stem and base and the moment due to the passive pressure.
$\mathrm{M}_{\text {overturning }}=$ moment due to the active pressure about the toe " o ".

Sliding must also be avoided:

$$
S F=\frac{F_{\text {horizontatresist }}}{F_{\text {sliding }}} \geq 1.25-2
$$

where
$\mathrm{F}_{\text {horizontal-resist }}=$ summation of forces to resist sliding, typically including the force from
the passive pressure and friction $(\mathrm{F}=\mu \cdot \mathrm{N}$ where $\cdot \mu$ is a constant for the
materials in contact and N is the normal force to the ground acting down
and is shown as R$)$.
$\mathrm{F}_{\text {sliding }}=$ sliding force as a result of active pressure.

Pressure Distribution

Because the resultant force from the gravity loads and pressure is not vertical, the vertical pressure distribution under the footing will not be uniform, but will be linearly distributed. The vertical component of the resultant must be in the same horizontal location as the pressure reaction force.

- There can never be a tensile pressure because the footing will not be in contact with the soil.
- To make certain all the area under the footing is used to distributed the load, the vertical resultant needs to be within the middle third of the base width. This area is called the kern.
- Soil pressure is most commonly called \boldsymbol{q} in the design texts and codes.

To determine the size of the maximim pressure we find the equivalent location of the pressure reaction, P , at x using moment calculations when $\mathrm{R}_{\mathrm{x}}=\mathrm{W}$:
so
and

$$
\mathrm{W}=\mathrm{P}=1 / 2 \mathrm{p}(3 \mathrm{x})
$$

$$
\begin{array}{ll}
\mathrm{p}=2 \mathrm{~W} / 3 \mathrm{x} & \text { when } \mathrm{x}<\mathrm{a} / 3 \\
\mathrm{p}=2 \mathrm{~W} / \mathrm{a} & \text { when } \mathrm{x}=\mathrm{a} / 3
\end{array}
$$

$$
x=\frac{\mathrm{M}_{\text {resisting }}-\mathrm{M}_{\text {overtumirg }}}{\mathrm{W}_{\text {total }}}
$$

$$
\mathrm{p}=\frac{\mathrm{W}}{\mathrm{a}^{2}}(4 \mathrm{a}-6 \mathrm{x}) \text { when } \mathrm{a} / 3<\mathrm{x}<2 \mathrm{a} / 3
$$

where x is the location of the resultant force and a is the width of the base.

Wind Load Tracing

For design purposes, wind loads are treated as static pressure distributions over the walls and roof. In the case of walls, the loads are traced just like those for horizontal surfaces. If there is a roof diaphragm, it is the "top" supporting element and the tributary boundary is half way "up" to the diaphragm. If the supporting elements are the side walls the tributary boundary is vertical and half way between sides. In either case, the traced action force at the top of the walls is a lateral shear force (V) that must be resisted. The shear over the width of a shear wall, v, is a unit shear used for determining the connection and framing capacity required.

Lateral Resisting Systems

- Shear Walls
- Braced Frames
- Rigid Frames
- Diaphragms
- Cores
- Tubes

Bracing Configurations

Without proper arrangement of the lateral resisiting components, the system cannot transfer lateral loads that may come from any direction.

Figure 4.48 Exploded view of a light-framed wood building showing the various lateral resisting components.

[^6]
Example 1 (pg 168)

Example Problem 5.2
In the single-bay, post-and-beam deck illustrated, planks typically are available in nominal widths of 4 " or $6^{\prime \prime}$, but for the purposes of analysis it is permissible to assume a unit width equal to one foot. Determine the plank, beam, and column reactions.

The loads are: $60 \mathrm{lb} / \mathrm{ft}^{2}$ live load, $8 \mathrm{lb} / \mathrm{ft}^{2}$ dead load, $10 \mathrm{lb} / \mathrm{ft}$ self weight of 12 ' beams, and 100 lb self weight of columns.

Example 2

EXAMPLE

Assume that the average dead plus live load on the structure shown in Figure 3.15 is $60 \mathrm{lbs} / \mathrm{ft}^{2}$. Determine the reactions for Beam D. This is the same structure as shown in Figure 3.1.
\wedge E, B and A Assuming all beams are weightless!

Solution:

Note carefully the directions of the decking span. Beam D carries floor loads from the lecking to the left (see the contributory area and load strip), but not to the right, since the

Figure 3.1

Live and dead load
\quad Assume $w_{D L+L L}=60 \mathrm{lbs} / \mathrm{ft}^{2}$
Beam G carries distributed loads only
Find reactions for Beam G
$w=6 \mathrm{ft}\left(60 \mathrm{lbs} / \mathrm{ft}^{2}\right)=360 \mathrm{lb} / \mathrm{tt}$
$\underset{\mathrm{R}_{G_{1}} \mathrm{C}}{\text { Beam }} \stackrel{\ominus}{\mathrm{T}} \mathrm{R}_{\mathrm{G}_{2}}$
$\mathrm{R}_{G_{1}}=w \mathrm{~L} / 2=(360 \mathrm{lb} / \mathrm{ft})(12 \mathrm{ft}) / 2=2160 \mathrm{lbs}$
$\mathrm{R}_{\mathrm{G}_{2}}=w \mathrm{~L} / 2=(360 \mathrm{lb} / \mathrm{tt})(12 \mathrm{ft}) / 2=2160 \mathrm{lbs}$ (and E)
Beam D carries both distributed loads and the reaction $\mathrm{R}_{G_{1}}$ from Beam G

$\mathrm{R}_{\mathrm{D}_{2}}=4896 \mathrm{lb}=\mathrm{R}_{\mathrm{E} 2}$
$\Sigma F_{y}=0$
$\mathrm{R}_{\mathrm{D}_{1}}+\mathrm{R}_{\mathrm{D}_{2}}=(360 \mathrm{lb} / \mathrm{ft})(20 \mathrm{ft})+2160 \mathrm{lb}$
$\mathrm{R}_{\mathrm{D}_{1}}=4464 \mathrm{lb}=\mathrm{R}_{\mathrm{E} 1}$

FIGURE 3.15 Load modeling and reaction determination.

By symmetry; $R_{c c 2}=R_{c c 4}=(4464 \mathrm{lb}+4464 \mathrm{lb}) / 2+(6 \mathrm{ft})\left(60 \mathrm{lb} / \mathrm{ft}^{2}\right)(12 \mathrm{ft}) / 2=6624 \mathrm{lb}$
Additional loads are transferred to the column from the reactions on Beams C and F : $R_{\mathrm{C} 1}=\mathrm{R}_{\mathrm{C} 2}=\mathrm{R}_{\mathrm{F} 1}=\mathrm{R}_{\mathrm{F} 2}=\mathrm{wL} / 2=(6 \mathrm{ft})\left(60 \mathrm{lb} / \mathrm{ft}^{2}\right)(20 \mathrm{ft}) / 2=3600 \mathrm{lb}$
center decking runs parallel to Beam D and is not carried by it. Beam D also picks up the end of Beam G and thus also "carries" the reactive force from Beam G. It is therefore necessary to analyze Beam G first to determine the magnitude of this force. The analysis appears in Figure 3.15. The reactive force from Beam G of 2160 lbs is then treated as a downward fore acting on Beam D. The load model for Beam D thus consists of distributed forces from the decking plus the $2160-1 \mathrm{~b}$ force. It is then analyzed by means of the equations of statics to obtain reactive forces of 4896 lbs and 4464 lbs at its ends.

$$
\mathrm{C} 1=4896 \mathrm{lb}+3600 \mathrm{lb}=8,496 \mathrm{lb}
$$

$$
\mathrm{C} 2=6624 \mathrm{lb}+3600 \mathrm{lb}=10,224 \mathrm{lb}
$$

$$
\mathrm{C} 3=4896 \mathrm{lb}+3600 \mathrm{lb}=8,496 \mathrm{lb}
$$

$\mathrm{C} 4=6624 \mathrm{lb}+3600 \mathrm{lb}=10,224 \mathrm{lb}$

Example 3

Determine the factor of safety for overturning and sliding on the 15 ft . retaining wall, 16 in . wide stem, 10 ft . wide x 16 in . high base, when the equivalent fluid pressure is $30 \mathrm{lb} / \mathrm{ft}^{3}$, the weight of the stem of the footing is 4 kips, the weight of the pad is 5 kips , the passive pressure is ignored for this design, and the friction coefficient for sliding is 0.58 . The center of the stem is located 3 ft . from the toe.
Also find the maximum bearing pressure.

Example 4

4.10 A beach cabin on the Washington coast (100 mph wind velocity) is required to resist a wind pressure of 35 psf. Assuming wood-frame construction, the cabin utilizes a roof diaphragm and four exterior shearwalls for its lateral resisting strategy.

Draw an exploded view of the building and perform a lateral load trace in the N-S direction. Show the magnitude of shear (V) and intensity of shear (v) for the roof and critical shearwall. Also, determine the theoretical tie-down force necessary to establish equilibrium of the shearwall. Note that the dead weight of the wall can be used to aid in the stabilizing of the wall.

Solution:

$$
\omega=35 \mathrm{psf} \times 7.5^{\prime}=262.5 \# / \mathrm{ft} .
$$

FRONT ELEVATION

Examining the roof diaphragm as a deep beam spanning 42^{\prime} between shearwalls:

$$
V=\frac{\omega L}{2}=\frac{262.5 \# / \mathrm{ft.}\left(42^{\prime}\right)}{2}=5,513 \#
$$

An FBD of the shearwall shows a shear V^{\prime} developing at the base (foundation) to equilibrate the shear V at the top of the wall. In addition to equilibrium in the horizontal direction, rotational equilibrium must be maintained by the development of a force couple T and C at the edges of the solid portion of wall.

$$
\begin{aligned}
& v=V / \text { shearwall length }=5,513 \# / 15^{\prime}=368 \# / \mathrm{ft} \\
& W=\text { dead load of the wall } \\
& W=10 \mathrm{psf} \times 15^{\prime} \times 15^{\prime}=2,250 \#
\end{aligned}
$$

Tie-down force T is determined by writing a moment equation of equilibrium. Summing moments about point A :

$$
\left[\Sigma M_{A}=0\right]-V\left(15^{\prime}\right)+W\left(15^{\prime} / 2\right)+T\left(15^{\prime}\right)=0
$$

$$
15 T=5,513 \#\left(15^{\prime}\right)-2,250 \#\left(7.5^{\prime}\right)
$$

$$
T=\frac{(82,695 \# \mathrm{ft} .)-(16,875 \# \mathrm{ft} .)}{15}
$$

$$
T=4,390 \#
$$

Wood Design

Notation:

$F_{b}^{\prime}=$ allowable bending stress (adjusted)
$F_{c}=$ tabular compression strength parallel to the grain
$F_{c}^{\prime}=$ allowable compressive stress (adjusted)
$F^{*}{ }_{c} \quad$ intermediate compressive stress for dependant on load duration
$F_{c E}=$ theoretical allowed buckling stress
$F_{c \perp}=$ tabular compression strength
perpendicular to the grain
$F_{\text {connector }}=$ shear force capacity per connector
$F_{p} \quad=$ tabular bearing strength parallel to the grain
$=$ allowable bearing stress
$F_{t} \quad=$ tabular tensile strength
$F_{u}=$ ultimate strength
$F_{v}=$ tabular bending strength
= allowable shear stress
$F_{y} \quad=$ yield strength
$h \quad=$ height of a rectangle
H = name for a horizontal force
$I \quad=$ moment of inertia with respect to neutral axis bending
$I_{t r i a l}=$ moment of inertia of trial section
$I_{r e q ' d}=$ moment of inertia required at limiting deflection
$I_{y} \quad=$ moment of inertia with respect to an y -axis
$J \quad=$ polar moment of inertia
$K=$ effective length factor for columns
$L_{e} \quad=$ effective length that can buckle for column design, as is ℓ_{e}
$L \quad=$ name for length or span length
$L L=$ shorthand for live load
$L R F D=$ load and resistance factor design
$M \quad=$ internal bending moment
$M_{\max }=$ maximum internal bending moment
$M_{m a x-a d j}=$ maximum bending moment adjusted to include self weight
$n \quad=$ number of connectors across a joint, as is N

$\begin{aligned} p \quad= & \text { pitch of connector spacing } \\ = & \text { safe connector load parallel to the } \\ & \text { grain } \end{aligned}$	$\begin{array}{ll} T & =\text { torque (axial moment) } \\ V & =\text { internal shear force } \\ V_{\max } & =\text { maximum internal shear force } \end{array}$
$P \quad=$ name for axial force vector	$V_{\text {max-adj }}=$ maximum internal shear force
$P_{\text {allowable }}=$ allowable axial force	adjusted to include self weight
$q \quad=$ safe connector load perpendicular to the grain	$w \quad=$ name for distributed load
$Q_{\text {connected }}=$ first moment area about a neutral axis for the connected part	$W \quad=\text { shorthand for wind load }$
$=$ radius of gyration	$x \quad=$ horizontal distance
= interior radius of a laminated arch	$y=$ vertical distance
```R = radius of curvature of a deformed beam = radius of curvature of a laminated arch = name for a reaction force```	$\begin{aligned} & Z \quad=\text { force capacity of a connector } \\ & \Delta_{\text {actual }}=\text { actual beam deflection } \\ & \Delta_{\text {allowable }}=\text { allowable beam deflection } \\ & \Delta_{\text {limit }}=\text { allowable beam deflection limit } \\ & \Delta_{\max }=\text { maximum beam deflection } \end{aligned}$
$S \quad=$ section modulus	$\gamma \quad=$ density or unit weight
$S_{\text {req'd }}=$ section modulus required at allowable stress	$\begin{array}{ll} \theta & =\text { slope of the beam deflection curve } \\ \rho & =\text { radial distance } \end{array}$
$S_{\text {req'd-adj }}=$ section modulus required at allowable stress when moment is adjusted to include self weight	$\begin{array}{ll} \int & =\text { symbol for integration } \\ \Sigma & =\text { summation symbol } \end{array}$

## Wood or Timber Design

Structural design standards for wood are established by the National Design Specification (NDS) published by the National Forest Products Association. There is a combined specification (from 2005) for Allowable Stress Design and limit state design (LRFD).

Tabulated wood strength values are used as the base allowable strength and modified by appropriate adjustment factors:

$$
F^{\prime}=C_{D} C_{M} C_{F} \ldots \times F_{\text {fromtable }}
$$

## Size and Use Categories

Boards:	1 to $1 \frac{1}{2}$ in. thick	2 in. and wider
Dimension lumber	2 to 4 in. thick	2 in. and wider
Timbers	5 in. and thicker	5 in. and wider

## Adjustment Factors

(partial list)
$\mathrm{C}_{\mathrm{D}} \quad$ load duration factor
$\mathrm{C}_{\mathrm{M}} \quad$ wet service factor ( 1.0 dry < $16 \%$ moisture content)
$\mathrm{C}_{\mathrm{F}} \quad$ size factor for visually graded sawn lumber and round timber $>12$ " depth

$$
C_{F}=(12 / d)^{1 / 9} \leq 1.0
$$

$\mathrm{C}_{\mathrm{fu}} \quad$ flat use factor (excluding decking)
$\mathrm{C}_{\mathrm{i}} \quad$ incising factor (from increasing the depth of pressure treatment)
$\mathrm{C}_{\mathrm{t}} \quad$ temperature factor (at high temperatures strength decreases)
$\mathrm{C}_{\mathrm{r}} \quad$ repetitive member factor
$\mathrm{C}_{\mathrm{H}} \quad$ shear stress factor (amount of splitting)
$\mathrm{C}_{\mathrm{V}} \quad$ volume factor for glued laminated timber (similar to $\mathrm{C}_{\mathrm{F}}$ )
$\mathrm{C}_{\mathrm{L}} \quad$ beam stability factor (for beams without full lateral support)
$\mathrm{C}_{\mathrm{C}} \quad$ curvature factor for laminated arches

## Tabular Design Values

$\mathrm{F}_{\mathrm{b}}$ : bending stress
$\mathrm{F}_{\mathrm{t}}$ : tensile stress
$\mathrm{F}_{\mathrm{v}}$ : horizontal shear stress
$\mathrm{F}_{\mathrm{c} \perp}$ : compression stress (perpendicular to grain)
$\mathrm{F}_{\mathrm{c}}$ : compression stress (parallel to grain)
E: modulus of elasticity
$\mathrm{F}_{\mathrm{p}}: \quad$ bearing stress (parallel to grain)

Wood is significantly weakest in shear and strongest along the direction of the grain (tension and compression).

Load Combinations and Deflection
The critical load combination is determined by the largest of either:

$$
\frac{\text { dead load }}{0.9} \text { or } \frac{(\text { dead load }+ \text { any combination of live load })}{C_{D}}
$$

The deflection limits may be increased for less stiffness with total load: LL + 0.5(DL)

## Criteria for Design of Beams

Allowable normal stress or normal stress from LRFD should not be $\quad F_{b}^{\prime} \geq f_{b}=\frac{M c}{I}$
exceeded:
Knowing M and $\mathrm{F}_{\mathrm{b}}$, the minimum section modulus fitting the limit is: $\quad S_{\text {req'd }} \geq \frac{M}{F_{b}^{\prime}}$
Besides strength, we also need to be concerned about serviceability. This involves things like limiting deflections \& cracking, controlling noise and vibrations, preventing excessive settlements of foundations and durability. When we know about a beam section and its material, we can determine beam deformations.

## Determining Maximum Bending Moment

Drawing V and M diagrams will show us the maximum values for design. Remember:

$$
\begin{array}{ll}
V=\Sigma(-w) d x \\
M=\Sigma(V) d x
\end{array} \quad \frac{d V}{d x}=-w \quad \frac{d M}{d x}=V
$$

## Determining Maximum Bending Stress

For a prismatic member (constant cross section), the maximum normal stress will occur at the maximum moment.

For a non-prismatic member, the stress varies with the cross section AND the moment.

## Deflections

If the bending moment changes, $\mathrm{M}(\mathrm{x})$ across a beam of constant material and cross section then the curvature will change:

The slope of the n.a. of a beam, $\theta$, will be tangent to the radius of curvature, $\mathrm{R}: \quad \frac{1}{R}=\frac{M(x)}{E I}$

$$
\theta=\text { slope }=\frac{1}{E I} \int M(x) d x
$$

The equation for deflection, y , along a beam is:

$$
y=\frac{1}{E I} \int \theta d x=\frac{1}{E I} \iint M(x) d x
$$

Elastic curve equations can be found in handbooks, textbooks, design manuals, etc.. Computer programs can be used as well (like Multiframe).

Elastic curve equations can be superpositioned ONLY if the stresses are in the elastic range. The deflected shape is roughly the same shape flipped as the bending moment diagram but is constrained by supports and geometry.



## Boundary Conditions

The boundary conditions are geometrical values that we know - slope or deflection - which may be restrained by supports or symmetry.

(a) Simply supported beam

At Fixed Supports: $\quad \theta=0$
At Inflection Points From Symmetry: $\quad \theta=0$

(b) Overhanging beam

The Slope Is Zero At The Maximum Deflection $y_{\text {max }}$ :

$$
\theta=\frac{d y}{d x}=\text { slope }=0
$$


(c) Cantilever beam

## Allowable Deflection Limits

All building codes and design codes limit deflection for beam types and damage that could happen based on service condition and severity.

$$
y_{\max }(x)=\Delta_{\text {actual }} \leq \Delta_{\text {allowable }}=L / \text { value }
$$

Use	LL only	DL+LL
Roof beams:	$\mathrm{L} / 180$	$\mathrm{~L} / 120$
Industrial		
Commercial	$\mathrm{L} / 240$	$\mathrm{~L} / 180$
plaster ceiling	L 360	$\mathrm{~L} / 240$
no plaster		
Floor beams:	$\mathrm{L} / 360$	$\mathrm{~L} / 240$
Ordinary Usage	$\mathrm{L} / 480$	
Roof or floor (damageable elements)		

## Lateral Buckling

With compression stresses in the top of a beam, a sudden "popping" or buckling can happen even at low stresses. In order to prevent it, we need to brace it along the top, or laterally brace it, or provide a bigger $\mathrm{I}_{\mathrm{y}}$.

## Beam Loads \& Load Tracing

In order to determine the loads on a beam (or girder, joist, column, frame, foundation...) we can start at the top of a structure and determine the tributary area that a load acts over and the beam needs to support. Loads come from material weights, people, and the environment. This area is assumed to be from half the distance to the next beam over to halfway to the next beam.

The reactions must be supported by the next lower structural element ad infinitum, to the ground.

## Design Procedure

The intent is to find the most light weight member satisfying the section modulus size.

1. Know $F^{\prime}$ for the material or $F_{U}$ for LRFD.
2. Draw $V \& M$, finding $M_{\text {max }}$.
3. Calculate $\mathrm{S}_{\text {req'd. }}$. This step is equivalent to determining $f_{b}=\frac{M_{\max }}{S} \leq F_{b}^{\prime}$
4. For rectangular beams $S=\frac{b h^{2}}{6}$

For timber: use the section charts to find S that will work and remember that the beam self weight will increase $S_{\text {req'd. }} \quad w_{\text {self } w t}=\gamma A$
****Determine the "updated" $V_{\max }$ and $M_{\max }$ including the beam self weight, and verify that the updated $S_{\text {req'd }}$ has been met. ******
5. Consider lateral stability.
6. Evaluate horizontal shear stresses using $\mathrm{V}_{\text {max }}$ to determine if $f_{v} \leq F_{v}^{\prime}$ or find $\mathrm{A}_{\mathrm{req}}$ 'd

For rectangular beams

$$
f_{v-\max }=\frac{3 V}{2 A}=1.5 \frac{V}{A} \quad \therefore A_{\text {req'd }} \leq \frac{3 V}{2 F_{v}^{\prime}}
$$

7. Provide adequate bearing area at supports:

$$
f_{p}=\frac{P}{A} \leq F_{c}^{\prime} \text { or } F_{c \perp}^{\prime}
$$

8. Evaluate shear due to torsion $\quad f_{v}=\frac{T \rho}{J}$ or $\frac{T}{c_{1} a b^{2}} \leq F_{v}^{\prime}$
(circular section or rectangular)
9. Evaluate the deflection to determine if $\Delta_{\operatorname{maxLL}} \leq \Delta_{L L-\text { allowed }}$ and/or $\Delta_{\max \text { Total }} \leq \Delta_{\text {Total-allowed }}$
**** note: when $\Delta_{\text {calculated }}>\Delta_{\text {limit }}, I_{\text {required }}$ can be found with: and $S_{\text {req'd }}$ will be satisfied for similar self weight $* * * * *$

$$
I_{\text {req'd }} \geq \frac{\Delta_{\text {toobig }}}{\Delta_{\text {limit }}} I_{\text {trial }}
$$

## FOR ANY EVALUATION:

Redesign (with a new section) at any point that a stress or serviceability criteria is NOT satisfied and re-evaluate each condition until it is satisfactory.

## Load Tables for Uniformly Loaded Joists \& Rafters

Tables exists for the common loading situation for joists and rafters - that of uniformly distributed load. The tables either provide the safe distributed load based on bending and deflection limits, they give the allowable span for specific live and dead loads. If the load is not uniform, an equivalent distributed load can be calculated from the maximum moment equation.

## Decking

Flat panels or planks that span several joists or evenly spaced support behave as continuous beams. Design tables consider a " 1 unit" wide strip across the supports and determine maximum bending moment and deflections in order to provide allowable loads depending on the depth of the material.

The other structural use of decking is to construct what is called a diaphragm, which is a horizontal or vertical (if the panels are used in a shear wall) unit tying the sheathing to the joists or studs that resists forces parallel to the surface of the diaphragm.

## Criteria for Design of Columns

If we know the loads, we can select a section that is adequate for strength \& buckling.
If we know the length, we can find the limiting load satisfying strength \& buckling.

Any slenderness ratio, $\mathrm{L}_{\underline{2}} / \mathrm{d} \leq 50$ :

$$
f_{c}=\frac{P}{A} \leq F_{c}^{\prime} \quad F_{c}^{\prime}=F_{c}\left(C_{D}\right)\left(C_{M}\right)\left(C_{t}\right)\left(C_{F}\right)\left(C_{p}\right)
$$

The allowable stress equation uses factors to replicate the combination crushing-buckling curve:
where:
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=$ allowable compressive stress parallel to the grain
$\mathrm{F}_{\mathrm{c}}=$ compressive strength parallel to the grain
$\mathrm{C}_{\mathrm{D}}=$ load duration factor
$\mathrm{C}_{\mathrm{M}}=$ wet service factor (1.0 for dry)
$\mathrm{C}_{\mathrm{t}}=$ temperature factor
$\mathrm{C}_{\mathrm{F}}=$ size factor
$\mathrm{C}_{\mathrm{p}}=$ column stability factor off chart or equation:

$$
C_{p}=\frac{1+\left(F_{c E} / F_{c}^{*}\right)}{2 c}-\sqrt{\left[\frac{1+F_{c E} / F_{c}^{*}}{2 c}\right]^{2}-\frac{F_{c E} / F_{c}^{*}}{c}}
$$

For preliminary column design:

$$
F_{c}^{\prime}=F_{c}^{*} C_{p}=\left(F_{c} C_{D}\right) C_{p}
$$

## Procedure for Analysis

1. Calculate $L_{e} / d_{\text {min }}(K L / d$ for each axis and chose largest)
2. Obtain $\mathrm{F}^{\prime}{ }_{\mathrm{c}}$
compute $F_{c E}=\frac{K_{c E} E}{\left(l_{c} / d\right)^{2}}$ with $\mathrm{K}_{\mathrm{cE}}=0.3$ for sawn, $=0.418$ for glu-lam
3. Compute $F_{c}^{*} \cong F_{c} C_{D}$ with $\mathrm{C}_{\mathrm{D}}=1$, normal, $\mathrm{C}_{\mathrm{D}}=1.25$ for 7 day roof, etc....
4. Calculate $F_{c E} / F_{c}^{*}$ and get $\mathrm{C}_{\mathrm{p}}$ from table or calculation
5. Calculate $F_{c}^{\prime}=F_{c}^{*} C_{p}$
6. Compute $\mathrm{P}_{\text {allowable }}=\mathrm{F}_{\mathrm{c}}^{\prime} \cdot \mathrm{A}$ or alternatively compute $\mathrm{f}_{\text {actual }}=\mathrm{P} / \mathrm{A}$
7. Is the design satisfactory?

Is $\mathrm{P} \leq \mathrm{P}_{\text {allowable }} ? \Rightarrow$ yes, it is; no, it is no good
or Is $\mathrm{f}_{\text {actual }} \leq \mathrm{F}_{\mathrm{c}}$ ? $\Rightarrow$ yes, it is; no, it is no good

## Procedure for Design

1. Guess a size by picking a section
2. Calculate $L_{e} / d_{\text {min }}(K L / d$ for each axis and choose largest)
3. Obtain $\mathrm{F}^{\prime}{ }_{\mathrm{c}}$
compute $F_{c E}=\frac{K_{c E} E}{\left(l_{c} / d\right)^{2}}$ with $\mathrm{K}_{\mathrm{cE}}=0.3$ for sawn, $=0.418$ for glu-lam
4. Compute $F_{c}^{*} \cong F_{c} C_{D}$ with $\mathrm{C}_{\mathrm{D}}=1$, normal, $\mathrm{C}_{\mathrm{D}}=1.25$ for 7 day roof...
5. Calculate $F_{c E} / F_{c}^{*}$ and get $\mathrm{C}_{\mathrm{p}}$ from table or calculation
6. Calculate $F_{c}^{\prime}=F_{c}^{*} C_{p}$
7. Compute $\mathrm{P}_{\text {allowable }}=\mathrm{F}_{\mathrm{c}}^{\prime} \cdot \mathrm{A}$ or alternatively compute $\mathrm{f}_{\text {actual }}=\mathrm{P} / \mathrm{A}$
8. Is the design satisfactory?

Is $\mathrm{P} \leq \mathrm{P}_{\text {allowable }}$ ? $\Rightarrow$ yes, it is; no, pick a bigger section and go back to step 2.
or Is $\mathrm{f}_{\text {actual }} \leq \mathrm{F}^{\prime}{ }_{\mathrm{c}}$ ? $\Rightarrow$ yes, it is; no, pick a bigger section and go back to step 2.

## Trusses

Timber trusses are commonly manufactured with continuous top or bottom chords, but the members are still design as compression and tension members (without the effect of bending.)

## Stud Walls

Stud wall construction is often used in light frame construction together with joist and rafters. Studs are typically 2 -in. nominal thickness and must be braced in the weak axis. Most wall coverings provide this function. Stud spacing is determined by the width of the panel material, and is usually 16 in . The lumber grade can be relatively low. The walls must be designed for a combination of wind load and bending, which means beam-column analysis.

## Columns with Bending (Beam-Columns)

The modification factors are included in the form: $\left.\left[\frac{f_{c}}{F_{c}^{\prime}}\right]^{2}+\frac{f_{b x}}{F_{b x}^{\prime}\left[1-f_{c} / F_{c E x}\right.}\right]$

$$
\begin{aligned}
& 1-\frac{f_{c}}{F_{c E x}}=\text { magnification factor accounting for P- } \Delta \\
& F_{b x}^{\prime}=\text { allowable bending stress } \\
& f_{b x}=\text { working stress from bending about x-x axis }
\end{aligned}
$$

In order to design an adequate section for allowable stress, we have to start somewhere:

1. Make assumptions about the limiting stress from:

- buckling
- axial stress
- combined stress

2. See if we can find values for $\underline{r}$ or $\underline{A}$ or $\underline{S\left(=I / c_{\max }\right)}$
3. Pick a trial section based on if we think r or A is going to govern the section size.
4. Analyze the stresses and compare to allowable using the allowable stress method or interaction formula for eccentric columns.
5. Did the section pass the stress test?

- If not, do you increase r or A or S?
- If so, is the difference really big so that you could decrease r or A or S to make it more efficient (economical)?

6. Change the section choice and go back to step 4. Repeat until the section meets the stress criteria.

## Laminated Arches

The radius of curvature, $R$, is limited because of residual bending stresses between lams of thickness $t$ to 100 t for Southern pine and hardwoods and 250 t for softwoods.

The allowable bending stress for combined stresses is $F_{b}^{\prime}=F_{b}\left(C_{F} C_{C}\right)$
where $C_{C}=1-2000\left(\frac{t}{r}\right)^{2}$
and $r$ is the radius to the inside of the lamination.

## Criteria for Design of Connections

Connections for wood are typically mechanical fasteners. Shear plates and split ring connectors are common in trusses. Bolts of metal bear on holes in wood, and nails rely on shear resistance


Fig. 24.6 Circular arch moment analysis transverse and parallel to the nail shaft. Timber rivets with steel side plates are allowed with glue laminated timber.
Connections must be able to transfer any axial force, shear, or moment from member to member or from beam to column.

## Bolted Joints

Stress must be evaluated in the member being connected using the load being transferred and the reduced cross section area called net area. Bolt capacities are usually provided in tables and take into account the allowable shearing stress across the diameter for single and double shear, and the allowable bearing stress of the connected material based on the direction of the load with respect to the grain. Problems, such as ripping of the bolt hole at the end of the member, are avoided by following code guidelines on minimum edge distances and spacing.

## Nailed Joints

Because nails rely on shear resistance, a common problem when nailing is splitting of the wood at the end of the member, which is a shear failure. Tables list the shear force capacity per unit length of embedment per nail. Jointed members used for beams will have shear stress across the connector, and the pitch spacing, $p$, can be determined from the shear stress equation when the capacity, $F$, is known:

$$
n F_{\text {connector }} \geq \frac{V Q_{\text {connected area }}}{I} \cdot p
$$

## Example 1 (pg 328)

Example Problem 9.15 (Figures 9.73 to 9.75 )
Design a Southern pine No. 1 beam to carry the loads shown (roof beam, no plaster). Assume the beam is supported at each end by an 8 " block wall. $F_{b}=1550 \mathrm{psi} ; F_{v}=$ $110 \mathrm{psi} ; E=1.6 \times 10^{6} \mathrm{psi} . \quad \mathrm{F}_{\mathrm{c} \perp}=440 \mathrm{psi}, \gamma=36.3 \mathrm{lb} / \mathrm{ft}^{3}$


Example 1 (continued)

Example 2 (pg 379)
Example Problem IO. 18 (Figures 10.60 and I0.61)
An $18^{\prime}$ tall $6 \times 8$ Southern pine column supports a roof load (dead load plus a 7 -day live load) equal to 16 kips . The weak axis of buckling is braced at a point $9^{\prime} 6^{\prime \prime}$ from the bottom support. Determine the adequacy of the column.

$$
F_{c}=975 \mathrm{psi}, E=1.6 \times 10^{6} \mathrm{psi}
$$



Figure 10.61 (a) Strong axis. (b) Weak axis.

Example 3 (pg 381)
Example Problem 10.20:
Design of Wood Columns(Figure 10.66)
A $22^{\prime}$-tall glu-lam column is required to support a roof load (including snow) of 40 kips . Assuming $8^{3} / 4^{\prime \prime}$ in one dimension (to match the beam width above), determine the minimum column size if the top and bottom are pin supported.
Select from the following sizes: $\quad \mathrm{F}_{\mathrm{c}}=1650 \mathrm{psi}, \mathrm{E}=1.8 \times 10^{6} \mathrm{psi}$

$$
\begin{aligned}
& 8^{3} / 4^{\prime \prime} \times 9^{\prime \prime}\left(A=78.75 \mathrm{in} .^{2}\right) \\
& 8^{3} / 4^{\prime \prime} \times 10^{1 / 2^{\prime \prime}}\left(A=91.88 \mathrm{in}^{2}{ }^{2}\right) \\
& 8^{3} / 4^{\prime \prime} \times 12^{\prime \prime}\left(A=105.00 \mathrm{in} .^{2}\right)
\end{aligned}
$$

Also verify with allowable load tables


## Example 4

EXAMPLE 7.16 Combined Bending and Compression in a Stud Wall
Check the $2 \times 6$ stud in the first-floor bearing wall in the building shown in Fig. 7.20a. Consider the given vertical loads and lateral forces. Lumber is No. 2 DF-L. MC $\leq 19$ percent and normal temperatures apply. Allowable stresses are to be in accordance with the NDS. $\quad F_{b}^{\prime}=2152 \mathrm{psi} \quad F_{c}=1350 \mathrm{psi}$


## COLUMN CAPACITY:

$$
\begin{aligned}
& \mathrm{A}=8.25 \mathrm{in}^{2} \\
& \mathrm{~S}_{\mathrm{x}}^{*}=7.56 \mathrm{in}^{3}
\end{aligned}
$$

Sheathing provides lateral support about the weak axis of the stud. Therefore, check column buckling about the $x$ axis only ( $L=10.5 \mathrm{ft}$ and $d_{x}=5.5 \mathrm{in}$.):

$$
\begin{aligned}
\left(\frac{l_{e}}{d}\right)_{y} & =0 \quad \text { because of sheathing } \\
\left(\frac{l_{e}}{d}\right)_{\max } & =\left(\frac{l_{e}}{d}\right)_{x}=\frac{10.5 \mathrm{ft} \times 12 \mathrm{in} . / \mathrm{ft}}{5.5 \mathrm{in} .}=22.9 \\
E & =1,600,000 \mathrm{psi}
\end{aligned}
$$

For visually graded sawn lumber:

$$
\begin{aligned}
K_{c E} & =0.3 \\
c & =0.8 \\
F_{c E} & =\frac{K_{c E} E^{\prime}}{\left(l_{e} / d\right)^{2}}=\frac{0.3(1,600,000)}{(22.9)^{2}}=915 \mathrm{psi} \\
F_{c}^{*} & =F_{c}\left(C_{D}\right) \quad C_{D}=1.6 \text { from wind loading } \\
& =1350(1.6)=2376 \mathrm{psi} \\
\frac{F_{c E}}{F_{c}^{*}} & =\frac{915}{2376}=0.385 \quad C_{P}=0.35 \\
F_{c}^{\prime} & =F_{c}\left(C_{D}\right)\left(C_{P}\right)=2376(0.35)=832 \mathrm{psi}
\end{aligned}
$$



## Load Case 2: Gravity Loads + Lateral Forces

bending:
Wind governs over seismic. Force to one stud:

$$
\begin{aligned}
& \text { Wind }=27.8 \mathrm{psf} \\
& \qquad \begin{array}{l}
w=27.8 \mathrm{psf} \times \frac{16 \mathrm{in}}{12^{\text {in/ ft }}=37.0 \mathrm{lb} / \mathrm{ft}} \\
M=\frac{w L^{2}}{8}=\frac{37.0(10.5)^{2}}{8}=510 \mathrm{ft}-\mathrm{lb}=6115 \mathrm{in} .-\mathrm{lb} \\
f_{b}=\frac{M}{S}=\frac{6115}{7.56}=809 \mathrm{psi} \quad F_{b}^{\prime}=2152 \mathrm{psi}
\end{array}
\end{aligned}
$$

AXIAL:

$$
\mathrm{D}+\mathrm{W}: \quad f_{c}=\frac{P}{A}=\frac{378}{8.25}=46 \mathrm{psi}
$$

COMBINED STRESS:
The simplified interaction formula from Example 7.13 (Sec. 7.12) applies:

$$
\begin{aligned}
& \quad\left(\frac{f_{c}}{F_{c}^{\prime}}\right)^{2}+\frac{f_{b x}}{F_{b x}^{\prime}\left(1-f_{c} / F_{c E x}\right)} \leq 1.0 \\
& F_{c E x}=F_{c E}=915 \mathrm{psi}
\end{aligned}
$$

D +W :
In this load combination, D produces the axial stress $f_{c}$ and W results in the bending stress $f_{b x}$.

$$
\begin{aligned}
& \left(\frac{f_{c}}{F_{c}^{\prime}}\right)^{2}+\left(\frac{1}{1-f_{c} / F_{c E x}}\right) \frac{f_{b x}}{F_{b x}^{\prime}}= \\
& \quad\left(\frac{46}{832}\right)^{2}+\left(\frac{1}{1-46 / 915}\right) \frac{809}{2152}=0.399<1.0
\end{aligned}
$$

$2 \times 6$ No. 2 DF-L exterior bearing wall $O K$

## Example 5

Example 2. The truss heel joint shown in Figure 7.5 is made with 2-in. nominal thickness lumber and gusset plates of $1 / 2$-in.-thick plywood. Nails are 6d common wire with the nail layout shown occurring in both sides of the joint. Find the tension load capacity for the bottom chord member (load 3 in the figure).

## Example 6

A nominal $4 \times 6$ in. redwood beam is to be supported by two $2 \times 6$ in. members acting as a spaced column. The minimum spacing and edge distances for the $1 / 2$ inch bolts are shown. How many $1 / 2 \mathrm{in}$. bolts will be required to safely carry a load of 1500 lb ? Use the chart provided.

TABLE 23-I-F-HOLDING POWER OF BOLTS ${ }^{1,2,3}$ FOR DOUGLAS FIR-LARCH, CALIFORNIA REDWOOD (CLOSE GRAIN) AND SOUTHERN PINE (See U.B.C. Standard 23-17 where members are not of equal size and for values in other species.)

$p=$ safe loads parallel to grain, in pounds.   $q=$ safe loads perpendicular to grain, in pounds.							
$\times 4.45$ for N							
LENGTH OF BOLT IN MAIN WOOD MEMBER ${ }^{4}$ (inches)		DIAMETER OF BOLT (inches)					
		3/8	1/2	5/8	$3 / 4$	7/8	1
$\times 25.4$ for mm							
$21 / 2$	Single $p$   Shear $q$		$\begin{aligned} & 630 \\ & 360 \end{aligned}$	$\begin{aligned} & 910 \\ & 405 \end{aligned}$	$\begin{array}{r} 1,155 \\ 450 \end{array}$	$\begin{array}{r} 1.370 \\ 495 \end{array}$	$\begin{array}{r} 1.575 \\ 540 \end{array}$
	Double $p$   Shear $q$	$\begin{aligned} & 710 \\ & 620 \end{aligned}$	$\begin{array}{r} 1,260 \\ 720 \end{array}$	$\begin{array}{r} 1,820 \\ 810 \end{array}$	$\begin{array}{r} 2,310 \\ 900 \end{array}$	$\begin{array}{r} 2,740 \\ \hline 990 \end{array}$	$\begin{aligned} & 3,150 \\ & 1,080 \end{aligned}$
$31 / 2$	Single $p$   Shear $q$			$\begin{aligned} & 990 \\ & 565 \end{aligned}$	$\begin{array}{r} 1,400 \\ 630 \end{array}$	$\begin{array}{r} 1.790 \\ 695 \end{array}$	$\begin{array}{r} 2,135 \\ 760 \end{array}$
	Double $p$   Shear $q$	710 640	$\begin{array}{r} 1,270 \\ 980 \end{array}$	$\begin{aligned} & 1,980 \\ & 1,130 \end{aligned}$	$\begin{aligned} & 2,800 \\ & 1,260 \end{aligned}$	$\begin{aligned} & 3,580 \\ & 1,390 \end{aligned}$	$\begin{aligned} & 4,270 \\ & 1,520 \end{aligned}$

${ }^{1}$ Tabulated values are on a normal load-duration basis and apply to joints made of seasoned lumber used in dry locations. See Division III for other service conditions.
${ }^{2}$ Double shear values are for joints consisting of three wood members in which the side members are one half the thickness of the main member. Single shear values are for joints consisting of two wood members having a minimum thickness not less than that specified.
${ }^{3}$ See Division III for wood-to-metal bolted joints.
${ }^{4}$ The length specified is the length of the bolt in the main member of double shear joints or the length of the bolt in the thinner member of single shear joints.

## Example 7

## EXAMPLE 12.8 Knee Brace Connection

The carport shown in Fig. $12.13 a$ uses $2 \times 6$ knee braces to resist the longitudinal seismic force. Determine the number of 16 d common nails required for the connection of the brace to the $4 \times 4$ post. Material is Southern Pine lumber that is dry at the time of construction. Normal temperatures apply.

Force to one row of braces:

$$
R=\frac{w L}{2}=76\left(\frac{22}{2}\right)=836 \mathrm{lb}
$$

Assume the force is shared equally by all braces.

$$
\begin{gathered}
\Sigma M_{0}=0 \\
3 H-209(10)=0 \\
H=697 \mathrm{lb} \\
B=\sqrt{2} H=\sqrt{2}(697) \\
=985 \mathrm{lb} \text { axial force in knee brace } \\
=\text { force on nailed connection }
\end{gathered}
$$

The nominal design value for a 16 d common nail in Southern Pine can be evaluated using the yield equations (Sec. 12.4), or it can be obtained from NDS Table 12.3B.

Nominal design value from NDS Table 12.3B

$$
Z=154 \mathrm{lb} / \text { nail }
$$



## Example 7 (continued)

## Adjustment Factors

## Penetration

Required penetration to use the full value of $Z$

$$
12 D=12(0.162)=1.94 \mathrm{in} .<2.0
$$

$\therefore$ Penetration depth factor is

$$
C_{d}=1.0
$$

## Moisture content

Because the building is "unenclosed," the brace connection may be exposed to the weather, and the severity of this exposure must be judged by the designer. Assume that a reduction for high moisture content is deemed appropriate, and the wet service factor $C_{M}$ is obtained from NDS Table 7.3.3.

$$
C_{M}=0.7
$$

## Load duration

The load duration factor recommended in the NDS for seismic forces is $C_{D}=1.6$. The designer is cautioned to verify local code acceptance before using this value in practice.

## Other adjustment factors

All other adjustment factors for allowable nail capacity do not apply to the given problem, and each can be set equal to unity:
$C_{t}=1.0 \quad$ because normal temperature range is assumed
$C_{e g}=1.0 \quad$ because nails are driven into side grain of holding member
$C_{d i}=1.0$ because connection is not part of nailing for diaphragm or shearwall
$C_{t n}=1.0 \quad$ because nails are not toenailed
Allowable load for 16 d common nail in Southern Pine:

$$
\begin{aligned}
Z^{\prime} & =Z\left(C_{D} C_{M} C_{t} C_{d} C_{e g} C_{d i} C_{t n}\right) \\
& =154(1.6)(0.7)(1.0)(1.0)(1.0)(1.0)(1.0)=172 \mathrm{lb} / \text { nail }
\end{aligned}
$$

Required number of nails: $\quad N=\frac{B}{Z^{\prime}}=\frac{985}{172}=5.73$

$$
\begin{array}{ll}
\text { Use } & \text { six } 16 \mathrm{~d} \text { common nails each end of knee } \\
& \text { brace for high-moisture conditions.* }
\end{array}
$$

If the reduction for wet service is not required, $C_{M}=1.0$. The revised connection is

$$
\begin{gathered}
Z^{\prime}=154(1.6)(1.0)=246 \mathrm{lb} / \text { nail } \\
N=\frac{985}{246}=4.00
\end{gathered}
$$

Use four 16d common nails each end of knee brace if moisture is not a concern.

## ASD Beam Design Flow Chart



## Beam Design and Deflections

## Notation:

$=$ name for width dimension	$M_{\text {max-adj }}=$ maximum bending moment
$A \quad=$ name for ar	adjusted to include self weight
$A_{\text {req'd-adj }}=$ area required at allowable stress when shear is adjusted to include self weight	$\begin{aligned} & M_{n} \quad \begin{array}{l} \text { nominal flexure strength with the full } \\ \text { section at the yield stress for LRFD } \end{array} \\ & M_{u} \quad=\text { maximum moment from factored } \end{aligned}$
$\begin{aligned} & A_{\text {web }}= \text { area of the web of a wide flange } \\ & \text { section } \end{aligned}$	$P=\begin{aligned} & \quad \text { loads for LRFD } \\ & = \end{aligned}$
$\begin{aligned} b= & \text { width of a rectangle } \\ = & \text { total width of material at a } \\ & \text { horizontal section } \\ = & \text { name for height dimension } \end{aligned}$	$\begin{aligned} Q \quad= & \text { first moment area about a neutral } \\ & \text { axis } \\ R \quad & =\begin{array}{r} \text { radius of curvature of a deformed } \\ \\ \text { beam } \end{array} \end{aligned}$
$c \quad=$ largest distance from the neutral axis to the top or bottom edge of a beam	$\begin{aligned} S= & \text { section modulus } \\ S_{\text {req'd }}= & \text { section modulus required at } \\ & \text { allowable stress } \end{aligned}$
$\begin{gathered} c_{l}=\begin{array}{l} \text { coefficient for shear stress for a } \\ \text { rectangular bar in torsion } \end{array} \end{gathered}$	$\begin{array}{ll} T & =\text { torque (axial moment) } \\ V & =\text { internal shear force } \end{array}$
$d \quad=$ calculus symbol for differentiation	$V_{\max }=$ maximum internal shear force
$D L=$ shorthand for dead load	$V_{\text {max-adj }}=$ maximum internal shear force
$E \quad=$ modulus of elasticity	adjusted to include self weight
$f_{b} \quad=$ bending stress	$V_{u} \quad=$ maximum shear from factored loads
$f_{p} \quad=$ bearing stress (see P )	for LRFD
$f_{v} \quad=$ shear stress	$w \quad=$ name for distributed load
$f_{v-\max }=$ maximum shear stress	$w_{\text {self } w t}=$ name for distributed load from self
$F_{b}=$ allowable bending stress	weight of member
$F_{v}=$ allowable shear stress	$x \quad=$ horizontal distance
$F_{p}=$ allowable bearing stress	$y \quad=$ vertical distance
$F_{y} \quad=$ yield strength	$\Delta_{\text {actual }}=$ actual beam deflection
$F_{\text {yweb }}=$ yield strength of the web material	$\Delta_{\text {allowable }}=$ allowable beam deflection
$h \quad=$ height of a rectangle	$\Delta_{\text {limit }}=$ allowable beam deflection limit
$I \quad=$ moment of inertia with respect to neutral axis bending	$\Delta_{\text {max }}=$ maximum beam deflection   $\phi_{b} \quad=$ resistance factor for flexure in
$I_{\text {trial }}=$ moment of inertia of trial section	LRFD design
$\begin{aligned} I_{r e q ' d}= & \text { moment of inertia required at } \\ & \text { limiting deflection } \end{aligned}$	$\phi_{v}=$ resistance factor for shear for
$J \quad=$ polar moment of inertia	LRFD
$L \quad=$ name for span length	= density or unit weight
$L L=$ shorthand for live load	$\theta=$ slope of the beam deflection curve
$L R F D=$ load and resistance factor design	$\rho \quad=$ radial distance
$M \quad$ = internal bending moment	1 = symbol for integration
$M_{\text {max }}=$ maximum internal bending moment	$\Sigma=$ summation symbol

## Criteria for Design

Allowable bending stress or bending stress from LRFD should not be $\quad F_{b} \geq f_{b}=\frac{M c}{I}$
exceeded:
Knowing M and $\mathrm{F}_{\mathrm{b}}$, the minimum section modulus fitting the limit is: $\quad S_{r e q^{\prime} d} \geq \frac{M}{F_{b}}$
Besides strength, we also need to be concerned about serviceability. This involves things like limiting deflections \& cracking, controlling noise and vibrations, preventing excessive settlements of foundations and durability. When we know about a beam section and its material, we can determine beam deformations.

## Determining Maximum Bending Moment

Drawing V and M diagrams will show us the maximum values for design. Remember:

$$
\begin{array}{ll}
V=\Sigma(-w) d x \\
M=\Sigma(V) d x
\end{array} \quad \frac{d V}{d x}=-w \quad \frac{d M}{d x}=V
$$

## Determining Maximum Bending Stress

For a prismatic member (constant cross section), the maximum normal stress will occur at the maximum moment.

For a non-prismatic member, the stress varies with the cross section AND the moment.

## Deflections

If the bending moment changes, $\mathrm{M}(\mathrm{x})$ across a beam of constant material and cross section then the curvature will change: $\frac{1}{R}=\frac{M(x)}{E I}$

The slope of the n.a. of a beam, $\theta$, will be tangent to the radius of curvature, R:

$$
\theta=\text { slope }=\frac{1}{E I} \int M(x) d x
$$

The equation for deflection, y , along a beam is:

$$
y=\frac{1}{E I} \int \theta d x=\frac{1}{E I} \iint M(x) d x
$$

Elastic curve equations can be found in handbooks, textbooks, design manuals, etc...Computer programs can be used as well. (BigBoy Beam freeware: http://forum.simtel.net/pub/pd/33994.html)

Elastic curve equations can be superpositioned ONLY if the stresses are in the elastic range.

The deflected shape is roughly the shame shape as the bending moment diagram flipped but is constrained by supports and geometry.


## Boundary Conditions

The boundary conditions are geometrical values that we know - slope or deflection - which may be restrained by supports or symmetry.

(a) Simply supported beam

At Pins, Rollers, Fixed Supports: $y=0$
At Fixed Supports: $\quad \theta=0$
At Inflection Points From Symmetry: $\quad \theta=0$
The Slope Is Zero At The Maximum Deflection $y_{\text {max }}$ :

$$
\theta=\frac{d y}{d x}=\text { slope }=0
$$

## Allowable Deflection Limits


(b) Overhanging beam

(c) Cantilever beam

All building codes and design codes limit deflection for beam types and damage that could happen based on service condition and severity.

$$
y_{\max }(x)=\Delta_{\text {actual }} \leq \Delta_{\text {allowable }}=L / \text { value }
$$

Use	LL only	DL+LL
Roof beams:		
Industrial	$\mathrm{L} / 180$	$\mathrm{~L} / 120$
Commercial		
plaster ceiling	$\mathrm{L} / 240$	$\mathrm{~L} / 180$
no plaster	$\mathrm{L} / 360$	$\mathrm{~L} / 240$
Floor beams:	$\mathrm{L} / 360$	$\mathrm{~L} / 240$
Ordinary Usage	$\mathrm{L} / 480$	
Roof or floor (damageable elements)		

## Beam Loads \& Load Tracing

In order to determine the loads on a beam (or girder, joist, column, frame, foundation...) we can start at the top of a structure and determine the tributary area that a load acts over and the beam needs to support. Loads come from material weights, people, and the environment. This area is assumed to be from half the distance to the next beam over to halfway to the next beam.

The reactions must be supported by the next lower structural element ad infinitum, to the ground.

## Design Procedure

The intent is to find the most light weight member satisfying the section modulus size.

1. Know $\mathrm{F}_{\mathrm{b}}$ (allowable stress) for the material or $\mathrm{F}_{\mathrm{y}} \& \mathrm{~F}_{\mathrm{u}}$ for LRFD.
2. Draw V \& M , finding $\mathrm{M}_{\text {max }}$.
3. Calculate $\mathrm{S}_{\text {req'd. }}$. This step is equivalent to determining $f_{b}=\frac{M_{\max }}{S} \leq F_{b}$
4. For rectangular beams $S=\frac{b h^{2}}{6}$

- For steel or timber: use the section charts to find S that will work and remember that the beam self weight will increase $S_{\text {req'd. }}$. And for steel, the design charts show the lightest section within a grouping of similar S's. $\quad w_{\text {self } w t}=\gamma A$
- For any thing else, try a nice value for b , and calculate h or the other way around. ****Determine the "updated" $V_{\max }$ and $M_{\max }$ including the beam self weight, and verify that the updated $S_{\text {req'd }}$ has been met. ${ }^{* * * * * * ~}$

5. Consider lateral stability
6. Evaluate horizontal shear stresses using $\mathrm{V}_{\max }$ to determine if $f_{v} \leq F_{v}$

For rectangular beams, W's, and others: $\quad f_{v-\max }=\frac{3 V}{2 A} \approx \frac{V}{A_{w e b}}$ or $\frac{V Q}{I b}$
7. Provide adequate bearing area at supports: $\quad f_{p}=\frac{P}{A} \leq F_{p}$
8. Evaluate shear due to torsion $\quad f_{v}=\frac{T \rho}{J}$ or $\frac{T}{c_{1} a b^{2}} \leq F_{v}$
(circular section or rectangular)
9. Evaluate the deflection to determine if $\Delta_{\operatorname{maxLL}} \leq \Delta_{L L-\text { allowed }}$ and/or $\Delta_{\text {maxTotal }} \leq \Delta_{T \text {-allowed }}$
**** note: when $\Delta_{\text {calculated }}>\Delta_{\text {limit }} I_{\text {required }}$ can be found with: and $S_{\text {req'd }}$ will be satisfied for similar self weight $* * * * * \quad I_{\text {req'd }} \geq \frac{\Lambda_{\text {limit }}}{I_{\text {trial }}}$
FOR ANY EVALUATION:
Redesign (with a new section) at any point that a stress or serviceability criteria is
NOT satisfied and re-evaluate each condition until it is satisfactory.

## Beam Design Flow Chart



## Steel Design

## Notation:

```
a = name for width dimension
A = name for area
A
A
 product of the net area }\mp@subsup{A}{n}{}\mathrm{ by the
 shear lag factor }
Ag = gross area, equal to the total area
 ignoring any holes
Agv = gross area subjected to shear for
 block shear rupture
An = net area, equal to the gross area
 subtracting any holes, as is }\mp@subsup{A}{\mathrm{ net}}{
Ant = net area subjected to tension for
 block shear rupture
Anv = net area subjected to shear for block
 shear rupture
Aw = area of the web of a wide flange
 section
AISC= American Institute of Steel
 Construction
ASD = allowable stress design
b = name for a (base) width
 = total width of material at a
 horizontal section
 = name for height dimension
bf
 cross section
B}=\mathrm{ factor for determining Mu}\mp@subsup{M}{u}{}\mathrm{ for
 combined bending and compression
c = largest distance from the neutral
 axis to the top or bottom edge of a
 beam
c
 rectangular bar in torsion
Cb}=\mathrm{ modification factor for moment in
 ASD & LRFD steel beam design
C}\mp@subsup{C}{c}{}=\mathrm{ column slenderness classification
 constant for steel column design
Cm}=\mathrm{ modification factor accounting for
 combined stress in steel design
C
d = calculus symbol for differentiation
 = depth of a wide flange section
 = nominal bolt diameter
d
```

$D \quad=$ shorthand for dead load
$D L=$ shorthand for dead load
$e \quad=$ eccentricity
$E \quad=$ shorthand for earthquake load
$=$ modulus of elasticity
$f_{c} \quad=$ axial compressive stress
$f_{b} \quad=$ bending stress
$f_{p}=$ bearing stress
$f_{v}=$ shear stress
$f_{v-\max }=$ maximum shear stress
$f_{y} \quad=$ yield stress
$F \quad=$ shorthand for fluid load
$F_{\text {allow(able })}=$ allowable stress
$F_{a}=$ allowable axial (compressive) stress
$F_{b}=$ allowable bending stress
$F_{c r}=$ flexural buckling stress
$F_{e}=$ elastic critical buckling stress
$F_{E X X}=$ yield strength of weld material
$F_{n}=$ nominal strength in LRFD
$=$ nominal tension or shear strength of a bolt
$F_{p} \quad=$ allowable bearing stress
$F_{t}=$ allowable tensile stress
$F_{u} \quad=$ ultimate stress prior to failure
$F_{v}=$ allowable shear stress
$F_{y} \quad=$ yield strength
$F_{y w}=$ yield strength of web material
F.S. = factor of safety
$g \quad=$ gage spacing of staggered bolt holes
$G \quad=$ relative stiffness of columns to beams in a rigid connection, as is $\Psi$
$h \quad=$ name for a height
$h_{c} \quad=$ height of the web of a wide flange steel section
$H=$ shorthand for lateral pressure load
$I \quad=$ moment of inertia with respect to neutral axis bending
$I_{t r i a l}=$ moment of inertia of trial section
$I_{\text {req'd }}=$ moment of inertia required at limiting deflection
$I_{y} \quad=$ moment of inertia about the y axis
$J=$ polar moment of inertia

$k \quad=\begin{aligned} & \text { distance from outer face of W } \\ & \text { flange to the web toe of fillet }\end{aligned}$
$=$ shape factor for plastic design of
steel beams
$K=$ effective length factor for columns,
as is $k$
$l=$ name for length
$\ell_{b} \quad=$ length of beam in rigid joint
$\ell_{c} \quad=$ length of column in rigid joint
$L \quad=$ name for length or span length
$=$ shorthand for live load
$L_{b} \quad=$ unbraced length of a steel beam
$L_{c} \quad=$ clear distance between the edge of a
hole and edge of next hole or edge
of the connected steel plate in the
direction of the load
column design, as is $\ell_{e}$
$=$ maximum unbraced length of a
steel beam in LRFD design for
melastic lateral-torsional bucking
steel beam in LRFD design for full
plastic flexural strength
with staggered holes
$L L=$ shorthand for live load
$L R F D=$ load and resistance factor design
$M \quad=$ internal bending moment
$M_{a}=$ required bending moment (ASD)
$M_{n} \quad=$ nominal flexure strength with the
full section at the yield stress for
LRFD beam design
$M_{\max }=$ maximum internal bending moment
$M_{\text {max-adj }}=$ maximum bending moment
adjusted to include self weight
$M_{p}=$ internal bending moment when all
fibers in a cross section reach the
yield stress
$M_{u}=$ maximum moment from factored
loads for LRFD beam design
extreme fibers in a cross section
reach the yield stress
$n \quad=$ number of bolts
n.a. = shorthand for neutral axis
$N \quad=$ bearing length on a wide flange steel section
$=$ bearing type connection with threads included in shear plane
$p \quad=$ bolt hole spacing (pitch)
$P \quad=$ name for load or axial force vector
$P_{a}=$ allowable axial force
$=$ required axial force (ASD)
$P_{\text {allowable }}=$ allowable axial force
$P_{c} \quad=$ available axial strength
$P_{e 1}=$ Euler buckling strength
$P_{n}=$ nominal column load capacity in LRFD steel design
$P_{r} \quad=$ required axial force
$P_{u}=$ factored column load calculated from load factors in LRFD steel design
$Q \quad=$ first moment area about a neutral axis
$=$ generic axial load quantity for LRFD design
$r=$ radius of gyration
$r_{y}=$ radius of gyration with respect to a y -axis
$R \quad=$ generic load quantity (force, shear, moment, etc.) for LRFD design
$=$ shorthand for rain or ice load
$=$ radius of curvature of a deformed beam
$R_{a} \quad=$ required strength (ASD)
$R_{n} \quad=$ nominal value (capacity) to be multiplied by $\phi$ in LRFD and divided by the safety factor $\Omega$ in ASD
$R_{u} \quad=$ factored design value for LRFD design
$s \quad=$ longitudinal center-to-center spacing of any two consecutive holes
$S \quad=$ shorthand for snow load
$=$ section modulus
$=$ allowable strength per length of a weld for a given size
$S_{\text {req'd }}=$ section modulus required at allowable stress
$S_{\text {req' } d-a d j}=$ section modulus required at allowable stress when moment is adjusted to include self weight
$S C=$ slip critical bolted connection
$t \quad=$ thickness of the connected material
$t_{f}=$ thickness of flange of wide flange
$t_{w}=$ thickness of web of wide flange
$T \quad=$ torque (axial moment)
$=$ shorthand for thermal load
$=$ throat size of a weld
$U \quad=$ shear lag factor for steel tension member design
$U_{b s}=$ reduction coefficient for block shear rupture
$V \quad=$ internal shear force
$V_{a} \quad=$ required shear (ASD)
$V_{\max }=$ maximum internal shear force
$V_{\text {max-adj }}=$ maximum internal shear force adjusted to include self weight
$V_{n} \quad=$ nominal shear strength capacity for LRFD beam design
$V_{u}=$ maximum shear from factored loads for LRFD beam design
$w \quad=$ name for distributed load
$w_{\text {adjusted }}=$ adjusted distributed load for equivalent live load deflection limit
$w_{\text {equivalent }}=$ the equivalent distributed load derived from the maximum bending moment
$w_{\text {self } w t}=$ name for distributed load from self weight of member
$W=$ shorthand for wind load
$x \quad=$ horizontal distance
$X \quad=$ bearing type connection with threads excluded from the shear plane
$y \quad=$ vertical distance
$Z \quad=$ plastic section modulus of a steel beam
$Z_{x} \quad=$ plastic section modulus of a steel beam with respect to the x axis
$\Delta_{\text {actual }}=$ actual beam deflection
$\Delta_{\text {allowable }}=$ allowable beam deflection
$\Delta_{\text {limit }}=$ allowable beam deflection limit
$\Delta_{\max }=$ maximum beam deflection
$\varepsilon_{y} \quad=$ yield strain (no units)
$\phi \quad=$ resistance factor
= diameter symbol
$\phi_{b} \quad=$ resistance factor for bending for LRFD
$\phi_{c} \quad=$ resistance factor for compression for LRFD
$\phi_{t} \quad=$ resistance factor for tension for LRFD
$\phi_{v} \quad=$ resistance factor for shear for LRFD
$\gamma \quad=$ load factor in LRFD design
$\pi \quad=$ pi (3.1415 radians or $\left.180^{\circ}\right)$
$\theta=$ slope of the beam deflection curve
$\rho \quad=$ radial distance
$\Omega=$ safety factor for ASD
$\int=$ symbol for integration
$\Sigma=$ summation symbol

## Steel Design

Structural design standards for steel are established by the Manual of Steel Construction published by the American Institute of Steel Construction, and uses
Allowable Stress Design and Load and Factor Resistance Design. With the $13^{\text {th }}$ edition, both methods are combined in one volume which provides common requirements for analyses and design and requires the application of the same set of specifications.


## Materials

American Society for Testing Materials (ASTM) is the organization responsible for material and other standards related to manufacturing. Materials meeting their standards are guaranteed to have the published strength and material properties for a designation.

A36 - carbon steel used for plates, angles
A572 - high strength low-alloy use for some beams A992 - for building framing used for most beams
(A572 Grade 50 has the same properties as A992)

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{y}}=36 \mathrm{ksi}, \mathrm{~F}_{\mathrm{u}}=58 \mathrm{ksi}, \mathrm{E}=29,000 \mathrm{ksi} \\
& \mathrm{~F}_{\mathrm{y}}=60 \mathrm{ksi}, \mathrm{~F}_{\mathrm{u}}=75 \mathrm{ksi}, \mathrm{E}=30,000 \mathrm{ksi} \\
& \mathrm{~F}_{\mathrm{y}}=50 \mathrm{ksi}, \mathrm{~F}_{\mathrm{u}}=65 \mathrm{ksi}, \mathrm{E}=30,000 \mathrm{ksi}
\end{aligned}
$$

ASD

$$
R_{a} \leq R_{n} / \Omega
$$

where $\quad R_{a}=$ required strength (dead or live; force, moment or stress)
$\mathrm{R}_{\mathrm{n}}=$ nominal strength specified for ASD
$\Omega=$ safety factor
Factors of Safety are applied to the limit stresses for allowable stress values:

bending (braced, $\mathrm{L}_{\mathrm{b}}<\mathrm{L}_{\mathrm{p}}$ )	$\Omega=1.67$
bending (unbraced, $\mathrm{L}_{\mathrm{p}}<\mathrm{L}_{\mathrm{b}}$ and $\left.\mathrm{L}_{\mathrm{b}}>\mathrm{L}_{\mathrm{r}}\right)$	$\Omega=1.67$ (nominal moment reduces)
shear (beams)	$\Omega=1.5$ or 1.67
shear (bolts)	$\Omega=2.00$ (tabular nominal strength)
shear (welds)	$\Omega=2.00$

- $\quad L_{b}$ is the unbraced length between bracing points, laterally
- $\quad L_{p}$ is the limiting laterally unbraced length for the limit state of yielding
- $\quad \mathrm{L}_{\mathrm{r}}$ is the limiting laterally unbraced length for the limit state of inelastic lateral-torsional buckling

LRFD

$$
\begin{array}{cl}
R_{u} \leq \phi R_{n} & \\
\text { where } & \\
& \phi=\text { resistance factor } \cdots R_{u}=\Sigma \gamma_{i} R_{i} \\
& \gamma=\text { load factor for the type of load } \\
& \mathrm{R}=\text { load (dead or live; force, moment or stress) } \\
& \mathrm{R}_{\mathrm{u}}=\text { factored load (moment or stress) } \\
& \mathrm{R}_{\mathrm{n}}=\text { nominal load (ultimate capacity; force, moment or stress) }
\end{array}
$$

Nominal strength is defined as the
capacity of a structure or component to resist the effects of loads, as determined by computations using specified material strengths (such as yield strength, $\mathrm{F}_{\mathrm{y}}$, or ultimate strength, $\mathrm{F}_{\mathrm{u}}$ ) and dimensions and formulas derived from accepted principles of structural mechanics or by field tests or laboratory tests of scaled models, allowing for modeling effects and differences between laboratory and field conditions

## Factored Load Combinations

The design strength, $\phi R_{n}$, of each structural element or structural assembly must equal or exceed the design strength based on the ASCE-7 (2010) combinations of factored nominal loads:

$$
\begin{aligned}
& 1.4 D \\
& 1.2 D+1.6 L+0.5\left(L_{r} \text { or } S \text { or } R\right) \\
& 1.2 D+1.6\left(L_{r} \text { or } S \text { or } R\right)+(L \text { or } 0.5 W) \\
& 1.2 D+1.0 W+L+0.5\left(L_{r} \text { or } S \text { or } R\right) \\
& 1.2 D+1.0 E+L+0.2 S \\
& 0.9 D+1.0 W \\
& 0.9 D+1.0 E
\end{aligned}
$$

## Criteria for Design of Beams

Allowable normal stress or normal stress from LRFD should not be exceeded:

$$
\begin{gathered}
F_{b} \text { or } \phi F_{n} \geq f_{b}=\frac{M c}{I} \\
\left(M_{a} \leq M_{n} / \Omega \text { or } M_{u} \leq \phi_{b} M_{n}\right)
\end{gathered}
$$

Knowing $M$ and $F_{b}$, the minimum section modulus fitting the limit is:

$$
S_{\text {req'd }} \geq \frac{M}{F_{b}}
$$

## Determining Maximum Bending Moment

Drawing V and M diagrams will show us the maximum values for design. Remember:

$$
\begin{array}{ll}
V=\Sigma(-w) d x \\
M=\Sigma(V) d x & \frac{d V}{d x}=-w
\end{array} \quad \frac{d M}{d x}=V
$$

## Determining Maximum Bending Stress

For a prismatic member (constant cross section), the maximum normal stress will occur at the maximum moment.

For a non-prismatic member, the stress varies with the cross section AND the moment.

## Deflections

If the bending moment changes, $\mathrm{M}(\mathrm{x})$ across a beam of constant material and cross $\frac{1}{R}=\frac{M(x)}{E I}$
section then the curvature will change:
The slope of the n.a. of a beam, $\theta$, will be tangent to the radius of curvature, R:

$$
\theta=\text { slope }=\frac{1}{E I} \int M(x) d x
$$

$$
y=\frac{1}{E I} \int \theta d x=\frac{1}{E I} \iint M(x) d x
$$

Elastic curve equations can be found in handbooks, textbooks, design manuals, etc...Computer programs can be used as well. Elastic curve equations can be superimposed ONLY if the stresses are in the elastic range.

The deflected shape is roughly the same shape flipped as the bending moment diagram but is constrained by supports and geometry.

## Allowable Deflection Limits

All building codes and design codes limit deflection for beam types and damage that could happen based on service condition and severity.

$$
y_{\max }(x)=\Delta_{\text {actual }} \leq \Delta_{\text {allowable }}=L / \text { value }
$$

Use	LL only	DL+LL
Roof beams:		
Industrial	$\mathrm{L} / 180$	$\mathrm{~L} / 120$
Commercial		
plaster ceiling	$\mathrm{L} / 240$	$\mathrm{~L} / 180$
no plaster	$\mathrm{L} / 360$	$\mathrm{~L} / 240$
Floor beams:		
Ordinary Usage	$\mathrm{L} / 360$	$\mathrm{~L} / 240$
Roof or floor (damageable elements)	$\mathrm{L} / 480$	

## Lateral Buckling

With compression stresses in the top of a beam, a sudden "popping" or buckling can happen even at low stresses. In order to prevent it, we need to brace it along the top, or laterally brace it, or provide a bigger $\mathrm{I}_{\mathrm{y}}$.

## Local Buckling in Steel I Beams- Web Crippling or Flange Buckling

Concentrated forces on a steel beam can cause the web to buckle (called web crippling). Web stiffeners under the beam loads and bearing plates at the supports reduce that tendency. Web stiffeners also prevent the web from shearing in plate girders.


The maximum support load and interior load can be determined from:

$$
\begin{aligned}
& P_{n(\text { max -end })}=(2.5 k+N) F_{y w} t_{w} \\
& P_{n \text { (interior) }}=(5 k+N) F_{y w} t_{w}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { where } & t_{w}=\text { thickness of the web } \\
F_{y w}=\text { yield strength of the web } \\
N=\text { bearing length } \\
k=\text { dimension to fillet found in beam section tables }
\end{array}
$$

$$
\phi=1.00(\mathrm{LRFD}) \quad \Omega=1.50(\mathrm{ASD})
$$

## Beam Loads \& Load Tracing

In order to determine the loads on a beam (or girder, joist, column, frame, foundation...) we can start at the top of a structure and determine the tributary area that a load acts over and the beam needs to support. Loads come from material weights, people, and the environment. This area is assumed to be from half the distance to the next beam over to halfway to the next beam.

The reactions must be supported by the next lower structural element ad infinitum, to the ground.

## LRFD - Bending or Flexure

For determining the flexural design strength, $\phi_{b} M_{n}$, for resistance to pure bending (no axial load) in most flexural members where the following conditions exist, a single calculation will suffice:

$$
\begin{aligned}
\Sigma \gamma_{i} R_{i}=M_{u} \leq \phi_{b} M_{n}= & 0.9 F_{y} Z \\
& \\
\text { where } \quad & \mathrm{M}_{\mathrm{u}}=\text { maximum moment from factored loads } \\
& \phi_{\mathrm{b}}=\text { resistance factor for bending }=0.9 \\
& \left.\mathrm{M}_{\mathrm{n}}=\text { nominal moment (ultimate capacity }\right) \\
& \mathrm{F}_{\mathrm{y}}=\text { yield strength of the steel } \\
& \mathrm{Z}=\text { plastic section modulus }
\end{aligned}
$$

## Plastic Section Modulus

Plastic behavior is characterized by a yield point and an increase in strain with no increase in stress.



Instability from Plastic


Fully Plastic: $\quad M_{u l t}$ or $M_{p}=b c^{2} f_{y}=3 / 2 M_{y}$

For a non-rectangular section and internal equilibrium at $\sigma_{y}$, the n.a. will not necessarily be at the centroid. The n.a. occurs where the $\mathrm{A}_{\text {tension }}=\mathrm{A}_{\text {compression }}$. The reactions occur at the centroids of the tension and compression areas.
Elastic to $f_{y}$ : $\quad M_{y}=\frac{I}{c} f_{y}=\frac{b h^{2}}{6} f_{y}=\frac{b(2 c)^{2}}{6} f_{y}=\frac{2 b c^{2}}{3} f_{y}$

## Hinges



Shape Factor:
The ratio of the plastic moment to the elastic moment at yield:

$$
k=M_{p} / M_{y}
$$

$$
\begin{aligned}
& k=3 / 2 \text { for a rectangle } \\
& k \approx 1.1 \text { for an } I \text { beam }
\end{aligned}
$$

Plastic Section Modulus

$$
Z=\frac{M_{p}}{f_{y}} \quad \text { and } \quad k=Z / S
$$

## Design for Shear

$$
V_{a} \leq V_{n} / \Omega \text { or } V_{u} \leq \phi_{v} V_{n}
$$

The nominal shear strength is dependent on the cross section shape. Case 1: With a thick or stiff web, the shear stress is resisted by the web of a wide flange shape (with the exception of a handful of W's). Case 2: When the web is not stiff for doubly symmetric shapes, singly symmetric shapes (like channels) (excluding round high strength steel shapes), inelastic web buckling occurs. When the web is very slender, elastic web buckling occurs, reducing the capacity even more:

Case 1) For $h / t_{w} \leq 2.24 \sqrt{\frac{E}{F_{y}}} \quad V_{n}=0.6 F_{y w} A_{w} \quad \phi_{\mathrm{v}}=1.00(\mathrm{LRFD}) \quad \Omega=1.50(\mathrm{ASD})$
where $h$ equals the clear distance between flanges less the fillet or corner radius for rolled shapes
$\mathrm{V}_{\mathrm{n}}=$ nominal shear strength
$\mathrm{F}_{\mathrm{yw}}=$ yield strength of the steel in the web
$A_{w}=t_{w} d=$ area of the web
Case 2) For $h / t_{w}>2.24 \sqrt{\frac{E}{F_{y}}} \quad V_{n}=0.6 F_{y w} A_{w} C_{v} \quad \phi_{\mathrm{v}}=0.9(\mathrm{LRFD}) \quad \Omega=1.67(\mathrm{ASD})$
where $\mathrm{C}_{\mathrm{v}}$ is a reduction factor (1.0 or less by equation)

## Design for Flexure

$$
M_{a} \leq M_{n} / \Omega \text { or } M_{u} \leq \phi_{b} M_{n} \quad \phi_{\mathrm{b}}=0.90(\mathrm{LRFD}) \quad \Omega=1.67(\mathrm{ASD})
$$

The nominal flexural strength $\mathrm{M}_{\mathrm{n}}$ is the lowest value obtained according to the limit states of

1. yielding, limited at length $L_{p}=1.76 r_{y} \sqrt{\frac{E}{F_{y}}}$, where $\mathrm{r}_{\mathrm{y}}$ is the radius of gyration in $y$
2. lateral-torsional buckling limited at length $L_{r}$
3. flange local buckling
4. web local buckling

Beam design charts show available moment, $M_{n} / \Omega$ and $\phi_{b} M_{n}$, for unbraced length, $L_{b}$, of the compression flange in one-foot increments from 1 to 50 ft . for values of the bending coefficient $\mathrm{C}_{\mathrm{b}}=1$. For values of $1<\mathrm{C}_{\mathrm{b}} \leq 2.3$, the required flexural strength $\mathrm{M}_{\mathrm{u}}$ can be reduced by dividing it by $\mathrm{C}_{\mathrm{b}} . \quad\left(\mathrm{C}_{\mathrm{b}}=1\right.$ when the bending moment at any point within an unbraced length is larger than that at both ends of the length. $\mathrm{C}_{\mathrm{b}}$ of 1 is conservative and permitted to be used in any case. When the free end is unbraced in a cantilever or overhang, $\mathrm{C}_{\mathrm{b}}=1$. The full formula is provided below.)

NOTE: the self weight is not included in determination of $M_{n} / \Omega \phi_{b} M_{n}$

## Compact Sections

For a laterally braced compact section (one for which the plastic moment can be reached before local buckling) only the limit state of yielding is applicable. For unbraced compact beams and non-compact tees and double angles, only the limit states of yielding and lateral-torsional buckling are applicable.
Compact sections meet the following criteria: $\frac{b_{f}}{2 t_{f}} \leq 0.38 \sqrt{\frac{E}{F_{y}}}$ and $\frac{h_{c}}{t_{w}} \leq 3.76 \sqrt{\frac{E}{F_{y}}}$ where:
$b_{f}=$ flange width in inches
$t_{f}=$ flange thickness in inches
$E=$ modulus of elasticity in ksi
$F_{y}=$ minimum yield stress in ksi
$h_{c}=$ height of the web in inches
$t_{w}=$ web thickness in inches

With lateral-torsional buckling the nominal flexural strength is

$$
M_{n}=C_{b}\left[M_{p}-\left(M_{p}-0.7 F_{y} S_{x}\right)\left(\frac{L_{b}-L_{p}}{L_{r}-L_{p}}\right)\right] \leq M_{p}
$$


where $\mathrm{C}_{\mathrm{b}}$ is a modification factor for non-uniform moment
diagrams where, when both ends of the beam segment are braced:

$$
C_{b}=\frac{12.5 M_{\max }}{2.5 M_{\max }+3 M_{A}+4 M_{B}+3 M_{C}}
$$

$\mathrm{M}_{\text {max }}=$ absolute value of the maximum moment in the unbraced beam segment $\mathrm{M}_{\mathrm{A}}=$ absolute value of the moment at the quarter point of the unbraced beam segment $\mathrm{M}_{\mathrm{B}}=$ absolute value of the moment at the center point of the unbraced beam segment $\mathrm{M}_{\mathrm{C}}=$ absolute value of the moment at the three quarter point of the unbraced beam segment length.

## Available Flexural Strength Plots

Plots of the available moment for the unbraced length for wide flange sections are useful to find sections to satisfy the design criteria of $M_{a} \leq M_{n} / \Omega$ or $M_{u} \leq \phi_{b} M_{n}$. The maximum moment that can be applied on a beam (taking self weight into account), $\mathrm{M}_{\mathrm{a}}$ or $\mathrm{M}_{\mathrm{u}}$, can be plotted against the unbraced length, $\mathrm{L}_{\mathrm{b}}$. The limiting length, $\mathrm{L}_{\mathrm{p}}$ (fully plastic), is indicated by a solid $\operatorname{dot}(\bullet)$, while the limiting length, $\mathrm{L}_{\mathrm{r}}$ (for lateral torsional buckling), is indicated by an open dot ( O ). Solid lines indicate the most economical, while dashed lines indicate there is a lighter section that could be used. $\mathrm{C}_{\mathrm{b}}$, which is a modification factor for non-zero moments at the ends, is 1 for simply supported beams ( 0 moments at the ends). (see figure)


## Design Procedure

The intent is to find the most light weight member (which is economical) satisfying the section modulus size.

1. Determine the unbraced length to choose the limit state (yielding, lateral torsional buckling or more extreme) and the factor of safety and limiting moments. Determine the material.
2. Draw V \& M , finding $\mathrm{V}_{\text {max }}$ and $\mathrm{M}_{\text {max }}$.for unfactored loads (ASD, $V_{a} \& M_{a}$ ) or from factored loads (LRFD, $V_{u} \& M_{u}$ )
3. Calculate $\mathrm{Z}_{\text {req'd }}$ when yielding is the limit state. This step is equivalent to determining if $f_{b}=\frac{M_{\max }}{S} \leq F_{b}, Z_{\text {req'd }} \geq \frac{M_{\max }}{F_{b}}=\frac{M_{\max }}{F_{y} / \Omega}$ and $Z_{\text {req'd }} \geq \frac{M_{u}}{\phi_{b} F_{y}}$ to meet the design criteria that

$$
M_{a} \leq M_{n} / \Omega \text { or } M_{u} \leq \phi_{b} M_{n}
$$

If the limit state is something other than yielding, determine the nominal moment, $\mathrm{M}_{\mathrm{n}}$, or use plots of available moment to unbraced length, $L_{b}$.
4. For steel: use the section charts to find a trial Z and remember that the beam self weight (the second number in the section designation) will increase $Z_{\text {req'd. }}$. The design charts show the lightest section within a grouping of similar Z's.

TABLE 9.1 Load Factor Resistance Design Selection

		$F_{y}=36 \mathrm{ksi}$			
Designation	$Z_{x_{x}}$	$L_{p}$	$L_{r}$	$M_{p}$	$M_{r}$
ft	ft	kip-ft	kip-ft		
$\mathbf{W} \mathbf{3 3 \times 1 4 1}$	$\mathbf{5 1 4}$	$\mathbf{1 0 . 1}$	$\mathbf{3 0 . 1}$	$\mathbf{1 , 5 4 2}$	$\mathbf{9 7 1}$
W $30 \times 148$	500	9.50	30.6	1,500	945
W $24 \times 162$	468	12.7	45.2	1,404	897
W $24 \times 146$	418	12.5	42.0	1,254	804
W 33 $\times \mathbf{1 1 8}$	$\mathbf{4 1 5}$	$\mathbf{9 . 6 7}$	$\mathbf{2 7 . 8}$	$\mathbf{1 , 2 4 5}$	$\mathbf{7 7 8}$
W 30 $\times 124$	408	9.29	28.2	1,224	769
W $21 \times 147$	373	12.3	46.4	1,119	713
W $24 \times 131$	370	12.4	39.3	1,110	713
W $18 \times 158$	356	11.4	56.5	1,068	672

5. Consider lateral stability.
6. Evaluate horizontal shear using $\mathrm{V}_{\text {max }}$. This step is equivalent to determining if $f_{v} \leq F_{v}$ is satisfied to meet the design criteria that $V_{a} \leq V_{n} / \Omega$ or $V_{u} \leq \phi_{v} V_{n}$
For I beams: $\quad f_{v-\max }=\frac{3 V}{2 A} \approx \frac{V}{A_{w e b}}=\frac{V}{t_{w} d} \quad V_{n}=0.6 F_{y w} A_{w} \quad$ or $V_{n}=0.6 F_{y w} A_{w} C_{v}$
Others: $\quad f_{v-\max }=\frac{V Q}{I b}$
7. Provide adequate bearing area at supports. This step is equivalent to determining if $f_{p}=\frac{P}{A} \leq F_{p}$ is satisfied to meet the design criteria that $P_{a} \leq P_{n} / \Omega$ or $P_{u} \leq \phi P_{n}$
8. Evaluate shear due to torsion $\quad f_{v}=\frac{T \rho}{J}$ or $\frac{T}{c_{1} a b^{2}} \leq F_{v}$ (circular section or rectangular)
9. Evaluate the deflection to determine if $\Delta_{\text {maxLL }} \leq \Delta_{L L-a l l o w e d ~}$ and/or $\Delta_{\text {maxTotal }} \leq \Delta_{\text {Totalallowed }}$
$\begin{aligned} & * * * * \text { note: when } \Delta_{\text {calculated }}>\Delta_{\text {limit, }} I_{\text {req'd }} \text { can be found with: } \\ & \quad \text { and } Z_{\text {req'd }} \text { will be satisfied for similar self weight } * * * * *\end{aligned} \quad I_{\text {req'd }} \geq \frac{\Delta_{\text {toobig }}}{\Delta_{\text {limit }}} I_{\text {trial }}$

## FOR ANY EVALUATION:

Redesign (with a new section) at any point that a stress or serviceability criteria is NOT satisfied and re-evaluate each condition until it is satisfactory.

## Load Tables for Uniformly Loaded Joists \& Beams

Tables exist for the common loading situation of uniformly distributed load. The tables either provide the safe distributed load based on bending and deflection limits, they give the allowable span for specific live and dead loads including live load deflection limits. If the load is not uniform, an equivalent uniform load can be calculated from the maximum moment equation:

$$
M_{\max }=\frac{w_{\text {equivalent }} L^{2}}{8}
$$

If the deflection limit is less, the design live load to check against allowable must be increased, ex.

$$
w_{\text {adjusted }}=w_{\text {ll-have }}\left(\frac{L / 360}{L / 400}\right) l_{\text {wanted }}^{\text {table limit }}
$$

## Criteria for Design of Columns

If we know the loads, we can select a section that is adequate for strength \& buckling.
If we know the length, we can find the limiting load satisfying strength \& buckling.


## Allowable Stress Design

## American Institute of Steel Construction (AISC) Manual of ASD, $\boldsymbol{9}^{\text {th }}$ ed:

Long and slender: [ $\mathrm{L}_{\mathrm{e}} / \mathrm{r} \geq \mathrm{C}_{\mathrm{c}}$, preferably $<200$ ]

$$
F_{\text {allowable }}=\frac{F_{c r}}{F . S .}=\frac{12 \pi^{2} E}{23(K l / r)^{2}}
$$

The yield limit is idealized into a parabolic curve that blends into the Euler's Formula at $\mathrm{C}_{\mathrm{c}}$.
With $\mathrm{F}_{\mathrm{y}}=36$ ksi, $\mathrm{C}_{\mathrm{c}}=126.1$
With $\mathrm{F}_{\mathrm{y}}=50$ ksi, $\mathrm{C}_{\mathrm{c}}=107.0$

$$
C_{c}=\sqrt{\frac{2 \pi^{2} E}{F_{y}}}
$$

Short and stubby: $\left[\mathrm{L}_{\mathrm{e}} / \mathrm{r}<\mathrm{C}_{\mathrm{c}}\right.$ ]

$$
F_{a}=\left[1-\frac{(K l / r)^{2}}{2 C_{c}^{2}}\right] \frac{F_{y}}{F . S}
$$

with:

$$
F . S .=\frac{5}{3}+\frac{3(K l / r)}{8 C_{c}}-\frac{(K l / r)^{3}}{8 C_{c}^{3}}
$$



Design for Compression

## American Institute of Steel Construction (AISC) Manual $14^{\text {th }} \mathrm{ed}$ :

$$
P_{a} \leq P_{n} / \Omega \text { or } P_{u} \leq \phi_{c} P_{n} \quad \text { where } P_{u}=\Sigma \gamma_{i} P_{i}
$$

$\gamma$ is a load factor
P is a load type
$\phi$ is a resistance factor
$P_{n}$ is the nominal load capacity (strength)

$$
\phi=0.90(\mathrm{LRFD}) \quad \Omega=1.67(\mathrm{ASD})
$$

For compression $\quad P_{n}=F_{c r} A_{g}$
where : $\quad \mathrm{A}_{\mathrm{g}}$ is the cross section area and $\mathrm{F}_{\text {cr }}$ is the flexural buckling stress

The flexural buckling stress, $F_{c r}$, is determined as follows:

$$
\begin{aligned}
& \text { when } \frac{K L}{r} \leq 4.71 \sqrt{\frac{E}{F_{y}}} \text { or }\left(F_{e} \geq 0.44 F_{y}\right) \text { : } \\
& \qquad F_{c r}=\left[0.658^{\frac{F_{y}}{F_{e}}}\right] F_{y} \\
& \text { when } \frac{K L}{r}>4.71 \sqrt{\frac{E}{F_{y}}} \text { or }\left(F_{e}<0.44 F_{y}\right) \text { : } \\
& F_{c r}=0.877 F_{e}
\end{aligned}
$$

where $F_{e}$ is the elastic critical buckling stress: $\quad F_{e}=\frac{\pi^{2} E}{(K L / r)^{2}}$

## Design Aids

Tables exist for the value of the flexural buckling stress based on slenderness ratio. In addition, tables are provided in the AISC Manual for Available Strength in Axial Compression based on the effective length with respect to least radius of gyration, $r_{y}$. If the critical effective length is about the largest radius of gyration, $r_{\mathrm{x}}$, it can be turned into an effective length about the y axis with the fraction $r_{x} / r_{y}$.


## Procedure for Analysis

1. Calculate $\mathrm{KL} / \mathrm{r}$ for each axis (if necessary). The largest will govern the buckling load.
2. Find $\mathrm{F}_{\mathrm{a}}$ or $\mathrm{F}_{\mathrm{cr}}$ as a function of $\mathrm{KL} / \mathrm{r}$ from the appropriate equation (above) or table.
3. Compute $\mathrm{P}_{\text {allowable }}=\mathrm{F}_{\mathrm{a}} \cdot \mathrm{A}$ or $\mathrm{P}_{\mathrm{n}}=\mathrm{F}_{\mathrm{cr}} \cdot \mathrm{A}_{\mathrm{g}}$ or alternatively compute $f_{c}=P / A$ or $P_{u} / A$
4. Is the design satisfactory?

Is $\mathrm{P} \leq \mathrm{P}_{\text {allowable }}$ ( or $P_{a} \leq P_{n} / \Omega$ ) or $\mathrm{P}_{\mathrm{u}} \leq \phi_{\mathrm{c}} \mathrm{P}_{\mathrm{n}}$ ? $\Rightarrow$ yes, it is; no, it is no good
or Is $\mathrm{f}_{\mathrm{c}} \leq \mathrm{F}_{\mathrm{a}}\left(\right.$ or $\left.\leq F_{c r} / \Omega\right)$ or $\phi_{\mathrm{c}} \mathrm{F}_{\mathrm{cr}}$ ? $\Rightarrow$ yes, it is; no, it is no good

## Procedure for Design

1. Guess a size by picking a section.
2. Calculate $\mathrm{KL} / \mathrm{r}$ for each axis (if necessary). The largest will govern the buckling load.
3. Find $\mathrm{F}_{\mathrm{a}}$ or $\mathrm{F}_{\mathrm{cr}}$ as a function of $\mathrm{KL} / \mathrm{r}$ from appropriate equation (above) or table.
4. Compute $\mathrm{P}_{\text {allowable }}=\mathrm{F}_{\mathrm{a}} \cdot \mathrm{A}$ or $\mathrm{P}_{\mathrm{n}}=\mathrm{F}_{\text {cr }} \cdot \mathrm{A}_{\mathrm{g}}$
or alternatively compute $f_{c}=P / A$ or $P_{u} / A$
5. Is the design satisfactory?

Is $\mathrm{P} \leq \mathrm{P}_{\text {allowable }}\left(P_{a} \leq P_{n} / \Omega\right)$ or $\mathrm{P}_{\mathrm{u}} \leq \phi_{\mathrm{c}} \mathrm{P}_{\mathrm{n}}$ ? yes, it is; no, pick a bigger section and go back to step 2.

Is $\mathrm{f}_{\mathrm{c}} \leq \mathrm{F}_{\mathrm{a}}\left(\leq F_{c r} / \Omega\right)$ or $\phi_{\mathrm{c}} \mathrm{F}_{\mathrm{cr}}$ ? $\Rightarrow$ yes, it is; no, pick a bigger section and go back to step 2.
6. Check design efficiency by calculating percentage of stress used:=

$$
\frac{P}{P_{\text {allowable }}} \cdot 100 \%\left(\frac{P_{a}}{P_{n} / \Omega} \cdot 100 \%\right) \text { or } \frac{P_{u}}{\phi_{c} P_{n}} \cdot 100 \%
$$

If value is between $90-100 \%$, it is efficient.
If values is less than $90 \%$, pick a smaller section and go back to step 2 .

## Columns with Bending (Beam-Columns)

In order to design an adequate section for allowable stress, we have to start somewhere:

1. Make assumptions about the limiting stress from:

- buckling
- axial stress
- combined stress

2. See if we can find values for $\underline{r}$ or $\underline{A}$ or $\underline{Z}$
3. Pick a trial section based on if we think r or A is going to govern the section size.
4. Analyze the stresses and compare to allowable using the allowable stress method or interaction formula for eccentric columns.
5. Did the section pass the stress test?

- If not, do you increase r or A or Z ?
- If so, is the difference really big so that you could decrease r or A or Z to make it more efficient (economical)?

6. Change the section choice and go back to step 4. Repeat until the section meets the stress criteria.

## Design for Combined Compression and Flexure:

The interaction of compression and bending are included in the form for two conditions based on the size of the required axial force to the available axial strength. This is notated as $P_{r}$ (either P from ASD or $\mathrm{P}_{\mathrm{u}}$ from LRFD) for the axial force being supported, and $P_{c}$ (either $P_{n} / \Omega$ for ASD or $\phi_{c} P_{n}$ for LRFD). The increased bending moment due to the $\mathrm{P}-\Delta$ effect must be determined and used as the moment to resist.

For $\frac{P_{r}}{P_{c}} \geq 0.2: \quad \frac{P}{P_{n} / \Omega}+\frac{8}{9}\left(\frac{M_{x}}{M_{n x} / \Omega}+\frac{M_{y}}{M_{n y} / \Omega}\right) \leq 1.0 \quad \frac{P_{u}}{\phi_{c} P_{n}}+\frac{8}{9}\left(\frac{M_{u x}}{\phi_{b} M_{n x}}+\frac{M_{u y}}{\phi_{b} M_{n y}}\right) \leq 1.0$
(ASD)
For $\frac{P_{r}}{P_{c}}<0.2: \quad \frac{P}{2 P_{n} / \Omega}+\left(\frac{M_{x}}{M_{n x} / \Omega}+\frac{M_{y}}{M_{n y} / \Omega}\right) \leq 1.0 \quad \frac{P_{u}}{2 \phi_{c} P_{n}}+\left(\frac{M_{u x}}{\phi_{b} M_{n x}}+\frac{M_{u y}}{\phi_{b} M_{n y}}\right) \leq 1.0$
(ASD)
where:
for compression $\quad \phi_{\mathrm{c}}=0.90(\mathrm{LRFD}) \quad \Omega=1.67(\mathrm{ASD})$ for bending $\quad \phi_{\mathrm{b}}=0.90(\mathrm{LRFD}) \quad \Omega=1.67(\mathrm{ASD})$
For a braced condition, the moment magnification factor $B_{l}$ is determined by $B_{1}=\frac{C_{m}}{1-\left(P_{u} / P_{e 1}\right)} \geq 1.0$ where $C_{m}$ is a modification factor accounting for end conditions

When not subject to transverse loading between supports in plane of bending:
$=0.6-0.4\left(\mathrm{M}_{1} / \mathrm{M}_{2}\right)$ where $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$ are the end moments and $\mathrm{M}_{1}<\mathrm{M}_{2} . \mathrm{M}_{1} / \mathrm{M}_{2}$ is positive when the member is bent in reverse curvature (same direction), negative when bent in single curvature.
When there is transverse loading between the two ends of a member:
$=0.85$, members with restrained (fixed) ends
$=1.00$, members with unrestrained ends
$\mathrm{P}_{\mathrm{el}}=$ Euler buckling strength

$$
P_{e 1}=\frac{\pi^{2} E A}{(K l / r)^{2}}
$$

## Criteria for Design of Connections

Connections must be able to transfer any axial force, shear, or moment from member to member or from beam to column.

Connections for steel are typically high strength bolts and electric arc welds. Recommended practice for ease of construction is to specified shop welding and field bolting.


Fig. C-J4.1. Failure for block shear rupture limit state.

## Bolted and Welded Connections

The limit state for connections depends on the loads:

(a)

(b)

Fig. C-J4.2. Block shear rupture in tension.

4. bending yielding due to eccentric loads
5. rupture

Welds must resist shear stress. The design strengths depend on the weld materials.


## Bolted Connection Design

Bolt designations signify material and type of connection where
SC: slip critical
N : bearing-type connection with bolt threads included in shear plane
X: bearing-type connection with bolt threads excluded from shear plane
A307: similar in strength to A36 steel (also known as ordinary, common or unfinished bolts)
A325: high strength bolts
A490: high strength bolts (higher than A325)

Bearing-type connection: no frictional resistance in the contact surfaces is assumed and slip between members occurs as the load is applied. (Load transfer through bolt only).
Slip-critical connections: bolts are torqued to a high tensile stress in the shank, resulting in a clamping force on the connected parts. (Shear resisted by clamping force).
Requires inspections and is useful for structures seeing dynamic or fatigue loading.
Bolts rarely fail in bearing. The material with the hole will more likely yield first.
For the determination of the net area of a bolt hole the width is taken as $1 / 16$ " greater than the nominal dimension of the hole. Standard diameters for bolt holes are $1 / 16$ " larger than the bolt diameter. (This means the net width will be $1 / 8$ " larger than the bolt.)

## Design for Bolts in Bearing, Shear and Tension

Available shear values are given by bolt type, diameter, and loading (Single or Double shear) in AISC manual tables. Available shear value for slip-critical connections are given for limit states of serviceability or strength by bolt type, hole type (standard, short-slotted, long-slotted or oversized), diameter, and loading. Available tension values are given by bolt type and diameter in AISC manual tables.

Available bearing force values are given by bolt diameter, ultimate tensile strength, $\mathrm{F}_{\mathrm{u}}$, of the connected part, and thickness of the connected part in AISC manual tables.

For shear OR tension (same equation) in bolts:
$R_{a} \leq R_{n} / \Omega$ or $R_{u} \leq \phi R_{n}$ where $R_{u}=\Sigma \gamma_{i} R_{i}$

- single shear (or tension) $\quad R_{n}=F_{n} A_{b}$
- double shear $\quad R_{n}=F_{n} 2 A_{b}$
where $\phi=$ the resistance factor
$\mathrm{F}_{\mathrm{n}}=$ the nominal tension or shear strength of the bolt
$\mathrm{A}_{\mathrm{b}}=$ the cross section area of the bolt

$$
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
$$

For bearing of plate material at bolt holes:

$$
\begin{aligned}
& R_{a} \leq R_{n} / \Omega \text { or } R_{u} \leq \phi R_{n} \\
& \text { where } R_{u}=\Sigma \gamma_{i} R_{i}
\end{aligned}
$$

- deformation at bolt hole is a concern

$$
R_{n}=1.2 L_{c} t F_{u} \leq 2.4 d t F_{u}
$$

- deformation at bolt hole is not a concern

$$
R_{n}=1.5 L_{c} t F_{u} \leq 3.0 d t F_{u}
$$



Figure 10.11 End tear-out.

- long slotted holes with the slot perpendicular to the load

$$
R_{n}=1.0 L_{c} t F_{u} \leq 2.0 d t F_{u}
$$

where $\quad R_{n}=$ the nominal bearing strength
$\mathrm{F}_{\mathrm{u}}=$ specified minimum tensile strength
$\mathrm{L}_{\mathrm{c}}=$ clear distance between the edges of the hole and the next hole or edge in the direction of the load
$\mathrm{d}=$ nominal bolt diameter
$t=$ thickness of connected material

$$
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
$$

The minimum edge desistance from the center of the outer most bolt to the edge of a member is generally $13 / 4$ times the bolt diameter for the sheared edge and $11 / 4$ times the bolt diameter for the rolled or gas cut edges.

The maximum edge distance should not exceed 12 times the thickness of thinner member or 6 in . Standard bolt hole spacing is 3 in . with the minimum spacing of $22 / 3$ times the diameter of the bolt, $d_{b}$. Common edge distance from the center of last hole to the edge is $1 \frac{1}{4} \mathrm{in}$..

## Tension Member Design

In steel tension members, there may be bolt holes that reduce the size of the cross section.

$g$ refers to the row spacing or gage
$p$ refers to the bolt spacing or pitch
$s$ refers to the longitudinal spacing of two consecutive holes

## Effective Net Area:

The smallest effective are must be determined by subtracting the bolt hole areas. With staggered holes, the shortest length must be evaluated.
A series of bolts can also transfer a portion of the tensile force, and some of the effective net areas see reduced stress.

The effective net area, $A_{e}$, is determined from the net area, $A_{n}$, multiplied by a shear lag factor, $U$, which depends on the element type and connection configuration. If a portion of a connected member is not fully connected (like the leg of an angle), the unconnected part is not subject to the full stress and the shear lag factor can range from 0.6 to 1.0: $\quad A_{e}=A_{n} U$


The staggered hole path area is determined by:

$$
A_{n}=A_{g}-A_{\text {of all holes }}+t \Sigma \frac{s^{2}}{4 g}
$$


where $t$ is the plate thickness, $s$ is each stagger spacing, and $g$ is the gage spacing.

## For tension elements:

$$
\begin{gathered}
R_{a} \leq R_{n} / \Omega \text { or } R_{u} \leq \phi R_{n} \\
\text { where } R_{u}=\Sigma \gamma_{i} R_{i}
\end{gathered}
$$

1. yielding

$$
R_{n}=F_{y} A_{g}
$$

$$
\phi=0.90(\mathrm{LRFD}) \quad \Omega=1.67(\mathrm{ASD})
$$

2. rupture

$$
\begin{gathered}
R_{n}=F_{u} A_{e} \\
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
\end{gathered}
$$

where $\quad A_{g}=$ the gross area of the member
(excluding holes)
$\mathrm{A}_{\mathrm{e}}=$ the effective net area (with holes, etc.)
$\mathrm{F}_{\mathrm{y}}=$ the yield strength of the steel
$\mathrm{F}_{\mathrm{u}}=$ the tensile strength of the steel (ultimate)

## Welded Connections

Weld designations include the strength in the name, i.e. E70XX has Fy $=70$ ksi. Welds are weakest in shear and are assumed to always fail in the shear mode.

The throat size, T , of a fillet weld is determined trigonometry by: $\mathrm{T}=0.707 \times$ weld size*

* When the submerged arc weld process is used, welds over $3 / 8$ " will have a throat thickness of 0.11 in . larger than the formula.

Weld sizes are limited by the size of the parts being put together and are given in AISC manual table J2.4 along with the allowable strength per length of fillet weld,
 referred to as $S$.

The maximum size of a fillet weld:
a) can't be greater than the material thickness if it is $1 / 4$ " or less
b) is permitted to be $1 / 16$ " less than the thickness of the material if it is over $1 / 4$ "


The minimum length of a fillet weld is 4 times the nominal size. If it is not, then the weld size used for design is $1 / 4$ the length.

Intermittent fillet welds cannot be less than four times the weld size, not to be less than $11 / 2$ ".

TABLE J2.4
Minimum Size of Fillet Welds

Material Thickness of Thicker   Part Joined (in.)	Minimum Size of Fillet   Weld $^{\mathrm{a}}$ (in.)
To $1 / 4$ inclusive	$1 / 8$
Over $1 / 4$ to $1 / 2$	$3 / 16$
Over $1 / 2$ to $3 / 4$	$1 / 4$
Over $3 / 4$	$5 / 18$
Leg dimension of fillet welds. Single-pass welds must be used.	

American Institute of Steel Construction
For fillet welds: $\quad R_{a} \leq R_{n} / \Omega$ or $R_{u} \leq \phi R_{n}$ where $R_{u}=\Sigma \gamma_{i} R_{i}$

Available Strength of Fillet Welds   per inch of weld $(\phi S)$		
Weld Size   (in.)	E60XX   (k/in.)	E70XX   (k/in.)
$3 / 16$	3.58	4.18
$1 / 4$	4.77	5.57
$5 / 16$	5.97	6.96
$3 / 8$	7.16	8.35
$7 / 16$	8.35	9.74
$1 / 2$	9.55	11.14
$5 / 8$	11.93	13.92
$3 / 4$	14.32	16.70

(not considering increase in throat with submerged arc weld process)

## Framed Beam Connections

Coping is the term for cutting away part of the flange to connect a beam to another beam using welded or bolted angles.


AISC provides tables that give bolt and angle available strength knowing number of bolts, bolt type, bolt diameter, angle leg thickness, hole type and coping, and the wide flange beam being connected. For the connections the limit-state of bolt shear, bolts bearing on the angles, shear yielding of the angles, shear rupture of the angles, and block shear rupture of the angles, and bolt bearing on the beam web are considered.

Group A bolts include A325, while Group B includes A490.

There are also tables for bolted/welded double-angle connections and all-welded double-angle connections.

(a)

(b)

## Sample AISC Table for Bolt and Angle Available Strength in All-Bolted Double-Angle Connections



## Limiting Strength or Stability States

In addition to resisting shear and tension in bolts and shear in welds, the connected materials may be subjected to shear, bearing, tension, flexure and even prying action. Coping can significantly reduce design strengths and may require web reinforcement. All the following must be considered:

- shear yielding
- shear rupture
- block shear rupture -
failure of a block at a beam as a result of shear and tension
- tension yielding
- tension rupture

- local web buckling
- lateral torsional buckling

Block Shear Strength (or Rupture):

$$
R_{a} \leq R_{n} / \Omega \text { or } R_{u} \leq \phi R_{n}
$$

$$
\text { where } R_{u}=\Sigma \gamma_{i} R_{i}
$$

$$
R_{n}=0.6 F_{u} A_{n v}+U_{b s} F_{u} A_{n t} \leq 0.6 F_{y} A_{g v}+U_{b s} F_{u} A_{n t}
$$

$$
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
$$

where:
$A_{n v}$ is the net area subjected to shear
$A_{n t}$ is the net area subjected to tension
$A_{g v}$ is the gross area subjected to shear
$U_{b s}=1.0$ when the tensile stress is uniform (most cases)
$=0.5$ when the tensile stress is non-uniform

## Gusset Plates

Gusset plates are used for truss member connections where the geometry prevents the members from coming together at the joint "point". Members being joined are typically double angles.

## Decking

Shaped, thin sheet-steel panels that span several joists or evenly spaced support behave as continuous beams. Design tables consider a " 1 unit" wide strip across the supports and determine maximum bending moment and deflections in order to provide allowable loads depending on the depth of the material.
The other structural use of decking is to construct what is called a diaphragm, which is a horizontal unit tying the decking to the joists that resists forces parallel to the surface of the diaphragm.

When decking supports a concrete topping or floor, the steel-concrete construction is called composite.

## Frame Columns

Because joints can rotate in frames, the effective length of the column in a frame is harder to determine. The stiffness (EI/L) of each member in a joint determines how rigid or flexible it is. To find k , the relative stiffness, G or $\Psi$, must be found for both ends, plotted on the alignment charts, and connected by a line for braced and unbraced fames.

$$
G=\Psi=\frac{\Sigma E I / l_{c}}{\Sigma E I / l_{b}}
$$

where

$\mathrm{E}=$ modulus of elasticity for a member
$\mathrm{I}=$ moment of inertia of for a member
$l_{c}=$ length of the column from center to center
$l_{\mathrm{b}}=$ length of the beam from center to center

- For pinned connections we typically use a value of 10 for $\Psi$.
- For fixed connections we typically use a value of 1 for $\Psi$.


Braced - non-sway frame


Unbraced - sway frame

(a)

Nonsway Frames

(b)

Sway Frames

Example 1 (pg 330)
*Hypothetically determine the size of section required when the deflection criteria is NOT met

## Example Problem 9.16 (Figures 9.76 to 9.78)

A steel beam (A572/50) is loaded as shown. Assuming a deflection requirement of $\Delta_{\text {total }}=L / 240$ and a depth restriction of $18^{\prime \prime}$ nominal, select the most economical section. (unified ASD)

$$
F_{b}=30 \mathrm{ksi} ; F_{v}=20 \mathrm{ksi} ; E=30 \times 10^{3} \mathrm{ksi} \quad F_{y}=50 \mathrm{ksi}
$$



## Example 2

## Given:

Select an ASTM A992 W-shape beam with a simple span of 35 feet. Limit the member to a maximum nominal depth of 18 in . Limit the live load deflection to $L / 360$. The nominal loads are a uniform dead load of $0.45 \mathrm{kip} / \mathrm{ft}$ and a uniform live load of $0.75 \mathrm{kip} / \mathrm{ft}$. Assume the beam is continuously braced. Use ASD of the Unified Design method.


Beam Loading \& Bracing Diagram
(full lateral support)

## Solution:

## Material Properties:

$$
\text { ASTM A992 } \quad F_{y}=50 \mathrm{ksi} \quad F_{u}=65 \mathrm{ksi}
$$

1. The unbraced length is 0 because it says it is fully braced.
2. Find the maximum shear and moment from unfactored loads: $\quad \mathrm{w}_{\mathrm{a}}=0.450 \mathrm{k} / \mathrm{ft}+0.750 \mathrm{k} / \mathrm{ft}=1.20 \mathrm{k} / \mathrm{ft}$

$$
\begin{aligned}
& V_{\mathrm{a}}=1.20 \mathrm{k} / \mathrm{ft}(35 \mathrm{ft}) / 2=21 \mathrm{k} \\
& \mathrm{M}_{\mathrm{a}}=1.20 \mathrm{k} / \mathrm{ft}(35 \mathrm{ft})^{2} / 8=184 \mathrm{k}-\mathrm{ft} \\
& \text { If } \mathrm{M}_{\mathrm{a}} \leq \mathrm{M}_{\mathrm{N}} / \Omega \text {, the maxmimum moment for design is } \mathrm{M}_{\mathrm{a}} \Omega: \mathrm{M}_{\max }=184 \mathrm{k}-\mathrm{ft}
\end{aligned}
$$

3. Find $Z_{\text {rec'd }}$ :

$$
Z_{\text {req' }} \geq M_{\max } / F_{b}=M_{\max }(\Omega) / F_{y}=184 \mathrm{k}-\mathrm{ft}(1.67)(12 \mathrm{in} / \mathrm{ft}) / 50 \mathrm{ksi}=73.75 \mathrm{in}^{3} \text { ( } F_{y} \text { is the limit stress when fully braced) }
$$

4. Choose a trial section, and also limit the depth to 18 in as instructed:

W18 $\times 40$ has a plastic section modulus of $78.4 \mathrm{in}^{3}$ and is the most light weight (as indicated by the bold text) in Table 9.1
Include the self weight in the maximum values:

$$
\begin{aligned}
& \mathrm{w}^{*} \text { a-adjusted }=1.20 \mathrm{k} / \mathrm{ft}+0.04 \mathrm{k} / \mathrm{ft} \\
& \mathrm{~V}^{*}{ }_{\mathrm{a} \text {-adjusted }}=1.24 \mathrm{k} / \mathrm{ft}(35 \mathrm{ft}) / 2=21.7 \mathrm{k} \\
& \mathrm{M}^{*}{ }_{\mathrm{a} \text {-adjusted }}=1.24 \mathrm{k} / \mathrm{ft}(35 \mathrm{ft})^{3 / 8}=189.9 \mathrm{k}
\end{aligned}
$$

$Z_{\text {req'd }} \geq 189.9 \mathrm{k}-\mathrm{ft}(1.67)(12 \mathrm{in} / \mathrm{ft}) / 50 \mathrm{ksi}=76.11 \mathrm{in}^{3} \quad$ And the $Z$ we have (78.4) is larger than the $Z$ we need (76.11), so OK.
6. Evaluate shear (is $V_{a} \leq V_{n} / \Omega$ ): $A_{w}=d t_{w}$ so look up section properties for $W 18 \times 40: d=17.90$ in and $t_{w}=0.315$ in

$$
V_{n} / \Omega=0.6 \mathrm{~F}_{\mathrm{yw}} \mathrm{~A}_{w} / \Omega=0.6(50 \mathrm{ksi})(17.90 \mathrm{in})(0.315 \mathrm{in}) / 1.5=112.8 \mathrm{k} \text { which is much larger than } 21.7 \mathrm{k} \text {, so OK. }
$$

9. Evaluate the deflection with respect to the limit stated of $L / 360$ for the live load. (If we knew the total load limit we would check that as well). The moment of inertia for the W18 x 40 is needed. $\mathrm{I}_{\mathrm{x}}=612 \mathrm{in}^{4}$
$\Delta$ live load linit $=35 \mathrm{ft}(12 \mathrm{in} / \mathrm{ft}) / 360=1.17 \mathrm{in}$
$\Delta=5 \mathrm{wL} 4 / 384 \mathrm{El}=5(0.75 \mathrm{kft})(35 \mathrm{ft})^{4}(12 \mathrm{in} / \mathrm{ft})^{3 / 384}\left(29 \times 10^{3} \mathrm{ksi}\right)\left(612 \mathrm{in}^{4}\right)=1.42 \mathrm{in!}$ This is TOO BIG (not less than the limit.
Find the moment of inertia needed:

$$
I_{\text {reqdd }} \geq \Delta_{\text {too big }}\left(I_{\text {trial }}\right) / \Delta_{\text {limit }}=1.42 \mathrm{in}\left(612 \mathrm{in}^{4}\right) /(1.17 \mathrm{in})=742.8 \mathrm{in}^{4}
$$

From Table 9.1, a W16 $\times 45$ is larger (by Z), but not the most light weight (efficient), as is W10 $\times 68$, W14 $\times 53, W 18 \times 46$, (W21 $\times$ 44 is too deep) and W18 $x 50$ is bolded (efficient). (Now look up l's). (In order: $I_{x}=586,394,541,712$ and 800 in ${ }^{4}$ )

## Choose a W18× 50

## Example 3

For the same beam and loading of Example 1, select the most economical beam using Load and Resistance Factor Design (LRFD) with the 18 " depth restriction. Assume the distributed load is dead load, and the point load is live load. $\quad F_{y}=50 \mathrm{ksi}$ and $E=30 \times 10^{3} \mathrm{ksi}$


1. To find $V_{U-\text { max }}$ and $M_{u-\text {-max }}$, factor the loads, construct a new load diagram, shear diagram and bending moment diagram.
2. To satisfy $M_{u} \leq \phi_{b} M_{n}$, we find $M_{n}=\frac{M_{u}}{\phi_{b}}=\frac{341.6^{k-f t}}{0.9}=379.6^{k-f t}$ and solve for $Z$ needed: $Z=\frac{M_{n}}{F_{y}}=\frac{379.6^{k-f t}(12 \mathrm{in} / f t)}{50 \mathrm{ksi}}=91.1 \mathrm{in}^{3}$
Choose a trial section from the Listing of W Shapes in Descending Order of $Z$ by selecting the bold section at the top of the grouping satisfying our $Z$ and depth requirement $-\mathrm{W} 18 \times 50$ is the lightest with $\mathrm{Z}=101$ in 3. (W22 $\times 44$ is the lightest without the depth requirement.) Include the additional self weight (dead load) and find the maximum shear and bending moment:
$V_{u \text {-adjusted }}^{*}=32.8 k+\frac{1.2(50 \mathrm{tb} / \mathrm{ft}) 28 \mathrm{ft}}{2\left(1000^{\mathrm{tb} / \mathrm{k})}\right.}=33.64 \mathrm{k}$
$M_{u-\text {-adiusted }}^{*}=341.6^{k-f t}+\frac{1.2(50 \mathrm{tb} / f t)(28 f t)^{2}}{8\left(1000^{\mathrm{tb} / k}\right)}=347.5^{\mathrm{k}-\mathrm{ft}}$
$Z_{\text {req'd }}^{*} \geq \frac{M_{u}}{\phi_{b} F_{y}}=\frac{347.5^{k-f t}(12 \mathrm{in} / f t)}{0.9(50 \mathrm{ksi})}=92.7 \mathrm{in}^{3}$, so Z (have) of $101 \mathrm{in}^{3}$ is greater than the Z (needed).
3. Check the shear capacity to satisfy $V_{u} \leq \phi_{v} V_{n}: A_{w e b}=d t_{w}$ and $d=17.99$ in., $t_{w}=0.355 \mathrm{in}$. for the $\mathrm{W} 18 \times 50$ $\phi_{v} V_{n}=\phi_{v} 0.6 F_{y w} A_{w}=1.0(0.6) 50 \mathrm{ksi}(17.99 \mathrm{in}) 0.355 \mathrm{in}=191.6 \mathrm{k}$ So $33.64 \mathrm{k} \leq 191.6 \mathrm{k} \underline{\mathrm{OK}}$
4. Calculate the deflection from the unfactored loads, including the self-weight now because it is known, and satisfy the deflection criteria of $\Delta_{\mathrm{LL}} \leq \Delta_{\mathrm{LL}}$-imit and $\Delta_{\text {total }} \leq \Delta_{\text {total-limit. }}$ (This is identical to what is done in Example 1.) $I_{x}=800 \mathrm{in}^{3}$ for the W18x50
$\Delta_{\text {total-limit }}=\mathrm{L} / 240=1.4 \mathrm{in}$., say $\Delta_{\mathrm{LL}}=\mathrm{L} / 360=0.93$ in
$\Delta_{\text {total }}=\frac{P L^{3}}{48 E I}+\frac{5 w L^{4}}{384 E I}=\frac{20 \mathrm{k}(28 \mathrm{ft})^{3}(12 \mathrm{in} / \mathrm{ft})^{3}}{48\left(30 x 10^{3} \mathrm{ksi}\right) 800 \mathrm{in}^{3}}+\frac{5\left(1.050^{\mathrm{k} / \mathrm{ft}}\right)(28 \mathrm{ft})^{4}(12 \mathrm{in} / \mathrm{ft})^{3}}{384\left(30 \times 10^{3} \mathrm{ksi}\right) 800 \mathrm{in}^{3}}=0.658+0.605=1.26 \mathrm{in}$
So 1.26 in. $\leq 1.4$ in., and 0.658 in. $\leq 0.93$ in. $\underline{O K}$
$\therefore$ FINAL SELECTION IS W18x50

## Example 4

A steel beam with a 20 ft span is designed to be simply supported at the ends on columns and to carry a floor system made with open-web steel joists at 4 ft on center. The joists span 28 feet and frame into the beam from one side only and have a self weight of $8.5 \mathrm{lb} / \mathrm{ft}$. Use A992 (grade 50) steel and select the most economical wide-flange section for the beam with LRFD design. Floor loads are 50 psf LL and 14.5 psf DL.

## Example 5

Select a A992 W shape flexural member ( $F_{y}=50 \mathrm{ksi}, F_{u}=65 \mathrm{ksi}$ ) for a beam with distributed loads of $825 \mathrm{lb} / \mathrm{ft}$ (dead) and $1300 \mathrm{lb} / \mathrm{ft}$ (live) and a live point load at midspan of 3 k using the Available Moment tables. The beam is simply supported, 20 feet long, and braced at the ends and midpoint only ( $L_{b}=10 \mathrm{ft}$.) The beam is a roof beam for an institution without plaster ceilings. (LRFD)

## SOLUTION:

To use the Available Moment tables, the maximum moment required is plotted against the unbraced length. The first solid line with capacity or unbraced length above what is needed is the most economical.


DESIGN LOADS (load factors applied on figure):
$M_{u}=\frac{w l^{2}}{2}+P b=\frac{3.07 k / f t(20 f t)^{2}}{2}+4.8 k(10 f t)=662^{k-f t} \quad V_{u}=w l+P=3.07 \mathrm{k} / f t(20 f t)+4.8 k=66.2 k$

Plotting 662 k -ft vs. 10 ft lands just on the capacity of the W21x83, but it is dashed (and not the most economical) AND we need to consider the contribution of self weight to the total moment. Choose a trial section of W24 x 76 . Include the new dead load:
$M_{u-\text { adjusted }}^{*}=662^{k-f t}+\frac{1.2\left(76^{\mathrm{lb} / \mathrm{ft}}\right)(20 \mathrm{ft})^{2}}{2\left(1000^{\mathrm{lb} / \mathrm{k}}\right)} 680.2^{k-f t} \quad V_{u \text {-adjusted }}^{*}=66.2 \mathrm{k}+1.2(0.076 \mathrm{k} / \mathrm{ft})(20 \mathrm{ft})=68.0 \mathrm{k}$

Replot 680.2 k-ft vs. 10ft, which lands above the capacity of the W21x83. We can't look up because the chart ends, but we can look for that capacity with a longer unbraced length. This leads us to a W24 x 84 as the most economical. (With the additional self weight of $84-76 \mathrm{lb} / \mathrm{ft}=8 \mathrm{lb} / \mathrm{ft}$, the increase in the factored moment is only $1.92 \mathrm{k}-\mathrm{ft}$; therefore, it is still OK.)

Evaluate the shear capacity: $\phi_{v} V_{n}=\phi_{v} 0.6 F_{y w} A_{w}=1.0(0.6) 50 \mathrm{ksi}(24.10 \mathrm{in}) 0.47 \mathrm{in}=338.4 k$ so yes, $68 \mathrm{k} \leq 338.4 \mathrm{k}$ OK

Evaluate the deflection with respect to the limits of L/240 for live (unfactored) load and L/180 for total (unfactored) load: $\mathrm{L} / 240=1 \mathrm{in}$. and $\mathrm{L} / 180=1.33 \mathrm{in}$.
$\Delta_{\text {total }}=\frac{P b^{2}(3 l-b)}{6 E I}+\frac{w L^{4}}{24 E I}=\frac{3 k(10 f t)^{12}(3 \cdot 20-10 f t)(12 \mathrm{in} / f t)^{3}}{6\left(30 x 10^{3} k s i\right) 2370 \mathrm{in}^{3}}+\frac{\left(2.209^{\mathrm{k} / f t}\right)(20 \mathrm{ft})^{4}(12 \mathrm{im} / \mathrm{ft})^{3}}{24\left(30 x 10^{3} k s i\right) 2370 \mathrm{in}^{3}}=0.06+0.36=0.42 \mathrm{in}$


## Table 3-10 (continued) W Shapes

Available Moment vs. Unbraced Length

## Example 6

Select the most economical joist for the 40 ft grid structure with floors and a flat roof. The roof loads are $10 \mathrm{lb} / \mathrm{ft}^{2}$ dead load and $20 \mathrm{lb} / \mathrm{ft}^{2}$ live load. The floor loads are $30 \mathrm{lb} / \mathrm{ft}^{2}$ dead load $100 \mathrm{lb} / \mathrm{ft}^{2}$ live load. (Live load deflection limit for the roof is L/240, while the floor is L/360). Use the (LRFD) K and LH series charts provided.


Figure 7.218 Framing plan for joists, girders, and columns on $40 \mathrm{ft} \times 40 \mathrm{ft}$ grid.
(Top values are maximum total factored load in lb/ft, while the lower (lighter) values are maximum (unfactored) live load for a deflection of $\mathrm{L} / 360$ )


Shaded areas indicate the bridging requirements.

## Example 6 (continued)

(Top values are maximum total factored load in lb/ft, while the lower (lighter) values
are maximum (unfactored) live load for a deflection of $L / 360$ )

STANDARD LOAD TABLE FOR LONGSPAN STEEL JOISTS, LH-SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf)																			
Joist Designation	Approx. Wt in Lbs. Per Linear Ft (Joists only)	$\begin{aligned} & \text { Depth } \\ & \text { in } \\ & \text { inches } \end{aligned}$	$\begin{gathered} \hline \begin{array}{c} \text { SAFE LOAD* } \\ \text { in Lbs. } \\ \text { Between } \end{array} \\ \hline 22-24 \\ \hline \end{gathered}$	CLEAR SPAN IN FEET															
				25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
20LH02	10	20	16950	$\begin{aligned} & 663 \\ & 306 \end{aligned}$	$\begin{aligned} & 655 \\ & 303 \end{aligned}$	$\begin{aligned} & 646 \\ & 298 \end{aligned}$	$\begin{array}{\|l\|} \hline 615 \\ 274 \\ \hline \end{array}$	$\begin{aligned} & 582 \\ & 250 \end{aligned}$	$\begin{aligned} & 547 \\ & 228 \end{aligned}$	$\begin{array}{\|l\|} \hline 516 \\ 208 \\ \hline \end{array}$	$\begin{aligned} & 487 \\ & 190 \end{aligned}$	$\begin{aligned} & 460 \\ & 174 \end{aligned}$	$\begin{aligned} & 436 \\ & 160 \end{aligned}$	$\begin{aligned} & \hline 412 \\ & 147 \end{aligned}$	$\begin{aligned} & 393 \\ & 136 \end{aligned}$	$\begin{aligned} & \hline 373 \\ & 126 \end{aligned}$	$\begin{aligned} & 355 \\ & 117 \end{aligned}$	$\begin{aligned} & 337 \\ & 108 \end{aligned}$	$\begin{aligned} & \hline 322 \\ & 101 \end{aligned}$
20LH03	11	20	18000	$\begin{array}{r} 703 \\ 337 \\ \hline \end{array}$	$\begin{aligned} & 694 \\ & 333 \end{aligned}$	$\begin{array}{r} 687 \\ 317 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 678 \\ 302 \\ \hline \end{array}$	$\begin{aligned} & 651 \\ & 280 \\ & \hline \end{aligned}$	$\begin{array}{r} 621 \\ 258 \\ \hline \end{array}$	$\begin{aligned} & 592 \\ & 238 \\ & \hline \end{aligned}$	$\begin{aligned} & 558 \\ & 218 \\ & \hline \end{aligned}$	$\begin{aligned} & 528 \\ & 200 \\ & \hline \end{aligned}$	$\begin{array}{r} 499 \\ 184 \\ \hline \end{array}$	$\begin{array}{r} 474 \\ 169 \\ \hline \end{array}$	$\begin{aligned} & 448 \\ & 156 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 424 \\ 143 \\ \hline \end{array}$	$\begin{array}{r} 403 \\ 133 \\ \hline \end{array}$	$\begin{aligned} & 382 \\ & 123 \\ & \hline \end{aligned}$	$\begin{array}{r} 364 \\ 114 \\ \hline \end{array}$
20LH04	12	20	22050	$\begin{aligned} & 861 \\ & 428 \\ & \hline \end{aligned}$	$\begin{aligned} & 849 \\ & 406 \\ & \hline \end{aligned}$	$\begin{aligned} & 837 \\ & 386 \\ & \hline \end{aligned}$	$\begin{aligned} & 792 \\ & 352 \\ & \hline \end{aligned}$	$\begin{array}{r} 744 \\ 320 \\ \hline \end{array}$	$\begin{array}{r} 700 \\ 291 \\ \hline \end{array}$	$\begin{aligned} & 660 \\ & 265 \\ & \hline \end{aligned}$	$\begin{array}{r} 624 \\ 243 \\ \hline \end{array}$	$\begin{aligned} & 589 \\ & 223 \\ & \hline \end{aligned}$	$\begin{aligned} & 558 \\ & 205 \\ & \hline \end{aligned}$	$\begin{array}{r} 529 \\ 189 \\ \hline \end{array}$	$\begin{aligned} & 502 \\ & 174 \\ & \hline \end{aligned}$	$\begin{aligned} & 477 \\ & 161 \\ & \hline \end{aligned}$	$\begin{aligned} & 454 \\ & 149 \\ & \hline \end{aligned}$	$\begin{array}{r} 433 \\ 139 \\ \hline \end{array}$	$\begin{aligned} & 412 \\ & 129 \\ & \hline \end{aligned}$
20LH05	14	20	23700	$\begin{aligned} & 924 \\ & 459 \\ & \hline \end{aligned}$	$\begin{array}{r} 913 \\ 437 \\ \hline \end{array}$	$\begin{aligned} & 903 \\ & 416 \end{aligned}$	$\begin{aligned} & 892 \\ & 395 \end{aligned}$	$\begin{aligned} & 856 \\ & 366 \end{aligned}$	$\begin{aligned} & 816 \\ & 337 \\ & \hline \end{aligned}$	$\begin{array}{\|r\|} \hline 769 \\ 308 \\ \hline \end{array}$	$\begin{aligned} & 726 \\ & 281 \end{aligned}$	$\begin{aligned} & 687 \\ & 258 \\ & \hline \end{aligned}$	$\begin{aligned} & 651 \\ & 238 \\ & \hline \end{aligned}$	$\begin{aligned} & 616 \\ & 219 \\ & \hline \end{aligned}$	$\begin{aligned} & 585 \\ & 202 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 556 \\ 187 \\ \hline \end{array}$	$\begin{aligned} & 529 \\ & 173 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 504 \\ & 161 \\ & \hline \end{aligned}$	$\begin{aligned} & 481 \\ & 150 \\ & \hline \end{aligned}$
20LH06	15	20	31650	$\begin{gathered} 1233 \\ 606 \\ \hline \end{gathered}$	$\begin{gathered} 1186 \\ 561 \end{gathered}$	$\begin{gathered} 1144 \\ 521 \end{gathered}$	$\begin{array}{\|c\|} \hline 1084 \\ 477 \\ \hline \end{array}$	$\begin{gathered} 1018 \\ 427 \end{gathered}$	$\begin{aligned} & 952 \\ & 386 \end{aligned}$	$\begin{aligned} & 894 \\ & 351 \end{aligned}$	$\begin{aligned} & 840 \\ & 320 \end{aligned}$	$\begin{aligned} & 790 \\ & 292 \\ & \hline \end{aligned}$	$\begin{aligned} & 745 \\ & \hline 267 \\ & \hline \end{aligned}$	$\begin{aligned} & 703 \\ & 246 \end{aligned}$	$\begin{aligned} & 606 \\ & 626 \\ & 226 \end{aligned}$	$\begin{aligned} & 631 \\ & 209 \end{aligned}$	$\begin{aligned} & 598 \\ & 192 \end{aligned}$	$\begin{aligned} & 568 \\ & 178 \end{aligned}$	$\begin{aligned} & 541 \\ & 165 \end{aligned}$
20LH07	17	20	33750	$\begin{gathered} 1317 \\ 647 \end{gathered}$	$\begin{gathered} 1267 \\ 599 \end{gathered}$	$\begin{gathered} 1221 \\ 556 \end{gathered}$	$\begin{array}{\|c\|} \hline 1179 \\ 518 \\ \hline \end{array}$	$\begin{gathered} 1140 \\ 484 \end{gathered}$	$\begin{aligned} & 1066 \\ & 438 \end{aligned}$	$\begin{array}{\|c\|} \hline 1000 \\ 398 \\ \hline \end{array}$	$\begin{aligned} & 940 \\ & 962 \end{aligned}$	$\begin{aligned} & 885 \\ & 331 \end{aligned}$	$\begin{aligned} & 834 \\ & 303 \end{aligned}$	$\begin{aligned} & 789 \\ & 278 \\ & \hline \end{aligned}$	$\begin{aligned} & 745 \\ & 745 \\ & 256 \end{aligned}$	$\begin{aligned} & 706 \\ & 706 \\ & 236 \end{aligned}$	$\begin{array}{r} 670 \\ 218 \\ \hline \end{array}$	$\begin{aligned} & 637 \\ & 202 \end{aligned}$	$\begin{aligned} & 606 \\ & 187 \end{aligned}$
20LH08	19	20	34800	$\begin{aligned} & 1362 \\ & 669 \end{aligned}$	$\begin{gathered} 1309 \\ 619 \end{gathered}$	$\begin{gathered} 1263 \\ 575 \end{gathered}$	$\begin{gathered} 1219 \\ 536 \end{gathered}$	$\begin{gathered} 1177 \\ 500 \end{gathered}$	$\begin{gathered} 1140 \\ 468 \end{gathered}$	$\begin{array}{\|c\|} \hline 1083 \\ 428 \\ \hline \end{array}$	$\begin{gathered} 1030 \\ 395 \end{gathered}$	$981$	$\begin{aligned} & 931 \\ & 336 \end{aligned}$	$\begin{aligned} & 882 \\ & 309 \\ & \hline \end{aligned}$	$\begin{aligned} & 837 \\ & 285 \end{aligned}$	$\begin{aligned} & 795 \\ & 262 \end{aligned}$	$\begin{aligned} & 754 \\ & 242 \\ & \hline \end{aligned}$	$\begin{aligned} & 718 \\ & 225 \end{aligned}$	$\begin{aligned} & 685 \\ & 209 \end{aligned}$
20LH09	21	20	38100	$\begin{array}{\|c\|} \hline 1485 \\ 729 \end{array}$	$\begin{gathered} 1429 \\ 675 \end{gathered}$	$\begin{aligned} & 1377 \\ & 626 \end{aligned}$	$\begin{gathered} 1329 \\ 581 \end{gathered}$	$\begin{gathered} 1284 \\ 542 \end{gathered}$	$\begin{gathered} 1242 \\ 507 \end{gathered}$	$\begin{array}{c\|} 1203 \\ 475 \\ \hline \end{array}$	$\begin{gathered} 1167 \\ 437 \end{gathered}$	$\begin{gathered} 1132 \\ 399 \end{gathered}$	$\begin{array}{c\|} \hline 1068 \\ 366 \end{array}$	$\begin{array}{c\|} \hline 1009 \\ 336 \end{array}$	$\begin{aligned} & 954 \\ & 309 \end{aligned}$	$\begin{aligned} & 904 \\ & 985 \end{aligned}$	$\begin{aligned} & 858 \\ & 264 \end{aligned}$	$\begin{aligned} & 816 \\ & 244 \end{aligned}$	$\begin{aligned} & 775 \\ & 227 \end{aligned}$
20LH10	23	20	41100	$\begin{gathered} 1602 \\ 786 \end{gathered}$	$\begin{aligned} & 1542 \\ & 724 \end{aligned}$	$\begin{array}{\|c\|} \hline 1486 \\ 673 \end{array}$	$\begin{array}{\|c\|} \hline 1434 \\ 626 \end{array}$	$\begin{gathered} 1386 \\ 585 \end{gathered}$	$\begin{gathered} 1341 \\ 545 \end{gathered}$	$\begin{gathered} 1297 \\ 510 \end{gathered}$	$\begin{gathered} 1258 \\ 479 \end{gathered}$	$\begin{gathered} 1221 \\ 448 \end{gathered}$	$\begin{array}{\|c\|} \hline 1186 \\ 411 \end{array}$	$\begin{gathered} 1122 \\ 377 \end{gathered}$	$\begin{gathered} 1060 \\ 346 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1005 \\ 320 \\ \hline \end{array}$	$\begin{aligned} & 954 \\ & 296 \end{aligned}$	$\begin{aligned} & 906 \\ & 274 \end{aligned}$	$\begin{array}{r} 862 \\ 254 \\ \hline \end{array}$
				33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
24LH03	11	24	17250	$\begin{aligned} & 513 \\ & 235 \\ & \hline \end{aligned}$	$\begin{aligned} & 508 \\ & 226 \\ & \hline \end{aligned}$	$\begin{aligned} & 504 \\ & 218 \\ & \hline \end{aligned}$	$\begin{array}{r} 484 \\ 204 \\ \hline \end{array}$	$\begin{array}{r} 460 \\ 188 \\ \hline \end{array}$	$\begin{aligned} & 439 \\ & 175 \\ & \hline \end{aligned}$	$\begin{array}{r} 418 \\ 162 \\ \hline \end{array}$	$\begin{aligned} & 400 \\ & 152 \\ & \hline \end{aligned}$	$\begin{aligned} & 382 \\ & 141 \\ & \hline \end{aligned}$	$\begin{aligned} & 366 \\ & 132 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 351 \\ & 124 \\ & \hline \end{aligned}$	$\begin{aligned} & 336 \\ & 116 \\ & \hline \end{aligned}$	$\begin{aligned} & 322 \\ & 109 \\ & \hline \end{aligned}$	$\begin{aligned} & 310 \\ & 102 \\ & \hline \end{aligned}$	$\begin{gathered} 298 \\ 96 \\ \hline \end{gathered}$	286 90
24LH04	12	24	21150	$\begin{aligned} & 203 \\ & \hline 628 \\ & 288 \end{aligned}$	$\begin{aligned} & 220 \\ & \hline 597 \\ & 265 \\ & \hline \end{aligned}$	$\begin{aligned} & 210 \\ & 568 \\ & 246 \\ & \hline \end{aligned}$	$\begin{aligned} & 204 \\ & 540 \\ & 227 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 514 \\ & 210 \\ & \hline \end{aligned}$	$\begin{aligned} & 190 \\ & \hline 195 \end{aligned}$	$\begin{aligned} & 162 \\ & 468 \\ & 182 \\ & \hline \end{aligned}$	$\begin{aligned} & 102 \\ & 447 \\ & 169 \end{aligned}$	$\begin{aligned} & 427 \\ & 427 \\ & 158 \end{aligned}$	$\begin{aligned} & 102 \\ & 409 \\ & 148 \end{aligned}$	$\begin{aligned} & 124 \\ & 393 \\ & 138 \end{aligned}$	$\begin{aligned} & 376 \\ & 130 \\ & \hline \end{aligned}$	$\begin{aligned} & 361 \\ & 122 \end{aligned}$	$\begin{aligned} & 102 \\ & \hline 346 \\ & 114 \end{aligned}$	$\begin{aligned} & 333 \\ & 107 \end{aligned}$	321 101
24LH05	13	24	22650	$\begin{array}{r} 200 \\ 673 \\ 308 \\ \hline \end{array}$	$\begin{aligned} & 2009 \\ & 669 \end{aligned}$	$\begin{aligned} & <40 \\ & 660 \\ & 285 \end{aligned}$	$\begin{aligned} & \angle 27 \\ & 628 \\ & 264 \\ & \hline \end{aligned}$	$\begin{aligned} & 598 \\ & 244 \\ & \hline \end{aligned}$	$\begin{array}{r} 570 \\ 226 \\ \hline \end{array}$	$\begin{aligned} & 544 \\ & 510 \\ & 210 \end{aligned}$	$\begin{aligned} & 520 \\ & 196 \\ & \hline \end{aligned}$	$\begin{aligned} & 496 \\ & 182 \\ & \hline \end{aligned}$	$\begin{aligned} & 475 \\ & 171 \\ & \hline \end{aligned}$	$\begin{array}{r} 456 \\ 160 \\ \hline \end{array}$	$\begin{array}{r} 436 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & 122 \\ & 420 \\ & 141 \end{aligned}$	$\begin{array}{r} 403 \\ 132 \\ \hline \end{array}$	$\begin{aligned} & 387 \\ & 124 \end{aligned}$	372 117
24LH06	16	24	30450	$\begin{array}{\|l\|} \hline \\ \hline 906 \\ 411 \\ \hline \end{array}$	$\begin{aligned} & 868 \\ & 382 \end{aligned}$	$\begin{aligned} & 832 \\ & 356 \end{aligned}$	$\begin{aligned} & 704 \\ & 795 \\ & 331 \end{aligned}$	$\begin{array}{r} 454 \\ 756 \\ 306 \end{array}$	$\begin{aligned} & 220 \\ & 720 \\ & 284 \\ & \hline \end{aligned}$	$\begin{aligned} & 685 \\ & 263 \end{aligned}$	$\begin{aligned} & 655 \\ & 245 \end{aligned}$	$\begin{aligned} & 625 \\ & 228 \\ & \hline \end{aligned}$	$\begin{aligned} & 598 \\ & 211 \end{aligned}$	$\begin{aligned} & 571 \\ & 197 \end{aligned}$	$\begin{aligned} & 546 \\ & 184 \\ & \hline \end{aligned}$	$\begin{aligned} & 522 \\ & 172 \\ & \hline \end{aligned}$	$\begin{aligned} & 502 \\ & 501 \\ & 161 \end{aligned}$	$\begin{aligned} & 1<4 \\ & 480 \\ & 152 \end{aligned}$	460 142
24LH07	17	24	33450	$\begin{array}{r} 997 \\ 452 \\ \hline \end{array}$	$\begin{aligned} & 957 \\ & 421 \end{aligned}$	$\begin{array}{r} 919 \\ 393 \\ \hline \end{array}$	$\begin{aligned} & 882 \\ & 367 \\ & \hline \end{aligned}$	$\begin{array}{r} 847 \\ 343 \\ \hline \end{array}$	$\begin{aligned} & 811 \\ & 320 \\ & \hline \end{aligned}$	$\begin{aligned} & 774 \\ & 207 \end{aligned}$	$\begin{array}{r} 736 \\ 276 \\ \hline \end{array}$	$\begin{array}{r} 702 \\ 257 \\ \hline \end{array}$	$\begin{aligned} & 669 \\ & 239 \\ & \hline \end{aligned}$	$\begin{aligned} & 639 \\ & 223 \\ & \hline \end{aligned}$	$\begin{aligned} & 610 \\ & 208 \\ & \hline \end{aligned}$	$\begin{aligned} & 583 \\ & 195 \\ & \hline \end{aligned}$	$\begin{aligned} & 559 \\ & 182 \\ & \hline \end{aligned}$	$\begin{aligned} & 535 \\ & 171 \\ & \hline \end{aligned}$	514   161   16
24LH08	18	24	35700	$\begin{gathered} 1060 \\ 480 \end{gathered}$	$\begin{gathered} 1015 \\ 447 \\ \hline \end{gathered}$	$973$	$\begin{aligned} & 933 \\ & 388 \\ & \hline \end{aligned}$	$\begin{aligned} & 895 \\ & 362 \\ & \hline \end{aligned}$	$\begin{array}{r} 858 \\ 338 \\ \hline \end{array}$	$\begin{array}{r} 817 \\ 314 \\ \hline \end{array}$	$\begin{array}{r} 780 \\ 292 \\ \hline \end{array}$	$\begin{aligned} & 745 \\ & 272 \\ & \hline \end{aligned}$	$\begin{array}{r} 712 \\ 254 \\ \hline \end{array}$	$\begin{aligned} & 682 \\ & 238 \\ & \hline \end{aligned}$	$\begin{aligned} & 652 \\ & 222 \\ & \hline \end{aligned}$	$\begin{array}{r} 625 \\ 208 \\ \hline \end{array}$	$\begin{aligned} & 600 \\ & 196 \\ & \hline \end{aligned}$	$\begin{array}{r} 176 \\ \hline 184 \\ \hline \end{array}$	553   173
24LH09	21	24	42000	$\begin{aligned} & 1248 \\ & 562 \\ & \hline \end{aligned}$	$\begin{aligned} & 1212 \\ & 530 \\ & \hline \end{aligned}$	$\begin{gathered} 1177 \\ 501 \\ \hline \end{gathered}$	$\begin{gathered} 1146 \\ 460 \\ \hline \end{gathered}$	$\begin{gathered} 1096 \\ 424 \\ \hline \end{gathered}$	$\begin{gathered} 1044 \\ 393 \\ \hline \end{gathered}$	$\begin{array}{r} 994 \\ 363 \\ \hline \end{array}$	$\begin{aligned} & 948 \\ & 337 \\ & \hline \end{aligned}$	$\begin{aligned} & 903 \\ & 313 \\ & \hline \end{aligned}$	$\begin{aligned} & 861 \\ & 292 \\ & \hline \end{aligned}$	$\begin{aligned} & 822 \\ & 272 \\ & \hline \end{aligned}$	$\begin{array}{r} 786 \\ 254 \\ \hline \end{array}$	$\begin{array}{r} 751 \\ 238 \\ \hline \end{array}$	$\begin{array}{r} 720 \\ 223 \\ \hline \end{array}$	$\begin{aligned} & 690 \\ & 209 \\ & \hline \end{aligned}$	661 196
24LH10	23	24	44400	$\begin{gathered} 1323 \\ 596 \\ \hline \end{gathered}$	$\begin{gathered} 1284 \\ 559 \\ \hline \end{gathered}$	$\begin{gathered} 1248 \\ 528 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1213 \\ 500 \\ \hline \end{array}$	$\begin{gathered} 1182 \\ 474 \\ \hline \end{gathered}$	$\begin{gathered} 1152 \\ 439 \\ \hline \end{gathered}$	$\begin{aligned} & 1105 \\ & 406 \\ & \hline \end{aligned}$	$\begin{gathered} 1053 \\ 378 \\ \hline \end{gathered}$	$\begin{gathered} 1002 \\ 351 \\ \hline \end{gathered}$	$\begin{aligned} & 955 \\ & 326 \\ & \hline \end{aligned}$	$\begin{aligned} & 912 \\ & 304 \\ & \hline \end{aligned}$	$\begin{array}{r} 873 \\ 285 \\ \hline \end{array}$	$\begin{aligned} & 834 \\ & 266 \\ & \hline \end{aligned}$	$\begin{array}{r} 799 \\ 249 \\ \hline \end{array}$	$\begin{array}{r} 766 \\ 234 \\ \hline \end{array}$	735   220   8
24LH11	25	24	46800	$\begin{aligned} & 1390 \\ & 624 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 1350 \\ 588 \\ \hline \end{array}$	$\begin{gathered} 1312 \\ \hline 555 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1276 \\ 525 \\ \hline \end{array}$	$\begin{gathered} 1243 \\ 498 \\ \hline \end{gathered}$	$\begin{gathered} 1210 \\ 472 \\ \hline \end{gathered}$	$\begin{gathered} 1180 \\ 449 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 1152 \\ 418 \\ \hline \end{array}$	$\begin{array}{r} 1101 \\ 388 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1051 \\ 361 \\ \hline \end{array}$	$\begin{array}{\|c} 1006 \\ 337 \\ \hline \end{array}$	$\begin{array}{r} 963 \\ 315 \\ \hline \end{array}$	$\begin{aligned} & 924 \\ & 294 \\ & \hline \end{aligned}$	$\begin{array}{r} 885 \\ 276 \\ \hline \end{array}$	$\begin{array}{r} 850 \\ 259 \\ \hline \end{array}$	$\begin{array}{r} 816 \\ 243 \\ \hline \end{array}$
			33-40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56
28LH05	13	28	21000	$\begin{aligned} & 505 \\ & 219 \\ & \hline \end{aligned}$	$\begin{array}{r} 484 \\ 205 \\ \hline \end{array}$	$\begin{array}{r} 465 \\ 192 \\ \hline \end{array}$	$\begin{aligned} & 445 \\ & 180 \\ & \hline \end{aligned}$	$\begin{array}{r} 429 \\ 169 \\ \hline \end{array}$	$\begin{aligned} & 412 \\ & 159 \\ & \hline \end{aligned}$	$\begin{aligned} & 397 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 382 \\ & 142 \\ & \hline \end{aligned}$	$\begin{aligned} & 367 \\ & 133 \\ & \hline \end{aligned}$	$\begin{aligned} & 355 \\ & 126 \\ & \hline \end{aligned}$	$\begin{aligned} & 342 \\ & 119 \\ & \hline \end{aligned}$	$\begin{aligned} & 330 \\ & 113 \\ & \hline \end{aligned}$	$\begin{aligned} & 319 \\ & 107 \\ & \hline \end{aligned}$	$\begin{aligned} & 309 \\ & 102 \\ & \hline \end{aligned}$	$\begin{array}{r} 298 \\ 97 \\ \hline \end{array}$	$\begin{gathered} 289 \\ 92 \\ \hline \end{gathered}$
28LH06	16	28	27900	$\begin{aligned} & 672 \\ & 689 \\ & \hline \end{aligned}$	$\begin{aligned} & 643 \\ & 270 \\ & \hline \end{aligned}$	$\begin{array}{r} 618 \\ 253 \\ \hline \end{array}$	$\begin{array}{r} 592 \\ 238 \\ \hline \end{array}$	$\begin{array}{r} 568 \\ 223 \\ \hline \end{array}$	$\begin{array}{r} 546 \\ 209 \\ \hline \end{array}$	$\begin{array}{r} 525 \\ 197 \\ \hline \end{array}$	$\begin{aligned} & 505 \\ & 186 \\ & \hline \end{aligned}$	$\begin{array}{r} 486 \\ 175 \\ \hline \end{array}$	$\begin{aligned} & 469 \\ & 166 \\ & \hline \end{aligned}$	$\begin{array}{r} 451 \\ 156 \\ \hline \end{array}$	$\begin{aligned} & 436 \\ & 148 \\ & \hline \end{aligned}$	$\begin{aligned} & 421 \\ & 140 \\ & \hline \end{aligned}$	$\begin{array}{r} 406 \\ 133 \\ \hline \end{array}$	$\begin{aligned} & 393 \\ & 126 \\ & \hline \end{aligned}$	379 120
28LH07	17	28	31500	$\begin{aligned} & 757 \\ & 726 \\ & \hline \end{aligned}$	$\begin{array}{r} 726 \\ 305 \\ \hline \end{array}$	$\begin{array}{r} 696 \\ 285 \\ \hline \end{array}$	$\begin{aligned} & 667 \\ & 267 \\ & \hline \end{aligned}$	$640$	$\begin{aligned} & 615 \\ & 236 \\ & \hline \end{aligned}$	$\begin{aligned} & 591 \\ & 222 \\ & \hline \end{aligned}$	$\begin{aligned} & 568 \\ & 209 \\ & \hline \end{aligned}$	$\begin{aligned} & 547 \\ & 197 \\ & \hline \end{aligned}$	$\begin{aligned} & 528 \\ & 186 \\ & \hline \end{aligned}$	$\begin{aligned} & 508 \\ & 176 \\ & \hline \end{aligned}$	$\begin{aligned} & 490 \\ & 166 \\ & \hline \end{aligned}$	$474$	$\begin{array}{r} 457 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & 442 \\ & 142 \\ & \hline \end{aligned}$	427 135
28LH08	18	28	33750	$\begin{aligned} & 810 \\ & 848 \\ & 348 \end{aligned}$	$\begin{aligned} & 775 \\ & 325 \end{aligned}$	$\begin{array}{r} 744 \\ 705 \\ 305 \end{array}$	$\begin{aligned} & 712 \\ & 285 \\ & \hline \end{aligned}$	$\begin{aligned} & 684 \\ & 268 \end{aligned}$	$\begin{aligned} & 657 \\ & 252 \\ & \hline \end{aligned}$	$\begin{aligned} & c \not 23 \\ & 630 \\ & 236 \end{aligned}$	$\begin{array}{r} 604 \\ 222 \\ \hline \end{array}$	$\begin{aligned} & 580 \\ & 209 \end{aligned}$	$\begin{aligned} & 556 \\ & 196 \end{aligned}$	$\begin{aligned} & 535 \\ & 185 \end{aligned}$	$\begin{aligned} & 516 \\ & 175 \\ & \hline \end{aligned}$	$\begin{aligned} & 496 \\ & 165 \end{aligned}$	$\begin{aligned} & 478 \\ & 156 \\ & \hline \end{aligned}$	$\begin{aligned} & 462 \\ & 148 \end{aligned}$	445 140
28LH09	21	28	41550	$\begin{array}{\|c\|} \hline 1000 \\ 428 \\ \hline \end{array}$	$\begin{aligned} & 958 \\ & 400 \\ & \hline \end{aligned}$	$\begin{array}{r} 918 \\ 375 \\ \hline \end{array}$	$\begin{array}{r} 879 \\ 351 \\ \hline \end{array}$	$\begin{array}{r} 844 \\ 329 \\ \hline \end{array}$	$\begin{aligned} & 810 \\ & 309 \\ & \hline \end{aligned}$	$\begin{array}{r} 778 \\ 291 \\ \hline \end{array}$	$\begin{array}{r} 748 \\ 748 \\ 274 \\ \hline \end{array}$	$\begin{array}{r} 721 \\ 258 \\ \hline \end{array}$	$\begin{array}{r} 694 \\ 243 \\ \hline \end{array}$	$\begin{array}{r} 669 \\ 228 \\ \hline \end{array}$	$\begin{aligned} & 645 \\ & 216 \\ & \hline \end{aligned}$	$\begin{array}{r} 622 \\ 204 \\ \hline \end{array}$	$\begin{aligned} & 601 \\ & 193 \\ & \hline \end{aligned}$	$\begin{array}{r} 580 \\ 183 \\ \hline \end{array}$	561 173
28LH10	23	28	45450	$\begin{array}{\|c\|} \hline 1093 \\ 466 \\ \hline \end{array}$	$\begin{gathered} 1056 \\ 439 \\ \hline \end{gathered}$	$\begin{gathered} 1018 \\ 414 \\ \hline \end{gathered}$	$\begin{array}{r} 976 \\ 388 \\ \hline \end{array}$	$\begin{array}{r} 937 \\ 364 \\ \hline \end{array}$	$\begin{aligned} & 900 \\ & 342 \\ & 342 \end{aligned}$	$\begin{array}{r} 864 \\ 322 \\ \hline \end{array}$	$\begin{aligned} & 831 \\ & 303 \\ & \hline \end{aligned}$	$\begin{array}{r} 799 \\ 285 \\ \hline \end{array}$	$\begin{aligned} & 769 \\ & 269 \\ & \hline \end{aligned}$	$\begin{array}{r} 742 \\ 255 \\ \hline \end{array}$	$\begin{array}{r} 715 \\ 241 \\ \hline \end{array}$	$\begin{aligned} & 690 \\ & 228 \\ & \hline \end{aligned}$	$\begin{array}{r} 666 \\ 215 \\ \hline \end{array}$	$\begin{aligned} & 643 \\ & 204 \\ & \hline \end{aligned}$	622 193
28LH11	25	28	48750	$\begin{array}{c\|} \hline 1170 \\ 498 \\ \hline \end{array}$	$\begin{gathered} 1143 \\ 475 \\ \hline \end{gathered}$	$\begin{gathered} 1104 \\ 448 \end{gathered}$	$\begin{gathered} 1066 \\ 423 \\ \hline \end{gathered}$	$\begin{gathered} 1023 \\ 397 \\ \hline \end{gathered}$	$\begin{aligned} & 982 \\ & 373 \\ & \hline \end{aligned}$	$\begin{array}{r} 943 \\ 351 \\ \hline \end{array}$	$\begin{array}{r} 907 \\ 331 \\ \hline \end{array}$	$\begin{array}{r} 873 \\ 312 \\ \hline \end{array}$	$\begin{array}{r} 841 \\ 294 \\ \hline \end{array}$	$\begin{aligned} & 810 \\ & 278 \\ & \hline \end{aligned}$	$\begin{aligned} & 781 \\ & 263 \\ & \hline \end{aligned}$	$\begin{array}{r} 753 \\ 249 \\ \hline \end{array}$	$\begin{array}{r} 727 \\ 236 \\ \hline \end{array}$	$\begin{aligned} & 702 \\ & 223 \\ & \hline \end{aligned}$	679   212
28LH12	27	28	53550	$\begin{array}{\|c\|} \hline 1285 \\ 545 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1255 \\ 520 \\ \hline \end{array}$	$\begin{gathered} 1227 \\ 496 \end{gathered}$	$\begin{gathered} 1200 \\ 476 \\ \hline \end{gathered}$	$\begin{gathered} 1173 \\ 454 \end{gathered}$	$\begin{gathered} 1149 \\ 435 \end{gathered}$	$\begin{aligned} & 1105 \\ & 408 \\ & \hline \end{aligned}$	$\begin{gathered} 1063 \\ 383 \\ \hline \end{gathered}$	$\begin{aligned} & 1023 \\ & 361 \\ & \hline \end{aligned}$	$\begin{aligned} & 984 \\ & 340 \end{aligned}$	$\begin{aligned} & 948 \\ & 321 \end{aligned}$	$\begin{aligned} & 913 \\ & 303 \end{aligned}$	$\begin{aligned} & 880 \\ & 285 \end{aligned}$	$\begin{array}{r} 849 \\ 270 \\ \hline \end{array}$	$\begin{aligned} & 819 \\ & 256 \\ & \hline \end{aligned}$	$\begin{array}{r} 790 \\ 243 \\ \hline \end{array}$
28LH13	30	28	55800	$\begin{gathered} 1342 \\ 569 \\ \hline \end{gathered}$	$\begin{gathered} 1311 \\ 543 \\ \hline \end{gathered}$	$\begin{array}{r} 1281 \\ 518 \\ \hline \end{array}$	$\begin{gathered} 1252 \\ 495 \\ \hline \end{gathered}$	$\begin{array}{r} 1224 \\ 472 \\ \hline \end{array}$	$\begin{gathered} 1198 \\ 452 \\ \hline \end{gathered}$	$\begin{gathered} 1173 \\ 433 \\ \hline \end{gathered}$	$\begin{gathered} 1149 \\ 415 \\ \hline \end{gathered}$	$\begin{gathered} 1126 \\ 396 \\ \hline \end{gathered}$	$\begin{gathered} 1083 \\ 373 \\ \hline \end{gathered}$	$\begin{array}{r} 1041 \\ 352 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 1002 \\ 332 \\ \hline \end{array}$	$\begin{array}{r} 964 \\ 314 \\ \hline \end{array}$	$\begin{array}{r} 930 \\ 297 \\ \hline \end{array}$	$\begin{array}{r} 897 \\ 281 \\ \hline \end{array}$	$\begin{array}{r}865 \\ 266 \\ \hline\end{array}$

Shaded areas indicate the bridging requirements.

## Example 7 (ASD)

## EXAMPLE 5.1 Open-Web Steel Joist Design

A fully exposed roof system for a commercial building, spanning 35 ft , located in Muncie, Indiana, in an urban environment.

IBC specifies a 20 psf snow live load for Muncie, Indiana, home of Ball State University. Table 1.3 indicates the snow exposure factor: $C_{e}=0.9$. Table 1.4 indicates the snow thermal factor:
$\mathrm{C}_{\mathrm{t}}=1.0$. Table 1.7 indicates an occupancy importance factor (for Category II ): $\mathrm{I}_{\mathrm{S}}=1.0$. Fig. 1.2 indicates the ground snow load: $\mathrm{p}_{\mathrm{g}}=20 \mathrm{psf}$

$$
\mathrm{P}_{\mathrm{S}}=0.7(0.9) 1.0(1.0) 20 \mathrm{psf}=13.9 \mathrm{psf}
$$

## A typical roof construction might consist of:

Membrane roofing	1.0 psf
4 in. average tapered rigid insulation	6.0 psf
Steel deck ( $2-4 \mathrm{ft}$ span)	1.0 psf
Estimated joist weight:	
$\quad 35 \mathrm{ft}$ span would be a minimum 18 in. joist	
An average 18 in. joist weight $=9.0$ plf	
$\quad$ Spaced @ $4 \mathrm{ft}-0$ in. $0 . c . \quad 9.0$ plf $/ 4 \mathrm{ft}$	2.3 psf
Ceiling suspension system	1.0 psf
$1 / 2$ in. gypsum ceiling	2.0 psf

Mechanical system estimates should also be included; the heavy sprinkler/drain piping running parallel to a joist or pair of joists is especially critical.

## Miscellaneous ductwork/electrical 1.0 psf

Total dead load
$14.3 \mathrm{psf} \times 4 \mathrm{ft} 0 . \mathrm{c} .=57.2 \mathrm{plf}$
Total live load
Total live load + dead load

$$
13.9 \mathrm{psf} \times 4 \text { ft o.c. }=55.6 \text { plf }
$$

$$
=112.8 \mathrm{plf}
$$

Use joist load tables to select the best section:
At $35 \mathrm{ft}, 18 \mathrm{~K} 3$ joists carry 149 plf TL and 77 plf LL
LL: deflection controls and the weight is 6.6 plf.
At least on the surface, this is the best choice, but depending upon the need to integrate mechanical systems into the joist space, a 20 K 3 at 6.7 plf or even a 22 K 4 at 8.0 plf which is both deeper and heavier than the previous selection may be best:


STANDARD LOAD TABLE/OPEN WEB STEEL JOISTS, K-SERIES Based on a Maximum Allowable Tensile Stress of 30 ksi

Joist   Designation	18 K 3	18 K 4	18 K 5	18 K 8	18 K 7	18 K 9	18 K 10	20 K 3	20 K 4	20 K 5	20 K 6	20 K 7	20 K 9	20 K 10	22 K 4	22 K 5	22 K 6	$22 \mathrm{K7}$	$22 \mathrm{K9} 9$	22 K 10	22 K 11
Depth (In.)	18	18	18	18	18	18	18	20	20	20	20	20	20	20	22	22	22	22	22	22	22
Approx. Wt.   (lbs./ft)	6.6	7.2	7.7	8.5	9	10.2	11.7	6.7	7.6	8.2	8.9	9.3	10.8	12.2	8	8.8	9.2	9.7	11.3	12.6	13.8
34	158	190	214	233	260	312	370	176	212	239	261	290	349	414	235	265	288	321	386	458	516
	84	98	110	120	132	156	184	105	122	137	149	165	195	229	149	167	182	202	239	280	314
35	149	179	202	220	245	294	349	166	200	226	246	274	329	390	221	249	272	303	364	432	494
	77	90	101	110	121	143	168	96	112	126	137	151	179	210	137	153	167	185	219	257	292

## Example 8

A floor is to be supported by trusses spaced at 5 ft . on center and spanning 60 ft . having a dead load of $53 \mathrm{lb} / \mathrm{ft}^{2}$ and a live load of $100 \mathrm{lb} / \mathrm{ft}^{2}$. With 3 ft .-long panel points, the depth is assumed to be 3 ft with a span-to-depth ratio of 20. With 6 ft .-long panel points, the depth is assumed to be 6 ft with a span-to-depth ratio of 10 . Determine the maximum force in a horizontal chord and the maximum force in a web member. Use factored loads. Assume a self weight of $40 \mathrm{lb} / \mathrm{ft}$.

Table 7.2 Computation of Truss Joint Loads

Truss	area loads				tributary widths		Floor Area per Node A (ft ${ }^{2}$ )	$\begin{aligned} & P_{\text {dead }} \\ & \left(=W_{\text {dead }} \cdot A\right) \\ & (K) \end{aligned}$	$\begin{aligned} & P_{\text {live }} \\ & \left(=W_{\text {live }} \cdot A\right) \\ & (\mathrm{K}) \end{aligned}$	Factored Dead Load $1.2 \cdot P_{\text {dead }}$ (K)	Factored Live Load $1.6 \cdot P_{\text {live }}$ (K)	Factored   Total   Load   $1.2 \cdot P_{\text {dead }}+$   $1.6 \cdot P_{\text {line }}$   (K)
					Node-to-	Truss-to-						
	$W_{\text {dead }}$		Wive		Node Spacing	Truss Spacing						
	(\#/ft ${ }^{2}$ )	(K/ft ${ }^{2}$ )	(\#/ft ${ }^{\text {2 }}$ )	$\left(\mathrm{K} / \mathrm{ft}^{2}\right)^{\text {) }}$	(ft)	(ft)						
3 ft deep	53	0.053	100	0.100	3	5	15	0.795	1.50	0.954	2.40	$3.35+0.14=3.49$
6 ft deep	53	0.053	100	0.100	6	5	30	1.59	3.00	1.908	4.80	$6.71+0.29=7.00$

$\begin{array}{lll}\text { self weight } 0.04 \mathrm{kft} \text { (distributed) } & 3 & 1.2 P_{\text {dead }}=1.2 \mathrm{~W}_{\text {dead }} \cdot \text { tributary width }=0.14 \mathrm{~K} \\ & 6 & 1.2 P_{\text {dead }}=1.2 \mathrm{~W}_{\text {dead }} \cdot \text { tributary width }=0.29 \mathrm{~K}\end{array}$
NOTE - end panels only have half the tributary width of interior panels


FBD 3: Maximum web force will be in the end diagonal (just like maximum shear in a beam)

$$
\Sigma F_{y}=10 P_{1}-0.5 P_{1}-F_{A B} \cdot \sin 45^{\circ}=0
$$

$10 P_{1} \quad F_{A B}=9.5 P_{1} / \sin 45^{\circ}=9.5(3.49 \mathrm{k}) / 0.707=\underline{46.9 \mathrm{k}}$
FBD 1 for 3 ft deep truss
FBD 2: Maximum chord force (top or bottom) will be at midspan



10 P,
FBD 3 of cut just to right of left support

$$
\begin{aligned}
& \Sigma M_{G}=-9.5 P_{1}(30 t)+P_{1}(27 t)+P_{1}(24 t)+P_{1}\left(21^{t t}\right)+P_{1}\left(18^{f t}\right) \\
& +P_{1}\left(15^{t t}\right)+P_{1}\left(12^{t t}\right)+P_{1}\left(9^{f t}\right)+P_{1}\left(6^{t t}\right)+P_{1}\left(3^{t t}\right)+T_{1}\left(3^{t t}\right)=0 \\
& T_{1}=P_{1}(150 t) / 3^{3 t}=(3.49 \mathrm{k})(50)=174.5 \mathrm{k} \\
& \Sigma F_{y}=10 P_{1}-9.5 P_{1}-D_{1} \cdot \sin 45^{\circ}=0 \\
& D_{1}=0.5(3.49 k) / 0.707=2.5 k \text { (minimum near midspan) } \\
& \Sigma F_{x}=-C_{1}+T_{1}+D_{1} \cdot \cos 45^{\circ}=0 \\
& \mathrm{C}_{1}=176.2 \mathrm{k}
\end{aligned}
$$

FBD 6: Maximum web force will be in the end diagonal

$$
\begin{aligned}
& \Sigma F_{y}=5 P_{2}-0.5 P_{2}-F_{A B} \cdot \sin 45^{\circ}=0 \\
& F_{A B}=4.5 P_{2} / \sin 45^{\circ}=4.5(7 \mathrm{k}) / 0.707=44.5 \mathrm{k}
\end{aligned}
$$

FBD 4 for 6 ft deed truss


FBD 5 of cut just to the left of midspan
$0.5 P_{2}$


FBD 6 of cut just to right of left support

FBD 5: Maximum chord (top or bottom) force will be at midspan
$\Sigma M_{G}=-4.5 P_{2}\left(30^{t t}\right)+P_{2}\left(24^{t t}\right)+P_{2}\left(18^{t}\right)+P_{2}\left(12^{t t}\right)+P_{2}\left(6^{t t}\right)+T_{2}\left(6^{t t}\right)=0$
$T_{2}=P_{2}\left(75^{t t}\right) / 6^{H t}=(7 \mathrm{k})(12.5)=87.5 \mathrm{k}$
$\Sigma F_{y}=5 P_{2}-4.5 P_{1}-D_{s} \cdot \sin 45^{\circ}=0$
$D_{2}=0.5(7 \mathrm{k}) / 0.707=4.9 \mathrm{k}$ (minimum near midspan)
$\Sigma F_{x}=-C_{2}+T_{2}+D_{2} \cdot \cos 45^{\circ}=0$
$C_{2}=92.4 \mathrm{k}$

## Example 9 (pg 367) + LRFD

Example Problem 10.10 (Figure 10.41)
A 24 - ft.-tall, A572 grade 50, steel column (W14 $\times 82$ ) with an $F_{y}=50 \mathrm{ksi}$ has pins at both ends. Its weak axis is braced at midheight, but the column is free to buckle the full 24 ft . in the strong direction. Determine the safe load capacity for this column. using ASD and LRFD.


Figure 10.41 (a) Strong axis buckling. (b) Weak axis buckling.

Example $10(\mathrm{pg} \mathrm{371})+$ chart method
Example Problem 10.14: Design of Steel Columns (Figure 10.48)

Select the most economical W12 $\times$ column 18 ' in height to support an axial load of 600 kips using A572 grade 50 steel. Assume that the column is hinged at the top but fixed at the base. Use LRFD assuming that the load is a dead load (factor of 1.4)
ALSO: Select the W12 column using the Available Strength charts.


## Example 11

Given:
Redesign the column from Example E.la assuming the column is laterally braced about the $y-y$ axis and torsionally braced at the midpoint. Use both ASD and LRFD. $\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$. (Not using Available Strength charts)

## Solution:

## ASD:



1. $P_{a}=140 k+420 k=560 k$
2. The effective length in the weak ( $y-y$ ) axis is 15 ft , while the effective length in the strong ( $x-x$ ) axis is 30 ft . ( $K=1, K L=1 \times 30 \mathrm{ft}$ ).

To find $\mathrm{kL} / \mathrm{r}_{x}$ and $\mathrm{kL} / r_{y}$ we can assume or choose values from the wide flange charts. $r_{y}$ 's range from 1 to 3 in., while $r_{x}$ 's range from 3 to 14 inches. Let's try $r_{y}=2$ in and $r_{x}=9$ in. (something in the W21 range, say.)

$$
\begin{aligned}
& \mathrm{kL} / \mathrm{rry}_{y} \cong 15 \mathrm{ft}(12 \mathrm{in} / \mathrm{ft}) / 2 \mathrm{in} .=90 \Leftarrow \text { GOVERNS (is larger) } \\
& \mathrm{kL} / \mathrm{rx}_{\mathrm{x}} \cong 30 \mathrm{ft}(12 \mathrm{in} / \mathrm{ft}) / 9 \mathrm{in} .=40
\end{aligned}
$$

3. Find a section with sufficient area (which then will give us "real" values for $r_{x}$ and $r_{y}$ ):

If $P_{a} \leq P_{n} / \Omega$, and $P_{n}=F_{\text {cr }} A$, we can find $A \geq P_{a} \Omega / F_{\text {cr }}$ with $\Omega=1.67$
The tables provided have $\phi F_{\text {cr }}$, so we can get $F_{\text {cr }}$ by dividing by $\phi=0.9$
$\phi F_{\text {cr }}$ for 90 is $24.9 \mathrm{ksi}, F_{\text {cr }}=24.9 \mathrm{ksi} / 0.9=27.67 \mathrm{ksi}$ so $A \geq 560 \mathrm{k}(1.67) / 27.67 \mathrm{ksi}=33.8 \mathrm{in}^{2}$
4. Choose a trial section, and find the effective lengths and associated available strength, $\mathrm{F}_{\mathrm{cr}}$ :

Looking from the smallest sections, the W14's are the first with a big enough area:
Try a W14 x $120\left(A=35.3 \mathrm{in}^{2}\right)$ with $\mathrm{r}_{\mathrm{y}}=3.74$ in and $\mathrm{r}_{\mathrm{x}}=6.24 \mathrm{in} .: \quad \mathrm{kL} / \mathrm{r}_{\mathrm{y}}=48.1$ and $\mathrm{kL} / \mathrm{r}_{\mathrm{x}}=57.7$ (GOVERNS)
$\phi F_{\text {cr }}$ for 58 is $35.2 \mathrm{ksi}, F_{c r}=39.1 \mathrm{ksi}$ so $A \geq 560 \mathrm{k}(1.67) / 39.1 \mathrm{ksi}=23.9 \mathrm{in}^{2}$
Choose a W14 990 (Choosing a W14 $\times 82$ would make $k L / r_{x}=59.5$, and $\mathrm{A}_{\text {req'd }}=24.3$ in ${ }^{2}$, which is more than 24.1 in 2 !)

## LRFD:

1. $P_{u}=1.2(140 k)+1.6(420 k)=840 k$
2. The effective length in the weak ( $y-y$ ) axis is 15 ft , while the effective length in the strong ( $x-x$ ) axis is 30 ft . ( $K=1, \mathrm{KL}=1 \times 30 \mathrm{ft}$ ). To find $\mathrm{kL} / \mathrm{r}_{x}$ and $\mathrm{kL} / r_{y}$ we can assume or choose values from the wide flange charts. $\mathrm{r}_{y}$ 's range from 1 to 3 in., while rx's range from 3 to 14 inches. Let's try $r_{y}=2$ in and $r_{x}=9$ in. (something in the W21 range, say.)
$\mathrm{kL} / \mathrm{ry}_{\mathrm{y}} \cong 15 \mathrm{ft}(12 \mathrm{in} / \mathrm{ft}) / 2 \mathrm{in} .=90 \Leftarrow$ GOVERNS (is larger)
$\mathrm{kL} / \mathrm{r}_{\mathrm{x}} \cong 30 \mathrm{ft}(12 \mathrm{in} / \mathrm{ft}) / 9 \mathrm{in} .=40$
3. Find a section with sufficient area (which then will give us "real" values for $r_{x}$ and $r_{y}$ ):

If $\mathrm{P}_{\mathrm{u}} \leq \phi \mathrm{P}_{\mathrm{n}}$, and $\phi \mathrm{P}_{\mathrm{n}}=\phi \mathrm{F}_{\text {cr }} \mathrm{A}$, we can find $\mathrm{A} \geq \mathrm{P}_{\mathrm{u}} / \phi \mathrm{F}_{\text {cr }}$ with $\phi=0.9$
$\phi F$ cr for 90 is 24.9 ksi , so $\mathrm{A} \geq 840 \mathrm{k} / 24.9 \mathrm{ksi}=33.7 \mathrm{in}^{2}$
4. Choose a trial section, and find the effective lengths and associated available strength, $\phi \mathrm{F}_{\mathrm{cr}}$ :

Looking from the smallest sections, the W14's are the first with a big enough area:
Try a W14 $\times 120\left(A=35.3 \mathrm{in}^{2}\right)$ with $r_{y}=3.74$ in and $r_{x}=6.24 \mathrm{in} .: \quad \mathrm{kL} / \mathrm{r}_{\mathrm{y}}=48.1$ and $\mathrm{kL} / \mathrm{r}_{\mathrm{x}}=57.7$ (GOVERNS)
$\phi F_{\text {cr }}$ for 58 is 35.2 ksi , so $\mathrm{A} \geq 840 \mathrm{k} / 35.2 \mathrm{ksi}=23.9 \mathrm{in}^{2}$
Choose a W14 x 90 (Choosing a W14 $\times 82$ would make $\mathrm{kL} / \mathrm{r}_{\mathrm{x}}=59.5$, and $\mathrm{A}_{\text {req'd }}=24.3 \mathrm{in}^{2}$, which is more than 24.1 in ${ }^{2}$ !)

## Example 12

Example 6-1: For the building frame shown in Fig. 6-20, determine the effective column length factor, $K$, the slenderness ratio, $K L / r$ for each column. Assume the columns buckle and the beams bend about their strong axis.

W12x26:


$$
\begin{aligned}
& I_{x}=204 \mathrm{in} .^{4} \\
& r_{x}=5.17 \mathrm{in} .{ }^{4}
\end{aligned}
$$

W12x35:
$I_{x}=285 \mathrm{in}^{4}{ }^{4}$
$r_{x}=5.25 \mathrm{in}^{4}$
W14x34:
$I_{x}=340 \mathrm{in} .{ }^{4}$
W16x36:

$$
I_{x}=448 \mathrm{in} .^{4}
$$

Figure 6-20: Building frame for Example 6-1.
Solution:
Note: The diagonal bracing prevents sidesway of the first story columns only.

$$
\begin{array}{ll}
G_{\mathrm{A}}=\frac{1.0 \text { (fixed support) }}{} & G_{\mathrm{B}}=G_{\mathrm{C}}=10.0 \text { (pinned support) } \\
G_{\mathrm{D}}=\frac{\frac{285}{15}}{\frac{448}{20}}=0.85 & G_{\mathrm{E}}=\frac{\frac{285}{15}+\frac{204}{12}}{\frac{448}{20}+\frac{340}{18}}=0.87 \\
G_{\mathrm{F}}=\frac{\frac{285}{15}+\frac{204}{12}}{\frac{340}{18}}=1.91 & G_{\mathrm{G}}=G_{\mathrm{H}}=\frac{\frac{204}{12}}{\frac{340}{18}}=0.90
\end{array}
$$

Column	$G_{\text {Top }}$	$G_{\text {Bot }}$	$K$		$K L / r$
AD	0.85	1.0	0.76	Braced	$0.76(15)(12) / 5.25=26.1$
BE	0.87	10.0	0.85	Braced	$0.85(15)(12) / 5.25=29.1$
CF	1.91	10.0	0.90	Braced	$0.90(15)(12) / 5.25=30.9$
EG	0.90	0.87	1.29	Unbraced	$1.29(12)(12) / 5.17=35.9$
FH	0.90	1.91	1.43	Unbraced	$1.43(12)(12) / 5.17=39.8$

Table 6-1: Column effective length factors and slenderness ratios for Example 6-1.

## Example 13

Investigate the accepatbility of a W16 x 67 used as a beam-column under the unfactored loading shown in the figure. It is A992 steel $\left(\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}\right)$. Assume $25 \%$ of the load is dead load with $75 \%$ live load.

## SOLUTION:

DESIGN LOADS (shown on figure):
Axial load $=1.2(0.25)(350 \mathrm{k})+1.6(0.75)(350 \mathrm{k})=525 \mathrm{k}$
Moment at joint $=1.2(0.25)(60 \mathrm{k}$-tt $)+1.6(0.75)(60 \mathrm{k}$-ft $)=90 \mathrm{k}$-tt
Determine column capacity and fraction to choose the appropriate interaction equation:


$$
\begin{aligned}
& \frac{k L}{r_{x}}=\frac{15 \mathrm{ft}(12 \mathrm{in} / \mathrm{ft})}{6.96 \mathrm{in}}=25.9 \text { and } \frac{k L}{r_{y}}=\frac{15 \mathrm{ft}(12 \mathrm{in} / \mathrm{tt})}{2.46 \mathrm{in}}=73 \text { (governs) } \\
& P_{c}=\phi_{c} P_{n}=\phi_{c} F_{c r} A_{g}=(30.5 \mathrm{ksi}) 19.7 \mathrm{in}^{2}=600.85 \mathrm{k} \\
& \frac{P_{r}}{P_{c}}=\frac{525 \mathrm{k}}{600.85 \mathrm{k}}=0.87>0.2 \text { so use } \frac{P_{u}}{\phi_{c} P_{n}}+\frac{8}{9}\left(\frac{M_{u x}}{\phi_{b} M_{n x}}+\frac{M_{u y}}{\phi_{b} M_{n y}}\right) \leq 1.0
\end{aligned}
$$

There is no bending about the y axis, so that term will not have any values.
Determine the bending moment capacity in the $x$ direction:
The unbraced length to use the full plastic moment $\left(L_{p}\right)$ is listed as 8.69 ft , and we are over that so of we don't want to determine it from formula, we can find the beam in the Available Moment vs. Unbraced Length tables. The value of $\phi \mathrm{M}_{\mathrm{n}}$ at $L_{b}=15 \mathrm{ft}$ is 422 k - ft .
Determine the magnification factor when $\mathrm{M}_{1}=0, \mathrm{M}_{2}=90 \mathrm{k}$ - ft :


$$
\begin{aligned}
& C_{m}=0.6-0.4 \frac{M_{1}}{M_{2}}=0.6-\frac{0^{k-f t}}{90^{k-f t}}=0.6 \leq 1.0 \quad P_{e 1}=\frac{\pi^{2} E A}{(\mathrm{Kl} / \mathrm{r})^{2}}=\frac{\pi^{2}\left(30 \times 10^{3} \mathrm{ksi}\right) 19.7 \mathrm{in}^{2}}{(25.9)^{2}}=8,695.4 \mathrm{k} \\
& B_{1}=\frac{C_{m}}{1-\left(P_{u} / P_{e 1}\right)}=\frac{0.6}{1-(525 \mathrm{k} / 8695.4 \mathrm{k})}=0.64 \geq 1.0 \quad \text { USE } 1.0 \quad \mathrm{M}_{\mathrm{u}}=(1) 90 \mathrm{k}-\mathrm{ft}
\end{aligned}
$$

Finally, determine the interaction value:
$\frac{P_{u}}{\phi_{c} P_{n}}+\frac{8}{9}\left(\frac{M_{u x}}{\phi_{b} M_{n x}}+\frac{M_{u y}}{\phi_{b} M_{n y}}\right)=0.87+\frac{8}{9}\left(\frac{90^{k-f t}}{422^{k-f t}}\right)=1.06 \pm 1.0$

This is NOT OK. (and outside error tolerance). The section should be larger.

## Example 14

10.9 Determine the maximum load carrying capacity of this lap joint., assuming A36 steel with E60XX electrodes.


## Example 15

10.7 Determine the capacity of the connection in Figure 10.44 assuming A36 steel with E70XX electrodes.

## Solution:

Capacity of weld:
For a $5 / 16^{\prime \prime}$ fillet weld, $\phi S=6.96 \mathrm{k} / \mathrm{in}$
Weld length $=8$ in +6 in +8 in $=22$ in.
Weld capacity $=22^{\prime \prime} \times 6.96 \mathrm{k} / \mathrm{in}=153.1 \mathrm{k}$

Capacity of plate:

$$
\phi P_{n}=\phi F_{y} A_{g} \quad \phi=0.9
$$

Plate capacity $=0.9 \times 36 \mathrm{k} / \mathrm{in}^{2} \times 3 / 8^{\prime \prime} \times 6^{\prime \prime}=72.9 \mathrm{k}$
$\therefore$ Plate capacity governs, $P_{\text {allow }}=72.9 \mathrm{k}$


The weld size used is obviously too strong. What size, then, can the weld be reduced to so that the weld strength is more compatible to the plate capacity? To make the weld capacity $\approx$ plate capacity:

$$
22^{\prime \prime} \times(\text { weld capacity per in. })=72.9 \mathrm{k}
$$

Weld capacity per inch $=\frac{72.9 \mathrm{k}}{22 \mathrm{in} .}-3.31 \mathrm{k} / \mathrm{in}$.
From Available Strength table, use $3 / 16^{\prime \prime}$ weld
( $\phi S=4.18 \mathrm{k} / \mathrm{in}$.)
Minimum size fillet $=3 / 16^{\prime \prime}$ based on a $3 / 8^{\prime \prime}$ thick plate.

## Example 16

10.5 Using the AISC framed beam connection bolt shear in Table 7-1, determine the shear adequacy of the connection shown in Figure 10.28. What thickness and angle length are required? Also determine the bearing capacity of the wide flange sections.

Factored end beam reaction $=90 \mathrm{k}$.


Figure 10.28 Typical beam-column connection.

## Example 17

10.2 The butt splice shown in Figure 10.22 uses two $8 \times$ $3 / 8^{\prime \prime}$ plates to "sandwich" in the $8 \times 1 / 2$ " plates being joined. Four $7 / 8^{\prime \prime} \phi$ A325-SC bolts are used on both sides of the splice. Assuming A36 steel and standard round holes, determine the allowable capacity of the connection.


SOLUTION:
Shear, bearing and net tension will be checked to determine the critical conditions that governs the capacity of the connection.

Shear: Using the AISC available shear in Table 7-3 (Group A):

$$
\phi R_{n}=26.4 \text { k/bolt x } 4 \text { bolts }=105.6 \mathrm{k}
$$

Bearing: Using the AISC available bearing in Table 7-4:
There are 4 bolts bearing on the center ( $1 / 2^{\prime \prime}$ ) plate, while there are 4 bolts bearing on
 a total width of two sandwich plates (3/4" total). The thinner bearing width will govern. Assume 3 in . spacing (center to center) of bolts. For A 36 steel, $\mathrm{F}_{\mathrm{u}}=58 \mathrm{ksi}$.

$$
\phi R_{n}=91.4 \mathrm{k} / \text { bolt/in. } \times 0.5 \text { in. } \times 4 \text { bolts }=182.8 \mathrm{k} \text { (Table } 7-4 \text { ) }
$$

With the edge distance of 2 in., the bearing capacity might be smaller from Table 7-5 which says the distance should be $2 \frac{1}{4}$ in for full bearing (and we have 2 in .).

$$
\phi R_{n}=89.6 \text { k/bolt/in. } \times 0.5 \text { in. } \times 4 \text { bolts }=179.2 \mathrm{k}
$$

Tension: The center plate is critical, again, because its thickness is less than the combined thicknesses of the two outer plates. We must consider tension yielding and tension rupture:

$$
\phi R_{n}=\phi F_{y} A_{g} \quad \text { and } \phi R_{n}=\phi F_{u} A_{e} \text { where } A_{e}=A_{n e t} U
$$

$$
\mathrm{A}_{g}=8 \text { in. } \mathrm{x} 1 / 2 \mathrm{in} .=4 \mathrm{in}^{2}
$$

$A_{g}=8$ in. $x^{1 / 2}$ in. $=4$ in 2
The holes are considered $1 / 8 \mathrm{in}$. larger than the bolt hole diameter $=(7 / 8+1 / 8)=1.0 \mathrm{in}$.

$$
A_{n}=\left(8 \mathrm{in} .-2 \text { holes } \times 1.0 \mathrm{in} \text {.) } \times 1 / 2 \mathrm{in} .=3.0 \mathrm{in}^{2}\right.
$$

The whole cross section sees tension, so the shear lag factor $U=1$

$$
\begin{aligned}
& \phi F_{y} A_{g}=0.9 \times 36 \mathrm{ksix} 4 \mathrm{in}^{2}=129.6 \mathrm{k} \\
& \phi F_{u} A_{e}=0.75 \times 58 \mathrm{ksix}(1) \times 3.0 \mathrm{in}^{2}=130.5 \mathrm{k}
\end{aligned}
$$



Block Shear Rupture: It is possible for the center plate to rip away from the sandwich plates leaving the block (shown hatched) behind:

$$
\phi R_{n}=\phi\left(0.6 F_{u} A_{n v}+U_{b s} F_{u} A_{n t}\right) \leq \phi\left(0.6 F_{y} A_{g v}+U_{b s} F_{u} A_{n t}\right)
$$

where $A_{n v}$ is the area resisting shear, $A_{n t}$ is the area resisting tension, $A_{g v}$ is the gross area resisting shear, and $U_{b s}=1$ when the tensile stress is uniform.

$$
\begin{aligned}
& A_{g v}=(4+2 \mathrm{in} .) \times 1 / 2 \mathrm{in} .=3 \mathrm{in}^{2} \\
& A_{n v}=A_{g v}-1 \frac{1}{2} \text { holes area }=3 \mathrm{in}^{2}-1.5 \times 1 \mathrm{in} . \times 1 / 2 \mathrm{in} .=2.25 \mathrm{in}^{2} \\
& A_{n t}=3.5 \mathrm{in} . \times \mathrm{t}-1 \text { holes }=3.5 \mathrm{in} . \times 1 / 2 \mathrm{in}-1 \times 1 \mathrm{in} . \times 1 / 2 \mathrm{in} .=1.25 \mathrm{in}^{2} \\
& \phi\left(0.6 F_{u} A_{n v}+U_{b s} F_{u} A_{n t}\right)=0.75 \times\left(0.6 \times 58 \mathrm{ksi} \times 2.25 \mathrm{in}^{2}+1 \times 58 \mathrm{ksi} \times 1.25 \mathrm{in}^{2}\right)=113.1 \mathrm{k} \\
& \phi\left(0.6 F_{y} A_{g v}+U_{b s} F_{u} A_{n t}\right)=0.75 \times\left(0.6 \times 36 \mathrm{ksi} \times 3 \mathrm{in}^{2}+1 \times 58 \mathrm{ksi} \times 1.25 \mathrm{in}^{2}\right)=103.0 \mathrm{k}
\end{aligned}
$$

The maximum connection capacity (smallest value) is governed by block shear rupture: $\quad \phi R_{n}=103.0 \mathrm{k}$

## Example 18

The steel used in the connection and beams is A992 with $\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$, and $F_{u}=65 \mathrm{ksi}$. Using A490-N bolt material, determine the maximum capacity of the connection based on shear in the bolts, bearing in all materials and pick the number of bolts and angle length (not staggered). Use A36 steel for the angles.

W21x93: $\mathrm{d}=21.62 \mathrm{in}, \mathrm{t}_{\mathrm{w}}=0.58 \mathrm{in}, \mathrm{t}_{\mathrm{f}}=0.93$ in
W10x54: $\mathrm{t}_{\mathrm{f}}=0.615 \mathrm{in}$


## SOLUTION:

The maximum length the angles can be depends on how it fits between the top and bottom flange with some clearance allowed for the fillet to the flange, and getting an air wrench in to tighten the bolts. This example uses 1 " of clearance:

$$
\begin{aligned}
\text { Available length } & =\text { beam depth }- \text { both flange thicknesses }-1^{\prime \prime} \text { clearance at top \& } 1 " \text { at bottom } \\
& =21.62 \mathrm{in}-2(0.93 \mathrm{in})-2(1 \mathrm{in})=17.76 \mathrm{in} .
\end{aligned}
$$

With the spaced at 3 in. and $11 / 4 \mathrm{in}$. end lengths (each end), the maximum number of bolts can be determined:

$$
\begin{aligned}
& \text { Available length } \geq 1.25 \text { in. }+1.25 \mathrm{in} .+3 \text { in. } x \text { (number of bolts }-1 \text { ) } \\
& \text { number of bolts } \leq(17.76 \text { in }-2.5 \text { in. }-(-3 \text { in. }) / 3 \text { in. }=6.1 \text {, so } 6 \text { bolts. }
\end{aligned}
$$

It is helpful to have the All-bolted Double-Angle
Connection Tables $10-1$. They are available for $3 / 4^{\prime \prime}, 7 / 8^{\prime \prime}$, and $1^{\prime \prime}$ bolt diameters and list angle thicknesses of $1 / 4{ }^{\prime \prime}$, $5 / 16^{\prime \prime}, 3 / 8^{\prime \prime}$, and $1 / 2^{\prime \prime}$. Increasing the angle thickness is likely to increase the angle strength, although the limit states include shear yielding of the angles, shear rupture of the angles, and block shear rupture of the angles.

For these diameters, the available shear (double) from Table $7-1$ for 6 bolts is (6) $45.1 \mathrm{k} /$ bolt $=270.6 \mathrm{kips}$, (6) $61.3 \mathrm{k} / \mathrm{bolt}=367.8 \mathrm{kips}$, and (6) $80.1 \mathrm{k} / \mathrm{bolt}=$ 480.6 kips.

Tables 10-1 (not all provided here) list a bolt and angle available strength of 271 kips for the $3 / 4$ " bolts, 296 kips for the $7 / 8$ " bolts, and 281 kips for the 1 " bolts. It appears that increasing the bolt diameter to 1 " will not gain additional load. Use 7/8" bolts.

$\begin{array}{\|c\|l} \underset{\widetilde{O}}{E} & F_{y}=50 \mathrm{ksi} \\ \underset{\sim}{\infty} & F_{u}=65 \mathrm{ksi} \end{array}$	Table 10-1 (continued) All-Bolted Double-Angle Connections									7/8-in.   Bolts	
응 $F_{y}=36 \mathrm{ksi}$											
<	Bolt and Angle Available Strength, kips										
6 Rows	$\begin{array}{\|c\|} \hline \text { Bolt } \\ \text { Group } \end{array}$	Thread Cond.	$\begin{aligned} & \text { Hole } \\ & \text { Type } \end{aligned}$	Angle Thickness, in.							
$\begin{array}{\|l} \text { W40, 36, 33, 30, 27, } \\ 24.21 \end{array}$				1/4		5/16		$3 / 8$		1/2	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	N	STD	98.6	148	123	185	148	222	195	292
		X	STD	98.6	148	123	185	148	222	197	296
			STD	98.6	148	106	159	106	159	106	159
			OVS	90.1	135	90.1	135	90.1	135	90.1	135
			SSLT	97.3	146	106	159	106	159	106	159
			STD	98.6	148	123	185	148	222	176	264
			OVS	93.5	140	117	175	140	210	150	225
			SSLT	97.3	146	122	182	146	219	176	264
	$\begin{gathered} \text { Group } \\ B \end{gathered}$	N	STD	98.6	148	123	185	148	222	197	296
		X	STD	98.6	148	123	185	148	222	197	296
			STD	98.6	148	123	185	133	199	133	199
		SC	OVS	93.5	140	113	169	113	169	113	169
		Class A	SSLT	97.3	146	122	182	133	199	133	199
			STD	98.6	148	123	185	148	222	197	296
			OVS	93.5	140	117	175	140	210	187	281
			SSLT	97.3	146	122	182	146	219	195	292

$\phi R_{n}=367.8$ kips for double shear of $7 / 8^{\prime \prime}$ bolts
$\phi R_{n}=296$ kips for limit state in angles
We also need to evaluate bearing of bolts on the beam web, and column flange where there are bolt holes. Table 7-4 provides available bearing strength for the material type, bolt diameter, hole type, and spacing per inch of material thicknesses.
a) Bearing for beam web: There are 6 bolt holes through the beam web. This is typically the critical bearing limit value because there are two angle legs that resist bolt bearing and twice as many bolt holes to the column. The material is A992 ( $\mathrm{F}_{\mathrm{u}}=65 \mathrm{ksi}$ ), 0.58 " thick, with $7 / 8^{\prime \prime}$ bolt diameters at 3 in. spacing.

$$
\phi R_{n}=6 \text { bolts } \cdot(102 \mathrm{k} / \text { bolt/inch }) \cdot(0.58 \mathrm{in})=355.0 \mathrm{kips}
$$

b) Bearing for column flange: There are 12 bolt holes through the column. The material is A992 ( $\mathrm{F}_{\mathrm{u}}=65 \mathrm{ksi}$ ), 0.615 " thick, with 1 " bolt diameters.

$$
\phi R_{n}=12 \text { bolts } \cdot(102 \mathrm{k} / \text { bolt/inch }) \cdot(0.615 \mathrm{in})=752.8 \mathrm{kips}
$$

Although, the bearing in the beam web is the smallest at 355 kips , with the shear on the bolts even smaller at 324.6 kips, the maximum capacity for the simple-shear connector is 296 kips limited by the critical capacity of the angles.

## Beam Design Flow Chart



Listing of W Shapes in Descending order of $Z_{x}$ for Beam Design

$\begin{gathered} \hline \mathrm{Z}_{\mathrm{x}}-\mathrm{US} \\ \left(\text { in. }{ }^{3}\right. \text { ) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{x}}-\mathrm{US} \\ \left(\text { in. }{ }^{4}\right) \\ \hline \end{gathered}$	Section	$\begin{gathered} \mathrm{I}_{x}-\mathrm{SI} \\ \left(10^{6} \mathrm{~mm} .{ }^{4}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{x}}-\mathrm{SI} \\ \left(10^{3} \mathrm{~mm} .3\right) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{Z}_{\mathrm{x}}-\mathrm{US} \\ \left(\text { (in. }^{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{I}_{\mathrm{x}}-\mathrm{US} \\ \left(\text { (in. }{ }^{4}\right) \\ \hline \end{gathered}$	Section	$\begin{gathered} \mathrm{I}_{\mathrm{x}}-\mathrm{SI} \\ \left(10^{6} \mathrm{~mm} .{ }^{4}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{x}}-\mathrm{SI} \\ \left(10^{3} \mathrm{~mm} .3\right) \\ \hline \end{gathered}$
514	7450	w33x141	3100	8420	289	3100	W24×104	1290	4740
511	5680	W24x176	2360	8370	287	1900	W14×159	791	4700
509	7800	W36x135	3250	8340	283	3610	w30x90	1500	4640
500	6680	W30X148	2780	8190	280	3000	W24x103	1250	4590
490	4330	W18X211	1800	8030	279	2670	W21x111	1110	4570
487	3400	W14×257	1420	7980	278	3270	W27X94	1360	4560
481	3110	W12X279	1290	7880	275	1650	W12x170	687	4510
476	4730	W21×182	1970	7800	262	2190	W18×119	912	4290
468	5170	W24×162	2150	7670	260	1710	W14×145	712	4260
467	6710	W33x130	2790	7650	254	2700	W24X94	1120	4160
464	5660	W27X146	2360	7600	253	2420	W21x101	1010	4150
442	3870	W18X192	1610	7240	244	2850	W27X84	1190	4000
437	5770	W30x132	2400	7160	243	1430	W12X152	595	3980
436	3010	W14×233	1250	7140	234	1530	W14×132	637	3830
432	4280	W21X166	1780	7080	230	1910	W18X106	795	3770
428	2720	W12X252	1130	7010	224	2370	W24x84	986	3670
418	4580	W24×146	1910	6850	221	2070	W21X93	862	3620
415	5900	W33x118	2460	6800	214	1240	W12×136	516	3510
408	5360	W30x124	2230	6690	212	1380	W14×120	574	3470
398	3450	W18×175	1440	6520	211	1750	W18X97	728	3460
395	4760	W27X129	1980	6470	200	2100	W24X76	874	3280
390	2660	W14×211	1110	6390	198	1490	W16x100	620	3240
386	2420	W12x230	1010	6330	196	1830	W21X83	762	3210
378	4930	W30x116	2050	6190	192	1240	W14×109	516	3150
373	3630	W21X147	1510	6110	186	1530	W18X86	637	3050
370	4020	W24×131	1670	6060	186	1070	W12x120	445	3050
356	3060	W18×158	1270	5830	177	1830	W24x68	762	2900
355	2400	W14X193	999	5820	175	1300	W16X89	541	2870
348	2140	W12X210	891	5700	173	1110	W14X99	462	2830
346	4470	w30x108	1860	5670	172	1600	W21X73	666	2820
343	4080	W27X114	1700	5620	164	933	W12x106	388	2690
333	3220	W21×132	1340	5460	163	1330	W18X76	554	2670
327	3540	W24×117	1470	5360	160	1480	W21x68	616	2620
322	2750	W18×143	1140	5280	157	999	W14X90	416	2570
320	2140	W14×176	891	5240	153	1550	W24X62	645	2510
312	3990	W30X99	1660	5110	150	1110	W16X77	462	2460
311	1890	W12X190	787	5100	147	833	W12X96	347	2410
307	2960	W21×122	1230	5030	147	716	W10x112	298	2410
305	3620	W27X102	1510	5000	146	1170	W18x71	487	2390
290	2460	W18×130	1020	4750					ontinued)

Listing of W Shapes in Descending order of $Z_{x}$ for Beam Design (Continued)

$\begin{gathered} \mathrm{Z}_{\mathrm{x}}-\mathrm{US} \\ \left(\mathrm{in.}{ }^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{x}}-\mathrm{US} \\ \left(\text { in. }{ }^{4}\right) \end{gathered}$	Section	$\begin{gathered} \mathrm{I}_{\mathrm{x}}-\mathrm{SI} \\ \left(10^{6} \mathrm{~mm} .{ }^{4}\right) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{x}}-\mathrm{SI} \\ \left(10^{3} \mathrm{~mm} .3\right) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{x}}-\mathrm{US} \\ \left(\text { (in. }{ }^{3}\right) \end{gathered}$	$\begin{gathered} \hline \mathrm{I}_{\mathrm{x}}-\mathrm{US} \\ \left(\mathrm{in.}{ }^{4}\right) \\ \hline \end{gathered}$	Section	$\begin{gathered} \mathrm{I}_{\mathrm{x}}-\mathrm{SI} \\ \left(10^{6} \mathrm{~mm} .{ }^{4}\right) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{x}}-\mathrm{SI} \\ \left(10^{3} \mathrm{~mm} .3\right) \end{gathered}$
144	1330	W21X62	554	2360	66.5	510	W18X35	212	1090
139	881	W14X82	367	2280	64.2	348	W12X45	145	1050
134	1350	W24X55	562	2200	64.0	448	W16X36	186	1050
133	1070	W18X65	445	2180	61.5	385	W14X38	160	1010
132	740	W12X87	308	2160	60.4	272	W10X49	113	990
130	954	W16X67	397	2130	59.8	228	W8X58	94.9	980
130	623	W10x100	259	2130	57.0	307	W12X40	128	934
129	1170	W21X57	487	2110	54.9	248	W10X45	103	900
126	1140	W21X55	475	2060	54.6	340	W14X34	142	895
126	795	W14X74	331	2060	54.0	375	W16X31	156	885
123	984	W18X60	410	2020	51.2	285	W12X35	119	839
119	662	W12X79	276	1950	49.0	184	W8X48	76.6	803
115	722	W14X68	301	1880	47.3	291	W14X30	121	775
113	534	W10X88	222	1850	46.8	209	W10X39	87.0	767
112	890	W18X55	370	1840	44.2	301	W16X26	125	724
110	984	W21X50	410	1800	43.1	238	W12X30	99.1	706
108	597	W12X72	248	1770	40.2	245	W14X26	102	659
107	959	W21X48	399	1750	39.8	146	W8X40	60.8	652
105	758	W16X57	316	1720	38.8	171	W10X33	71.2	636
102	640	W14X61	266	1670	37.2	204	W12X26	84.9	610
101	800	W18X50	333	1660	36.6	170	W10X30	70.8	600
97.6	455	W10X77	189	1600	34.7	127	W8X35	52.9	569
96.8	533	W12X65	222	1590	33.2	199	W14X22	82.8	544
95.4	843	W21X44	351	1560	31.3	144	W10X26	59.9	513
92.0	659	W16X50	274	1510	30.4	110	W8X31	45.8	498
90.7	712	W18X46	296	1490	29.3	156	W12X22	64.9	480
87.1	541	W14X53	225	1430	27.2	98.0	W8X28	40.8	446
86.4	475	W12X58	198	1420	26.0	118	W10x22	49.1	426
85.3	394	W10X68	164	1400	24.7	130	W12X19	54.1	405
82.3	586	W16X45	244	1350	23.1	82.7	W8X24	34.4	379
78.4	612	W18X40	255	1280	21.6	96.3	W10X19	40.1	354
78.4	484	W14X48	201	1280	20.4	75.3	W8X21	31.3	334
77.9	425	W12X53	177	1280	20.1	103	W12x16	42.9	329
74.6	341	W10X60	142	1220	18.7	81.9	W10X17	34.1	306
73.0	518	W16X40	216	1200	17.4	88.6	W12X14	36.9	285
71.9	391	W12X50	163	1180	17.0	61.9	W8X18	25.8	279
70.1	272	W8X67	113	1150	16.0	68.9	W10X15	28.7	262
69.6	428	W14X43	178	1140	13.6	48.0	W8X15	20.0	223
66.6	303	W10X54	126	1090	12.6	53.8	W10x12	22.4	206
					11.4	39.6	W8X13	16.5	187
					8.87	30.8	W8X10	12.8	145

Available Critical Stress, $\phi_{c} F_{c r}$, for Compression Members, ksi ( $F_{y}=36$ ksi and $\phi_{c}=0.90$ )

$K L / r$	$\phi_{c} F_{c r}$	$K L / r$	$\phi_{c} F_{c r}$	$K L / r$	$\phi_{c} F_{c r}$	$K L / r$	$\phi_{c} F_{c r}$	$K L / r$	$\phi_{c} F_{c r}$
1	32.4	41	29.7	81	22.9	121	150	161	8.72
2	32.4	42	29.5	82	22.7	122	14.8	162	8.61
3	32.4	43	29.4	83	22.5	123	14.6	163	8.50
4	32.4	44	29.3	84	22.3	124	14.4	164	8.40
5	32.4	45	29.1	85	22.1	125	14.2	165	8.30
6	32.3	46	29.0	86	22.0	126	14.0	166	8.20
7	32.3	47	28.8	87	21.8	127	13.9	167	8.10
8	32.3	48	28.7	88	21.6	128	13.7	168	8.00
9	32.3	49	28.6	89	21.4	129	13.5	169	7.91
10	32.2	50	28.4	90	21.2	130	13.3	170	7.82
11	32.2	51	28.3	91	21.0	131	13.1	171	7.73
12	32.2	52	28.1	92	20.8	132	12.9	172	7.64
13	32.1	53	27.9	93	20.5	133	12.8	173	7.55
14	32.1	54	27.8	94	20.3	134	12.6	174	7.46
15	32.0	55	27.6	95	20.1	135	12.4	175	7.38
16	32.0	56	27.5	96	19.9	136	12.2	176	7.29
17	31.9	57	27.3	97	19.7	137	12.0	177	7.21
18	31.9	58	27.1	98	19.5	138	11.9	178	7.13
19	31.8	59	27.0	99	19.3	139	11.7	179	7.05
20	31.7	60	26.8	100	19.1	140	11.5	180	6.97
21	31.7	61	26.6	101	18.9	141	11.4	181	6.90
22	31.6	62	26.5	102	18.7	142	11.2	182	6.82
23	31.5	63	26.3	103	18.5	143	11.0	183	6.75
24	31.4	64	26.1	104	18.3	144	10.9	184	6.67
25	31.4	65	25.9	105	18.1	145	10.7	185	6.60
26	31.3	66	25.8	106	17.9	146	10.6	186	6.53
27	31.2	67	25.6	107	17.7	147	10.5	187	6.46
28	31.1	68	25.4	108	17.5	148	10.3	188	6.39
29	31.0	69	25.2	109	17.3	149	10.2	189	6.32
30	30.9	70	25.0	110	17.1	150	10.0	190	6.26
31	30.8	71	24.8	111	16.9	151	9.91	191	6.19
32	30.7	72	24.7	112	16.7	152	9.78	192	6.13
33	30.6	73	24.5	113	16.5	153	9.65	193	6.06
34	30.5	74	24.3	114	16.3	154	9.53	194	6.00
35	30.4	75	24.1	115	16.2	155	9.40	195	5.94
36	30.3	76	23.9	116	16.0	156	9.28	196	5.88
37	30.1	77	23.7	117	15.8	157	9.17	197	5.82
38	30.0	78	23.5	118	15.6	158	9.05	198	5.76
39	29.9	79	23.3	119	15.4	159	8.94	199	5.70
40	29.8	80	23.1	120	15.2	160	8.82	200	5.65

Available Critical Stress, $\phi_{c} F_{c r}$, for Compression Members, ksi ( $F_{y}=50$ ksi and $\phi_{c}=0.90$ )

$K L / r$	$\phi_{c} F_{c r}$	$K L / r$	$\phi_{c} F_{c r}$	$K L / r$	$\phi_{c} F_{c r}$	$K L / r$	$\phi_{c} F_{c r}$	$K L / r$	$\phi_{c} F_{c r}$
1	45.0	41	39.8	81	27.9	121	15.4	161	8.72
2	45.0	42	39.6	82	27.5	122	15.2	162	8.61
3	45.0	43	39.3	83	27.2	123	14.9	163	8.50
4	44.9	44	39.1	84	26.9	124	14.7	164	8.40
5	44.9	45	38.8	85	26.5	125	14.5	165	8.30
6	44.9	46	38.5	86	26.2	126	14.2	166	8.20
7	44.8	47	38.3	87	25.9	127	14.0	167	8.10
8	44.8	48	38.0	88	25.5	128	13.8	168	8.00
9	44.7	49	37.8	89	25.2	129	13.6	169	7.91
10	44.7	50	37.5	90	24.9	130	13.4	170	7.82
11	44.6	51	37.2	91	24.6	131	13.2	171	7.73
12	44.5	52	36.9	92	24.2	132	13.0	172	7.64
13	44.4	53	36.6	93	23.9	133	12.8	173	7.55
14	44.4	54	36.4	94	23.6	134	12.6	174	7.46
15	44.3	55	36.1	95	23.3	135	12.4	175	7.38
16	44.2	56	35.8	96	22.9	136	12.2	176	7.29
17	44.1	57	35.5	97	2.6	137	12.0	177	7.21
18	43.9	58	35.2	98	22.3	138	11.9	178	7.13
19	43.8	59	34.9	99	22.0	139	11.7	179	7.05
20	43.7	60	34.6	100	21.7	140	11.5	180	6.97
21	43.6	61	34.3	101	21.3	141	11.4	181	6.90
22	43.4	62	34.0	102	21.0	142	11.2	182	6.82
23	43.3	63	33.7	103	20.7	143	11.0	183	6.75
24	43.1	64	33.4	104	20.4	144	10.9	184	6.67
25	43.0	65	33.0	105	20.1	145	10.7	185	6.60
26	42.8	66	32.7	106	19.8	146	10.6	186	6.53
27	42.7	67	32.4	107	19.5	147	10.5	187	6.46
28	42.5	68	32.1	108	19.2	148	10.3	188	6.39
29	42.3	69	31.8	109	18.9	149	10.2	189	6.32
30	42.1	70	31.4	110	18.6	150	10.0	190	6.26
31	41.9	71	31.1	111	18.3	151	9.91	191	6.19
32	41.8	72	30.8	112	18.0	152	9.78	192	6.13
33	41.6	73	30.5	113	17.7	153	9.65	193	6.06
34	41.4	74	30.2	114	17.4	154	9.53	194	6.00
35	41.1	75	29.8	115	17.1	155	9.40	195	5.94
36	40.9	76	29.5	116	16.8	156	9.28	196	5.88
37	40.7	77	29.2	117	16.5	157	9.17	197	5.82
38	40.5	78	28.8	118	16.2	158	9.05	198	5.76
39	40.3	79	28.5	119	16.0	159	8.94	199	5.70
40	40.0	80	28.2	120	15.7	160	8.82	200	5.65

## Bolt Strength Tables

Table 7-1
Available Shear Strength of Bolts, kips

Nominal Bolt Diameter, d, in.							3/4		7/8		1	
Nominal Bolt Area, in. ${ }^{2}$					0.307		0.442		0.601		0.785	
ASTM Desig.	Thread Cond.	$\begin{aligned} & F_{n v} / \Omega \\ & (\mathbf{k s i}) \end{aligned}$	$\phi F_{n v}$   (ksi)	Loading	$r_{n} / \Omega$	$\phi r_{n}$						
		ASD	LRFD		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{gathered} \text { Group } \\ \mathbf{A} \end{gathered}$	$N$	27.0	40.5	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{gathered} 8.29 \\ 16.6 \\ \hline \end{gathered}$	$\begin{aligned} & 12.4 \\ & 24.9 \end{aligned}$	$\begin{aligned} & 11.9 \\ & 23.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 17.9 \\ & 35.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.2 \\ & 32.5 \end{aligned}$	$\begin{aligned} & 24.3 \\ & 48.7 \end{aligned}$	$\begin{aligned} & 21.2 \\ & 42.4 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 31.8 \\ 63.6 \\ \hline \end{array}$
	X	34.0	51.0	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{array}{r} 10.4 \\ 20.9 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 15.7 \\ 31.3 \\ \hline \end{array}$	$\begin{aligned} & 15.0 \\ & 30.1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 22.5 \\ 45.1 \\ \hline \end{array}$	$\begin{aligned} & 20.4 \\ & 40.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.7 \\ & 61.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 26.7 \\ & 53.4 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 40.0 \\ 80.1 \\ \hline \end{array}$
$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	34.0	51.0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & 10.4 \\ & 20.9 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 15.7 \\ 31.3 \\ \hline \end{array}$	$\begin{aligned} & 15.0 \\ & 30.1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 22.5 \\ 45.1 \\ \hline \end{array}$	$\begin{array}{r} 20.4 \\ 40.9 \\ \hline \end{array}$	$\begin{aligned} & 30.7 \\ & 61.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 26.7 \\ & 53.4 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 40.0 \\ 80.1 \\ \hline \end{array}$
	X	42.0	63.0	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & 12.9 \\ & 25.8 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 19.3 \\ 38.7 \end{array}$	$\begin{array}{r} 18.6 \\ 37.1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 27.8 \\ 55.7 \\ \hline \end{array}$	$\begin{array}{r} 25.2 \\ 50.5 \\ \hline \end{array}$	$\begin{aligned} & 37.9 \\ & 75.7 \end{aligned}$	$\begin{aligned} & 33.0 \\ & 65.9 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 49.5 \\ 98.9 \\ \hline \end{array}$
A307	-	13.5	20.3	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	4.14 8.29	$\begin{gathered} 6.23 \\ 12.5 \end{gathered}$	$\begin{gathered} \hline 5.97 \\ 11.9 \end{gathered}$	$\begin{gathered} 8.97 \\ 17.9 \end{gathered}$	$\begin{gathered} 8.11 \\ 16.2 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 12.2 \\ & 24.4 \end{aligned}$	$\begin{aligned} & 10.6 \\ & 21.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 15.9 \\ 31.9 \\ \hline \end{array}$


Nominal Boit Diameter, d, in.					$11 / 8$   0.994		$\begin{aligned} & 11 / 4 \\ & \hline 1.23 \end{aligned}$		$\begin{aligned} & 13 / 8 \\ & \hline 1.48 \end{aligned}$		$\begin{array}{\|r\|} \hline 11 / 2 \\ \hline 1.77 \\ \hline \end{array}$										
Nominal Bolt Area, in. ${ }^{2}$																					
ASTM Desig.	Thread Cond.	$F_{n v} / \Omega$   (ksi)	$\phi F_{n v}$   (ksi)	Loading	$r_{n} / \Omega$	$\phi r_{n}$															
		ASD	LRFD		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD									
Group A	N	27.0	40.5	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 26.8 \\ & 53.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 40.3 \\ & 80.5 \end{aligned}$	$\begin{aligned} & 33.2 \\ & 66.4 \end{aligned}$	$\begin{aligned} & \hline 49.8 \\ & 99.6 \end{aligned}$	$\begin{array}{r} 40.0 \\ 79.9 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 59.9 \\ \hline 120 \\ \hline \end{array}$	$\begin{aligned} & 47.8 \\ & 95.6 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 71.7 \\ 143 \\ \hline \end{array}$									
	X	34.0	51.0	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & 33.8 \\ & 67.6 \end{aligned}$	$\begin{array}{\|c} \hline 50.7 \\ 101 \\ \hline \end{array}$	$\begin{aligned} & \hline 41.8 \\ & 83.6 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 62.7 \\ \hline 125 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 50.3 \\ 101 \\ \hline \end{array}$	$\begin{gathered} \hline 75.5 \\ 151 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 60.2 \\ 120 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 90.3 \\ 181 \\ \hline \end{array}$									
$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	$N$	34.0	51.0	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 33.8 \\ & 67.6 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 50.7 \\ 101 \\ \hline \end{array}$	$\begin{aligned} & 41.8 \\ & 83.6 \end{aligned}$	$\begin{array}{\|c} \hline 62.7 \\ 125 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 50.3 \\ 101 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 75.5 \\ \hline 151 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 60.2 \\ 120 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 90.3 \\ 181 \end{array}$									
	X	42.0	63.0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \hline 41.7 \\ & 83.5 \end{aligned}$	$\begin{gathered} \hline 62.6 \\ 125 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 51.7 \\ 103 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 77.5 \\ \hline 155 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 62.2 \\ \hline 124 \\ \hline \end{array}$	$\begin{gathered} 93.2 \\ 186 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 74.3 \\ 149 \\ \hline \end{array}$	$\begin{aligned} & 112 \\ & 223 \\ & \hline \end{aligned}$									
A307	-	13.5	20.3	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{array}{\|l\|} \hline 13.4 \\ 26.8 \\ \hline \end{array}$	$\begin{aligned} & 20.2 \\ & 40.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.6 \\ & 33.2 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 49.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.0 \\ & 40.0 \end{aligned}$	$\begin{aligned} & 30.0 \\ & 60.1 \end{aligned}$	$\begin{aligned} & 23.9 \\ & 47.8 \end{aligned}$	$\begin{array}{\|l\|} \hline 35.9 \\ 71.9 \\ \hline \end{array}$									
ASD	LRFD	For end loaded connections greater than 38 in., see ASC Specification Table J3.2 footnote b.																			
$\Omega=2.00$	$\phi=0.75$																				


					$\begin{aligned} & 7-2 \\ & \text { Tel } \\ & \text { Bol } \end{aligned}$					
Nominal Bolt Diameter, d, in.			5/8		3/4		7/8		1	
Nominal Bolt Area, in. ${ }^{2}$			0.307		0.442		0.601		0.785	
ASTM Desig.	$F_{n t} / \Omega$   (ksi)	$\begin{aligned} & \phi F_{n t} \\ & (\mathbf{k s i}) \end{aligned}$	$r_{n} / \Omega$	$\phi r_{n}$	$r_{n} / \Omega$	$\phi r_{n}$	$r_{n} / \Omega$	$\phi r_{n}$	$r_{n} / \Omega$	$\phi \boldsymbol{r}_{\boldsymbol{n}}$
	ASD	LRFD								
Group A Group B A307	$\begin{aligned} & 45.0 \\ & 56.5 \\ & 22.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 67.5 \\ & 84.8 \\ & 33.8 \end{aligned}$	$\begin{gathered} 13.8 \\ 17.3 \\ 6.90 \end{gathered}$	$\begin{aligned} & 20.7 \\ & 26.0 \\ & 10.4 \end{aligned}$	$\begin{gathered} 19.9 \\ 25.0 \\ 9.94 \end{gathered}$	$\begin{aligned} & 29.8 \\ & 37.4 \\ & 14.9 \end{aligned}$	$\begin{aligned} & 27.1 \\ & 34.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 40.6 \\ & 51.0 \\ & 20.3 \end{aligned}$	$\begin{aligned} & 35.3 \\ & 44.4 \\ & 17.7 \end{aligned}$	$\begin{aligned} & \hline 53.0 \\ & 66.6 \\ & 26.5 \end{aligned}$
Nominal Bolt Diameter, d, in.			11/8		$11 / 4$		13/8		11/2	
Nominal Bolt Area, in. ${ }^{2}$			0.994		1.23		1.48		1.77	
ASTM Desig.	$\begin{gathered} \hline F_{n t} / \Omega \\ (\mathbf{k s i}) \end{gathered}$	$\begin{aligned} & \phi F_{n t} \\ & (\mathbf{k s i}) \end{aligned}$	$r_{n} / \Omega$	$\phi \boldsymbol{r}_{\boldsymbol{n}}$	$r_{n} / \Omega$	$\phi r_{n}$	$r_{n} / \Omega$	$\phi r_{n}$	$r_{n} / \Omega$	$\phi r_{n}$
	ASD	LRFD								
Group A Group B A307	$\begin{aligned} & 45.0 \\ & 56.5 \\ & 22.5 \end{aligned}$	$\begin{aligned} & 67.5 \\ & 84.8 \\ & 33.8 \end{aligned}$	$\begin{aligned} & 44.7 \\ & 56.2 \\ & 22.4 \end{aligned}$	$\begin{aligned} & \hline 67.1 \\ & 84.2 \\ & 33.5 \end{aligned}$	$\begin{aligned} & 55.2 \\ & 69.3 \\ & 27.6 \end{aligned}$	82.8   104   41.4	$\begin{aligned} & 66.8 \\ & 83.9 \\ & 33.4 \end{aligned}$	$\begin{array}{\|c\|} \hline 100 \\ 126 \\ 50.1 \end{array}$	$\begin{aligned} & 79.5 \\ & 99.8 \\ & 39.8 \end{aligned}$	$\begin{array}{\|l\|} \hline 119 \\ 150 \\ 59.6 \end{array}$
ASD ${ }^{\text {L }}$ LRFD		38								
$\Omega=2.00$	$=0.75$									




Table 7-4 (continued)   Available Bearing Strength at Bolt Holes Based on Bolt Spacing   kips/in. thickness										
Hole Type	Bolt Spacing, $s$, in.	$F_{u}$, ksi	Nominal Bolt Diameter, $d$, in.							
			11/8		$11 / 4$		13/8		11/2	
			$r_{n} / \Omega$	$\phi_{\boldsymbol{n}}$	$r_{n} / \Omega$	$\phi r_{n}$	$r_{n} / \Omega$	$\phi r_{n}$	$r_{n} / \Omega$	$\phi r_{n}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$2{ }^{2 / 3} d_{b}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 63.1 \\ & 70.7 \end{aligned}$	$\begin{gathered} 94.6 \\ 106 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 70.3 \\ & 78.8 \end{aligned}$	$\begin{aligned} & \hline 105 \\ & 118 \end{aligned}$	$\begin{aligned} & \hline 77.6 \\ & 86.9 \end{aligned}$	$\begin{aligned} & \hline 116 \\ & 130 \\ & \hline \end{aligned}$	$\begin{aligned} & 84.8 \\ & 95.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 127 \\ & 143 \\ & \hline \end{aligned}$
	3 in .	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{array}{r} 63.1 \\ 70.7 \\ \hline \end{array}$	$\begin{gathered} 94.6 \\ 106 \\ \hline \end{gathered}$	—	-	-	-	-	-
SSLP	$2{ }^{2} / 3 d_{b}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{array}{r} 52.2 \\ 58.5 \\ \hline \end{array}$	$\begin{array}{r} 78.3 \\ 87.8 \\ \hline \end{array}$	$\begin{aligned} & 59.5 \\ & 66.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 89.2 \\ & 99.9 \end{aligned}$	$\begin{aligned} & 66.7 \\ & 74.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 112 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 74.0 \\ & 82.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 111 \\ & 124 \\ & \hline \end{aligned}$
	3 in.	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{array}{r} 52.2 \\ 58.5 \\ \hline \end{array}$	$\begin{aligned} & 78.3 \\ & 87.8 \\ & \hline \end{aligned}$	-	-	-	-	-	-
OVS	$2{ }^{2} / 3 d_{b}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 54.4 \\ & 60.9 \end{aligned}$	$\begin{aligned} & 81.6 \\ & 91.4 \end{aligned}$	$\begin{aligned} & 61.6 \\ & 69.1 \end{aligned}$	$\begin{gathered} 92.4 \\ 104 \end{gathered}$	$\begin{aligned} & \hline 68.9 \\ & 77.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 103 \\ & 116 \\ & \hline \end{aligned}$	$\begin{aligned} & 76.1 \\ & 85.3 \end{aligned}$	$\begin{aligned} & \hline 114 \\ & 128 \\ & \hline \end{aligned}$
	3 in .	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 54.4 \\ & 60.9 \end{aligned}$	$\begin{aligned} & 81.6 \\ & 91.4 \\ & \hline \end{aligned}$	-	-	-	-	-	-
LSLP	$2{ }^{2 / 3} d_{b}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 6.53 \\ & 7.31 \\ & \hline \end{aligned}$	$\begin{gathered} 9.79 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 7.25 \\ & 8.13 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.9 \\ & 12.2 \end{aligned}$	$\begin{aligned} & 7.98 \\ & 8.94 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.70 \\ & 9.75 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 13.1 \\ & 14.6 \\ & \hline \end{aligned}$
	3 in.	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 6.53 \\ & 7.31 \end{aligned}$	$\begin{gathered} 9.79 \\ 11.0 \\ \hline \end{gathered}$	-	-	-	-	-	-
LSLT	$2{ }^{2} / 3 d_{b}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 52.6 \\ & 58.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 78.8 \\ & 88.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 58.6 \\ & 65.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 87.9 \\ & 98.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 64.6 \\ & 72.4 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 97.0 \\ 109 \\ \hline \end{array}$	$\begin{array}{r} 70.7 \\ 79.2 \\ \hline \end{array}$	$\begin{aligned} & \hline 106 \\ & 119 \\ & \hline \end{aligned}$
	3 in.	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 52.6 \\ & 58.9 \end{aligned}$	$\begin{aligned} & 78.8 \\ & 88.4 \\ & \hline \end{aligned}$	-	-	-	-	-	-
$\begin{array}{\|c} \hline \text { STD, SSLT, } \\ \text { SSLP, OVS, } \\ \text { LSLP } \\ \hline \end{array}$	$s \geq s_{\text {full }}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{array}{r} 78.3 \\ 87.8 \end{array}$	$\begin{array}{\|l\|l\|} \hline 117 \\ 132 \end{array}$	$\begin{aligned} & 87.0 \\ & 97.5 \end{aligned}$	$\begin{aligned} & 131 \\ & 146 \end{aligned}$	$\begin{gathered} 95.7 \\ 107 \end{gathered}$	$\begin{aligned} & 144 \\ & 161 \end{aligned}$	$\begin{aligned} & 104 \\ & 117 \end{aligned}$	$\begin{array}{\|l\|} \hline 157 \\ 176 \end{array}$
LSLT	$s \geq s_{\text {full }}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \end{aligned}$	$\begin{array}{\|c} \hline 97.9 \\ 110 \\ \hline \end{array}$	$\begin{aligned} & \hline 72.5 \\ & 81.3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 109 \\ 122 \\ \hline \end{array}$	$\begin{array}{r} 79.8 \\ 89.4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 120 \\ 134 \\ \hline \end{array}$	$\begin{aligned} & 87.0 \\ & 97.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 131 \\ 146 \\ \hline \end{array}$
Spacing for full bearing strength $s_{\text {full }}{ }^{\text {a }}$, in.		$\begin{aligned} & \hline \text { STD, } \\ & \text { SSLT, } \\ & \text { LSLT } \\ & \hline \end{aligned}$	37/16		313/16		43/16		49/16	
		OVS	$3^{11 / 16}$		41/16		47/16		43/16	
		SSLP	$3^{3 / 4}$		$41 / 8$		$41 / 2$		$47 / 8$	
		LSLP	51/16		5/8		$63 / 16$		$63 / 4$	
Minimum Spacing ${ }^{\text {a }}=\mathbf{2}^{2} / 3 d$, in.			3		35/16		$3^{11 / 16}$		4	

STD $=$ standard hole
SSLT $=$ short-slotted hole oriented transverse to the line of force
SSLP = short-slotted hole oriented parallel to the line of force
LSLP = long-slotted hole oriented parallel to the line of force

ASD LRFD - indicates spacing less than minimum spacing required per AlSC Specification Section Ju. \begin{tabular}{l|l|l}
Note: Spacing indicated is from the center of the hole or slot to the center of the adjacent hole or <br>
slot in the line of force. Hole deformation is considered. When hole deformation is not considered

 

$\Omega=2.00$ \& $\phi=0.75$ \& $\begin{array}{l}\text { see AISC Specification Section J3.10. } \\
\text { a Decimal value has been rounded to the nearest sixteenth of an inch. }\end{array}$ <br>
\hline
\end{tabular}

## Table 7-4 Available Bearing Strength at Bolt Holes Based on Bolt Spacing kips/in. thickness

	Nominal Bolt Diameter, $d$, in.						
		$5 / 8$	$3 / 4$	$7 / 8$	1		


Hole Type	BoltSpacing, $s$, in.	$F_{l s}$, ksi	5/8	$3 / 4$		7/8		1	
			$\phi r_{n}$	$r_{n} / \Omega$	$\phi r_{n}$	$r_{n} / \Omega$	$\phi r_{n}$	$r_{n} / \Omega$	$\phi r_{n}$
			LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD




 $-\infty$

## $\therefore$ -



Table 7-5 (continued)   Available Bearing Strength at Bolt Holes Based on Edge Distance   kips/in. thickness										
Hole Type	Edge $L_{e}$, in.	$F_{u}, \mathrm{ksi}$	Nominal Bolt Diameter, $d$, in.							
			11/8		11/4		13/8		11/2	
			$r_{n} / \Omega$	$\phi r_{n}$	$r_{n} / \Omega$	$\phi r_{n}$	$r_{n} / \Omega$	$\phi \boldsymbol{r}_{\boldsymbol{n}}$	$r_{n} / \Omega$	$\phi \boldsymbol{r}_{\boldsymbol{n}}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	11/4	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 22.8 \\ & 25.6 \end{aligned}$	$\begin{aligned} & 34.3 \\ & 38.4 \end{aligned}$	$\begin{aligned} & 20.7 \\ & 23.2 \end{aligned}$	$\begin{aligned} & 31.0 \\ & 34.7 \end{aligned}$	$\begin{array}{r} 18.5 \\ 20.7 \\ \hline \end{array}$	$\begin{aligned} & 27.7 \\ & 31.1 \end{aligned}$	$\begin{aligned} & 16.3 \\ & 18.3 \end{aligned}$	$\begin{aligned} & 24.5 \\ & 27.4 \end{aligned}$
	2	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 48.9 \\ & 54.8 \end{aligned}$	$\begin{aligned} & 73.4 \\ & 82.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 46.8 \\ & 52.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 70.1 \\ & 78.6 \end{aligned}$	$\begin{array}{r} 44.6 \\ 50.0 \\ \hline \end{array}$	$\begin{aligned} & \hline 66.9 \\ & 75.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 42.4 \\ 47.5 \\ \hline \end{array}$	$\begin{aligned} & \hline 63.6 \\ & 71.3 \\ & \hline \end{aligned}$
SSLP	11/4	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 17.4 \\ & 19.5 \end{aligned}$	$\begin{aligned} & 26.1 \\ & 29.3 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 17.1 \end{aligned}$	$\begin{aligned} & 22.8 \\ & 25.6 \end{aligned}$	$\begin{aligned} & 13.1 \\ & 14.6 \end{aligned}$	$\begin{array}{r} 19.6 \\ 21.9 \\ \hline \end{array}$	$\begin{aligned} & 10.9 \\ & 12.2 \end{aligned}$	$\begin{aligned} & 16.3 \\ & 18.3 \end{aligned}$
	2	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \end{aligned}$	$\begin{array}{r} 41.3 \\ 46.3 \\ \hline \end{array}$	$\begin{aligned} & 62.0 \\ & 69.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 39.2 \\ 43.9 \\ \hline \end{array}$	$\begin{array}{r} 58.7 \\ 65.8 \\ \hline \end{array}$	$\begin{array}{r} 37.0 \\ 41.4 \\ \hline \end{array}$	$\begin{aligned} & 55.5 \\ & 62.2 \end{aligned}$
OVS	11/4	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.5 \\ & 20.7 \end{aligned}$	$\begin{aligned} & 27.7 \\ & 31.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.3 \\ & 18.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 24.5 \\ & 27.4 \end{aligned}$	$\begin{aligned} & 14.1 \\ & 15.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.2 \\ & 23.8 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.9 \\ & 20.1 \\ & \hline \end{aligned}$
	2	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 44.6 \\ & 50.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 66.9 \\ & 75.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 42.4 \\ & 47.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 63.6 \\ & 71.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 40.2 \\ & 45.1 \end{aligned}$	$\begin{aligned} & 60.4 \\ & 67.6 \end{aligned}$	$\begin{aligned} & 38.1 \\ & 42.7 \end{aligned}$	$\begin{aligned} & 57.1 \\ & 64.0 \end{aligned}$
LSLP	$11 / 4$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	-	-	-	-	-	-	-	-
	2	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.7 \\ & 23.2 \end{aligned}$	$\begin{aligned} & 31.0 \\ & 34.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.2 \\ & 17.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 22.8 \\ 25.6 \\ \hline \end{array}$	$\begin{gathered} 9.79 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 14.7 \\ & 16.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.35 \\ & 4.88 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.53 \\ & 7.31 \\ & \hline \end{aligned}$
LSLT	$11 / 4$	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{array}{r} 19.0 \\ 21.3 \end{array}$	$\begin{aligned} & 28.5 \\ & 32.0 \end{aligned}$	$\begin{aligned} & 17.2 \\ & 19.3 \\ & \hline \end{aligned}$	$\begin{array}{r} 25.8 \\ 28.9 \\ \hline \end{array}$	$\begin{aligned} & 15.4 \\ & 17.3 \\ & \hline \end{aligned}$	$\begin{array}{r} 23.1 \\ 25.9 \\ \hline \end{array}$	$\begin{aligned} & 13.6 \\ & 15.2 \end{aligned}$	$\begin{array}{r} 20.4 \\ 22.9 \\ \hline \end{array}$
	2	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 40.8 \\ & 45.7 \end{aligned}$	$\begin{aligned} & 61.2 \\ & 68.6 \end{aligned}$	$\begin{array}{r} 39.0 \\ 43.7 \end{array}$	$\begin{aligned} & 58.5 \\ & 65.5 \end{aligned}$	$\begin{aligned} & 37.2 \\ & 41.6 \end{aligned}$	$\begin{aligned} & 55.7 \\ & 62.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 35.3 \\ 39.6 \\ \hline \end{array}$	$\begin{aligned} & 53.0 \\ & 59.4 \\ & \hline \end{aligned}$
$\begin{array}{\|c} \hline \text { STD, SSLT, } \\ \text { SSLP, OVS, } \\ \text { LSLP } \\ \hline \end{array}$	$L_{e} \geq L_{e}$ full	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 78.3 \\ & 87.8 \end{aligned}$	$\begin{array}{\|l\|} 117 \\ 132 \end{array}$	$\begin{aligned} & 87.0 \\ & 97.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 131 \\ 146 \end{array}$	$\begin{gathered} 95.7 \\ 107 \end{gathered}$	$\begin{array}{\|l\|l\|} \hline 144 \\ 161 \end{array}$	$\begin{array}{\|l\|} 104 \\ 117 \end{array}$	$\begin{array}{\|l\|l\|} \hline 157 \\ 176 \\ \hline \end{array}$
LSLT	$L_{e} \geq L_{e}$ full	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \end{aligned}$	$\begin{array}{\|c\|} \hline 97.9 \\ 110 \\ \hline \end{array}$	$\begin{aligned} & 72.5 \\ & 81.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 109 \\ & 122 \end{aligned}$	$\begin{aligned} & 79.8 \\ & 89.4 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 120 \\ 134 \\ \hline \end{array}$	$\begin{aligned} & 87.0 \\ & 97.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 131 \\ 146 \\ \hline \end{array}$
Edge distance for full bearing strength $L_{e} \geq L_{e}$ fulf ${ }^{2}$, in.		$\begin{aligned} & \text { STD, } \\ & \text { SSLT, } \end{aligned}$ LSLT	$2^{7 / 8}$		$33 / 16$		$31 / 2$		$3^{13 / 16}$	
		OVS	3		35/16		35/8		$315 / 16$	
		SSLP	3		35/16		35/8		$3^{15} / 16$	
		LSLP	$3^{11 / 16}$		41/16		41		$47 / 8$	
$\begin{aligned} & \text { STD = standard hole } \\ & \text { SSLT = short-slotted hole oriented transverse to the line of force } \\ & \text { SSLP = short-slotted hole oriented parallel to the line of force } \\ & \text { OVS = oversized hole } \\ & \text { LSLP = long-slotted hole oriented parallel to the line of force } \\ & \text { LSLT = long-slotted hole oriented transverse to the line of force } \end{aligned}$										
ASD   $\Omega=2.00$	$\phi=0.75$	- indicates spacing less than minimum spacing required per AISC Specification Section J3.3. Note: Spacing indicated is from the center of the hole or slot to the center of the adjacent hole or slot in the line of force. Hole deformation is considered. When hole deformation is not considered, see AISC Specification Section J3.10.   a Decimal value has been rounded to the nearest sixteenth of an inch.								


Table 7-5   Available Bearing Strength at Bolt Holes Based on Edge Distance   kips/in. thickness										
Hole Type	Edge Distance $L_{e}$, in.	$F_{l}$, ksi	Nominal Bolt Diameter, $d$, in.							
			5/8		$3 / 4$		7/8		1	
			$r_{n} / \Omega$	$\phi r_{n}$	$r_{n} / \Omega$	$\phi r_{n}$	$r_{n} / \Omega$	$\phi r_{n}$	$r_{n} / \Omega$	$r_{n}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	11/4	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 35.3 \end{aligned}$	$\begin{aligned} & 47.3 \\ & 53.0 \end{aligned}$	$\begin{aligned} & 29.4 \\ & 32.9 \end{aligned}$	$\begin{aligned} & \hline 44.0 \\ & 49.4 \end{aligned}$	$\begin{aligned} & 27.2 \\ & 30.5 \end{aligned}$	$\begin{array}{r} 40.8 \\ 45.7 \end{array}$	$\begin{aligned} & 25.0 \\ & 28.0 \end{aligned}$	37.5 42.0
	2	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{array}{r} 43.5 \\ 48.8 \\ \hline \end{array}$	$\begin{aligned} & 65.3 \\ & 73.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 52.2 \\ & 58.5 \end{aligned}$	$\begin{aligned} & \hline 78.3 \\ & 87.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 53.3 \\ 59.7 \\ \hline \end{array}$	$\begin{aligned} & 79.9 \\ & 89.6 \end{aligned}$	$\begin{aligned} & 51.1 \\ & 57.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 76.7 \\ & 85.9 \end{aligned}$
SSLP	$11 / 4$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 28.3 \\ & 31.7 \end{aligned}$	$\begin{aligned} & 42.4 \\ & 47.5 \end{aligned}$	$\begin{aligned} & 26.1 \\ & 29.3 \end{aligned}$	$\begin{aligned} & 39.2 \\ & 43.9 \end{aligned}$	$\begin{aligned} & 23.9 \\ & 26.8 \end{aligned}$	$35.9$	$\begin{aligned} & 20.7 \\ & 23.2 \end{aligned}$	$\begin{aligned} & 31.0 \\ & 34.7 \\ & \hline \end{aligned}$
	2	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 52.2 \\ & 58.5 \end{aligned}$	$\begin{aligned} & \hline 78.3 \\ & 87.8 \end{aligned}$	$\begin{aligned} & 50.0 \\ & 56.1 \end{aligned}$	$\begin{aligned} & 75.0 \\ & 84.1 \end{aligned}$	$\begin{aligned} & 46.8 \\ & 52.4 \end{aligned}$	$\begin{aligned} & 70.1 \\ & 78.6 \end{aligned}$
OVS	$11 / 4$	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.4 \\ & 32.9 \end{aligned}$	$\begin{aligned} & 44.0 \\ & 49.4 \end{aligned}$	$\begin{aligned} & 27.2 \\ & 30.5 \end{aligned}$	$\begin{aligned} & 40.8 \\ & 45.7 \end{aligned}$	$\begin{array}{r} 25.0 \\ 28.0 \\ \hline \end{array}$	$\begin{array}{r} 37.5 \\ 42.0 \end{array}$	$\begin{aligned} & 21.8 \\ & 24.4 \end{aligned}$	$\begin{aligned} & 32.6 \\ & 36.6 \end{aligned}$
	2	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 52.2 \\ & 58.5 \end{aligned}$	$\begin{aligned} & \hline 78.3 \\ & 87.8 \end{aligned}$	$\begin{aligned} & 51.1 \\ & 57.3 \end{aligned}$	$\begin{aligned} & 76.7 \\ & 85.9 \end{aligned}$	$\begin{aligned} & 47.9 \\ & 53.6 \end{aligned}$	$\begin{aligned} & 71.8 \\ & 80.4 \\ & \hline \end{aligned}$
LSLP	11/4	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.3 \\ & 18.3 \end{aligned}$	$\begin{aligned} & 24.5 \\ & 27.4 \end{aligned}$	$\begin{aligned} & 10.9 \\ & 12.2 \end{aligned}$	$\begin{aligned} & \hline 16.3 \\ & 18.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.44 \\ & 6.09 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.16 \\ & 9.14 \\ & \hline \end{aligned}$	-	-
	2	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 42.4 \\ & 47.5 \end{aligned}$	$\begin{aligned} & \hline 63.6 \\ & 71.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 37.0 \\ & 41.4 \end{aligned}$	$\begin{aligned} & 55.5 \\ & 62.2 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 35.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 47.3 \\ & 53.0 \end{aligned}$	$\begin{aligned} & 26.1 \\ & 29.3 \\ & \hline \end{aligned}$	$\begin{array}{r} 39.2 \\ 43.9 \\ \hline \end{array}$
LSLT	$11 / 4$	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 26.3 \\ & 29.5 \end{aligned}$	$\begin{aligned} & 39.4 \\ & 44.2 \end{aligned}$	$\begin{aligned} & 24.5 \\ & 27.4 \end{aligned}$	$\begin{aligned} & 36.7 \\ & 41.1 \end{aligned}$	$\begin{aligned} & 22.7 \\ & 25.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 34.0 \\ & 38.1 \end{aligned}$	$\begin{aligned} & 20.8 \\ & 23.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 31.3 \\ & 35.0 \\ & \hline \end{aligned}$
	2	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 36.3 \\ & 40.6 \end{aligned}$	$\begin{aligned} & 54.4 \\ & 60.9 \end{aligned}$	$\begin{aligned} & 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 44.4 \\ 49.8 \end{array}$	$\begin{aligned} & 66.6 \\ & 74.6 \end{aligned}$	$\begin{array}{r} 42.6 \\ 47.7 \\ \hline \end{array}$	$\begin{aligned} & 63.9 \\ & 71.6 \\ & \hline \end{aligned}$
$\begin{gathered} \hline \text { STD, SSLT, } \\ \text { SSLP, OVS, } \\ \text { LSLP } \end{gathered}$	$L_{e} \geq L_{e}$ full	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 52.2 \\ & 58.5 \end{aligned}$	$\begin{aligned} & 78.3 \\ & 87.8 \end{aligned}$	$\begin{aligned} & 60.9 \\ & 68.3 \end{aligned}$	$\begin{gathered} 91.4 \\ 102 \end{gathered}$	$\begin{aligned} & 69.6 \\ & 78.0 \end{aligned}$	$\begin{aligned} & 104 \\ & 117 \end{aligned}$
LSLT	$L_{e} \geq L_{e}$ full	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 36.3 \\ & 40.6 \end{aligned}$	$\begin{aligned} & 54.4 \\ & 60.9 \end{aligned}$	$\begin{aligned} & 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 50.8 \\ & 56.9 \end{aligned}$	$\begin{aligned} & 76.1 \\ & 85.3 \end{aligned}$	$\begin{aligned} & 58.0 \\ & 65.0 \end{aligned}$	$\begin{aligned} & 87.0 \\ & 97.5 \\ & \hline \end{aligned}$
Edge distance for full bearing strength $L_{e} \geq L_{e}$ fulf 2, in.		STD, SSLT, LSLT	15/8		15/16		$21 / 4$		29/16	
		OVS	$111 / 16$		2		25/16		25/8	
		SSLP	$111 / 16$		2		25/16		$2^{11 / 16}$	
		LSLP	21/16		$2^{7 / 16}$		$27 / 8$		$31 / 4$	
STD = standard holeSSLT = short-siotted hole oriented transverse to the line of forceSSLP = short-slotted hole oriented parallel to the line of forceOVS = oversized holeLSLP = long-slotted hole oriented parallel to the line of forceLSLT = long-slotted hole oriented transverse to the line of force										
ASD	LRFD	- indicates spacing less than minimum spacing required per AISC Specification Section J3.3. Note: Spacing indicated is from the center of the hole or slot to the center of the adjacent hole or slot in the line of force. Hole deformation is considered. When hole deformation is not considered, see AISC Specification Section J3.10.   a Decimal value has been rounded to the nearest sixteenth of an inch.								
$\Omega=2.00$	$\phi=0.75$									

## Reinforced Concrete Design

## Notation:

$a$	$=$ depth of the effective compression block in a concrete beam
A	= name for area
$A_{g}$	$\begin{aligned} & =\text { gross area, equal to the total area } \\ & \text { ignoring any reinforcement } \end{aligned}$
$A_{s}$	$=$ area of steel reinforcement in concrete beam design
$A_{s}^{\prime}$	$\begin{aligned} &= \text { area of steel compression } \\ & \text { reinforcement in concrete beam } \\ & \text { design } \end{aligned}$
$A_{s t}$	= area of steel reinforcement in concrete column design
$A_{v}$	$=$ area of concrete shear stirrup reinforcement
ACI	$=$ American Concrete Institute
$b$	= width, often cross-sectional
$b_{E}$	$=$ effective width of the flange of a concrete T beam cross section
$b_{f}$	$=$ width of the flange
$b_{w}$	$=$ width of the stem (web) of a concrete T beam cross section
$c c$	$=$ shorthand for clear cove
C	= name for centroid
	= name for a compression force
$C_{c}$	$=$ compressive force in the compression steel in a doubly reinforced concrete beam
$C_{s}$	$=$ compressive force in the concrete of a doubly reinforced concrete beam
$d$	$=$ effective depth from the top of a reinforced concrete beam to the centroid of the tensile steel
$d$	$=$ effective depth from the top of a reinforced concrete beam to the centroid of the compression steel
$d_{b}$	$=$ bar diameter of a reinforcing bar
D	= shorthand for dead load
DL	= shorthand for dead load
E	$=$ modulus of elasticity or Young's modulus
	= shorthand for earthquake load
$E_{c}$	$=$ modulus of elasticity of concrete
$E_{s}$	$=$ modulus of elasticity of steel
$f$	= symbol for stress

$f_{c} \quad=$ compressive stress
$f_{c}^{\prime}=$ concrete design compressive stress
$f_{p u} \quad=$ tensile strength of the prestressing reinforcement
$f_{s} \quad=$ stress in the steel reinforcement for concrete design
$f_{s}^{\prime}=$ compressive stress in the compression reinforcement for concrete beam design
$f_{y} \quad=$ yield stress or strength
$F \quad=$ shorthand for fluid load
$F_{y} \quad=$ yield strength
$G \quad=$ relative stiffness of columns to beams in a rigid connection, as is $\Psi$
$h \quad=$ cross-section depth
$H \quad=$ shorthand for lateral pressure load
$h_{f} \quad=$ depth of a flange in a T section
$I_{\text {transformed }}=$ moment of inertia of a multimaterial section transformed to one material
$k \quad=$ effective length factor for columns
$\ell_{b}=$ length of beam in rigid joint
$\ell_{c} \quad=$ length of column in rigid joint
$l_{d} \quad=$ development length for reinforcing steel
$l_{d h}=$ development length for hooks
$l_{n} \quad=$ clear span from face of support to face of support in concrete design
$L \quad=$ name for length or span length, as is $l$
$=$ shorthand for live load
$L_{r} \quad=$ shorthand for live roof load
$L L=$ shorthand for live load
$M_{n} \quad=$ nominal flexure strength with the steel reinforcement at the yield stress and concrete at the concrete design strength for reinforced concrete beam design
$M_{u}=$ maximum moment from factored loads for LRFD beam design
$n \quad=$ modulus of elasticity transformation coefficient for steel to concrete
n.a. = shorthand for neutral axis (N.A.)

pH	= chemical alkalinity	$\begin{aligned} w_{L L}= & \text { load per unit length on a beam from } \\ & \text { live load } \end{aligned}$
$P$	= name for load or axial force vector	
$P_{o}$	$=$ maximum axial force with no concurrent bending moment in a reinforced concrete column	$w_{\text {self } w t}=$ name for distributed load from self weight of member
$P_{n}$	$=$ nominal column load capacity in concrete design	$W \quad=\begin{aligned} & \text { load factors } \\ & \text { shorthand for wind load } \end{aligned}$
$P_{u}$	$=$ factored column load calculated from load factors in concrete design	= horizontal distance   = distance from the top to the neutral
$R$	= shorthand for rain or ice load	xis of a concrete beam
$R_{n}$	$\begin{aligned} & =\text { concrete beam design ratio }= \\ & M_{u} / b d^{2} \end{aligned}$	$\begin{array}{ll} y & =\text { vertical distance } \\ \beta_{1} & =\text { coefficient for determining stress } \end{array}$
$s$	$=$ spacing of stirrups in reinforced concrete beams	block height, $a$, based on concrete strength, $f_{c}^{\prime}$
$S$	$=$ shorthand for snow load	$\Delta \quad=$ elastic beam deflection
$t$	me for thickn	strain
$T$	$=$ name for a tension force   = shorthand for thermal load	$\phi \quad=\text { resistance factor }$
$U$	$=$ factored design value	$\phi_{c}=$ resistance factor for compression
$V_{c}$	= shear force capacity in concrete	$=$ density or unit weight
$V_{s}$	$=$ shear force capacity in steel shear stirrups	$\rho \quad=$ radius of curvature in beam
$V_{u}$	$=$ shear at a distance of $d$ away from the face of support for reinforced concrete beam design	$\begin{aligned} & =\text { reinforcement ratio in concrete } \\ & \text { beam design }=A_{s} / b d \end{aligned}$
$w_{c}$	$=$ unit weight of concrete	$\rho_{\text {balanced }}=$ balanced reinforcement ratio in
	$=$ load per unit length on a beam from	concrete beam design $v_{c}=\text { shear strength in concrete design }$

## Reinforced Concrete Design

Structural design standards for reinforced concrete are established by the Building Code and Commentary (ACI 318-11) published by the American Concrete Institute International, and uses ultimate strength design (also known as limit state design).
$f^{\prime}{ }_{c}=$ concrete compressive design strength at 28 days (units of psi when used in equations)

## Materials

Concrete is a mixture of cement, coarse aggregate, fine aggregate, and water. The cement hydrates with the water to form a binder. The result is a hardened mass with "filler" and pores. There are various types of cement for low heat, rapid set, and other properties. Other minerals or cementitious materials (like fly ash) may be added.

ASTM designations are
Type I: Ordinary portland cement (OPC)
Type II: Low temperature
Type III: High early strength
Type IV: Low-heat of hydration
Type V: Sulfate resistant
The proper proportions, by volume, of the mix constituents determine strength, which is related to the water to cement ratio (w/c). It also determines other properties, such as workability of fresh concrete. Admixtures, such as retardants, accelerators, or
 superplasticizers, which aid flow without adding more water, may be added. Vibration may also be used to get the mix to flow into forms and fill completely.

Slump is the measurement of the height loss from a compacted cone of fresh concrete. It can be an indicator of the workability.

Proper mix design is necessary for durability. The pH of fresh cement is enough to prevent reinforcing steel from oxidizing (rusting). If, however, cracks allow corrosive elements in water to penetrate to the steel, a corrosion cell will be created, the steel will rust, expand and cause further cracking. Adequate cover of the steel by the concrete is important.

Deformed reinforcing bars come in grades $40,60 \& 75$ (for $40 \mathrm{ksi}, 60 \mathrm{ksi}$ and 75 ksi yield strengths). Sizes are given as \# of $1 / 8$ " up to \#8 bars. For \#9 and larger, the number is a nominal size (while the actual size is larger).

Reinforced concrete is a composite material, and the average density is considered to be $150 \mathrm{lb} / \mathrm{ft}^{3}$. It has the properties that it will creep (deformation with long term load) and shrink (a result of hydration) that must be considered.

## Construction

Because fresh concrete is a viscous suspension, it is cast or placed and not poured. Formwork must be able to withstand the hydraulic pressure. Vibration may be used to get the mix to flow around reinforcing bars or into tight locations, but excess vibration will cause segregation, honeycombing, and excessive bleed water which will reduce the water available for hydration and the strength, subsequently.

After casting, the surface must be worked. Screeding removes the excess from the top of the forms and gets a rough level. Floating is the process of working the aggregate under the surface and to "float" some paste to the surface. Troweling takes place when the mix has hydrated to the point of supporting weight and the surface is smoothed further and consolidated. Curing is allowing the hydration process to proceed with adequate moisture. Black tarps and curing compounds are commonly used. Finishing is the process of adding a texture, commonly by using a broom, after the concrete has begun to set.

## Behavior

Plane sections of composite materials can still be assumed to be plane (strain is linear), but the stress distribution is not the same in both materials because the modulus of elasticity is different. ( $f=\mathrm{E} \cdot \varepsilon$ )

$$
f_{1}=E_{1} \varepsilon=-\frac{E_{1} y}{\rho} \quad f_{2}=E_{2} \varepsilon=-\frac{E_{2} y}{\rho}
$$

In order to determine the stress, we can define $n$ as the ratio of the elastic moduli:

$$
n=\frac{E_{2}}{E_{1}}
$$

$n$ is used to transform the width of the second material such that it sees the equivalent element stress.

## Transformed Section y and I

In order to determine stresses in all types of material in the beam, we transform the materials into a single material, and calculate the location of the neutral axis and modulus of inertia for that material.

ex: When material 1 above is concrete and material 2 is steel
to transform steel into concrete $n=\frac{E_{2}}{E_{1}}=\frac{E_{\text {steel }}}{E_{\text {concrete }}}$
to find the neutral axis of the equivalent concrete member we transform the width of the steel by multiplying by $n$
to find the moment of inertia of the equivalent concrete member, $\mathrm{I}_{\text {transformed }}$, use the new geometry resulting from transforming the width of the steel
concrete stress: $f_{\text {concrete }}=-\frac{M y}{I_{\text {transformel }}}$
steel stress: $\quad f_{\text {steel }}=-\frac{M y n}{I_{\text {transformel }}}$

## Reinforced Concrete Beam Members



Stresses in the concrete above the neutral axis are compressive and nonlinearly distributed. In the tension zone below the neutral axis, the concrete is assumed to be cracked and the tensile force present to be taken up by reinforcing steel.


Working stress analysis. (Concrete stress distribution is assumed to be linear. Service loads are used in calculations.)


Actual stress distribution near ultimate strength (nonlinear).


Typical stress-strain curve for concrete.


Ultimate strength analysis. (A rectangular stress block is used to idealize the actual stress distribution. Calculations are based on ultimate loads and failure stresses.)

## Ultimate Strength Design for Beams

The ultimate strength design method is similar to LRFD. There is a nominal strength that is reduced by a factor $\phi$ which must exceed the factored design stress. For beams, the concrete only works in compression over a rectangular "stress" block above the n.a. from elastic calculation, and the steel is exposed and reaches the yield stress, $\mathrm{F}_{\mathrm{y}}$

For stress analysis in reinforced concrete beams

- the steel is transformed to concrete
- any concrete in tension is assumed to be cracked and to have no strength
- the steel can be in tension, and is placed in the bottom of a beam that has positive bending moment


Figure 8.5: Bending in a concrete beam without and with steel reinforcing.

The neutral axis is where there is no stress and no strain. The concrete above the n.a. is in compression. The concrete below the n.a. is considered ineffective. The steel below the n.a. is in tension.

Because the n.a. is defined by the moment areas, we can solve for x knowing that d is the distance from the top of the concrete section to the centroid of the steel:

$$
b x \cdot \frac{x}{2}-n A_{s}(d-x)=0
$$

x can be solved for when the equation is rearranged into the generic format with $\mathrm{a}, \mathrm{b} \& \mathrm{c}$ in the binomial equation: $\quad a x^{2}+b x+c=0 \quad$ by $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

## T-sections

If the n.a. is above the bottom of a flange in a T section, x is found as for a rectangular section.

If the n.a. is below the bottom of a flange in a T section, x is found by including the flange and the stem of the web $\left(b_{w}\right)$ in the moment area calculation:


$$
b_{f} h_{f}\left(x-\frac{h_{f} / 2}{2}\right)+\left(x-h_{f}\right) b_{w} \frac{\left(x-h_{f}\right)}{2}-n A_{s}(d-x)=0
$$

## Load Combinations (Alternative values are allowed)

$1.4 D$
$1.2 D+1.6 L+0.5\left(L_{r}\right.$ or $S$ or $\left.R\right)$
$1.2 D+1.6\left(L_{r}\right.$ or $S$ or $\left.R\right)+(1.0 L$ or $0.5 W)$
$1.2 D+1.0 W+1.0 L+0.5\left(L_{r}\right.$ or $S$ or $\left.R\right)$
$1.2 D+1.0 E+1.0 L+0.2 S$
$0.9 D+1.0 W$
$0.9 D+1.0 E$

ASTM STANDARD REINFORCING BARS

Bar size, no.	Nominal   diameter, in.	Nominal area,   in. ${ }^{2}$	Nominal weight,   lb/ft
3	0.375	0.11	0.376
4	0.500	0.20	0.668
5	0.625	0.31	1.043
6	0.750	0.44	1.502
7	0.875	0.60	2.044
8	1.000	0.79	2.670
9	1.128	1.00	3.400
10	1.270	1.27	4.303
11	1.410	1.56	5.313
14	1.693	2.25	7.650
18	2.257	4.00	13.600

## Internal Equilibrium


$\mathrm{C}=$ compression in concrete $=$ stress x area $=0.85 f^{\prime} c^{\prime} b a$
$\mathrm{T}=$ tension in steel $=$ stress x area $=A_{s} f_{y}$
$C=T$ and $M_{n}=T(d-a / 2)$
where $\quad \mathrm{f}^{\prime}{ }_{\mathrm{c}}=$ concrete compression strength
$\mathrm{a}=$ height of stress block
$\beta_{1}=$ factor based on $f^{\prime}{ }_{c}$
$\mathrm{x}=$ location to the neutral axis
$\mathrm{b}=$ width of stress block
$f_{y}=$ steel yield strength
$\mathrm{A}_{\mathrm{s}}=$ area of steel reinforcement
d = effective depth of section
$=$ depth to n.a. of reinforcement

$$
\text { With } \mathrm{C}=\mathrm{T}, A_{S} f y=0.85 f^{\prime} b a \quad \text { so } a \text { can be determined with } a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}
$$

## Criteria for Beam Design

For flexure design:
$M_{u} \leq \phi M_{n} \quad \phi=0.9$ for flexure (when the section is tension controlled)
so for design, $M_{u}$ can be set to $\phi M_{n}=\phi T(d-a / 2)=\phi A_{S} f_{y}(d-a / 2)$

## Reinforcement Ratio

The amount of steel reinforcement is limited. Too much reinforcement, or over-reinforcing will not allow the steel to yield before the concrete crushes and there is a sudden failure. A beam with the proper amount of steel to allow it to yield at failure is said to be under reinforced. The reinforcement ratio is just a fraction: $\rho=\frac{A_{s}}{b d}$ (or p ) and must be less than a value determined with a concrete strain of 0.003 and tensile strain of 0.004 (minimum). When the strain in the reinforcement is 0.005 or greater, the section is tension controlled. (For smaller strains the resistance factor reduces to 0.65 - see tied columns - because the stress is less than the yield stress in the steel.) Previous codes limited the amount to $0.75 \rho_{\text {balanced }}$ where $\rho_{\text {balanced }}$ was determined from the amount of steel that would make the concrete start to crush at the exact same time that the steel would yield based on strain.

## Flexure Design of Reinforcement

One method is to "wisely" estimate a height of the stress block, $a$, and solve for $A_{s}$, and calculate a new value for $a$ using $M_{u}$.

1. guess $a$ (less than n.a.)
2. $A_{s}=\frac{0.85 f_{c}^{\prime} b a}{f_{y}}$
3. solve for $a$ from

$$
\begin{aligned}
& \text { setting } M_{u}=\phi A_{S} f_{y}(d-a / 2): \\
& \qquad a=2\left(d-\frac{M_{u}}{\phi A_{s} f_{y}}\right)
\end{aligned}
$$

Maximum Reinforcement Ratio $\rho$ for Singly Reinforced Rectangular Beams | (tensile strain $=0.005$ ) for which $\phi$ is permitted to be 0.9 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $f_{c}^{\prime}=3000 \mathrm{psi}$ | $f_{c}^{\prime}=3500 \mathrm{psi}$ | $f_{c}^{\prime}=4000 \mathrm{psi}$ | $f_{c}^{\prime}=5000 \mathrm{psi}$ | $f_{c}^{\prime}=6000 \mathrm{psi}$ |

$f_{y}$	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.80$	$\beta_{1}=0.75$
$40,000 \mathrm{psi}$	0.0203	0.0237	0.0271	0.0319	0.0359
$50,000 \mathrm{psi}$	0.0163	0.0190	0.0217	0.0255	0.0287
$60,000 \mathrm{psi}$	0.0135	0.0158	0.0181	0.0213	0.0239
	$f_{c}^{\prime}=20 \mathrm{MPa}$	$f_{c}^{\prime}=25 \mathrm{MPa}$	$f_{c}^{\prime}=30 \mathrm{MPa}$	$f_{c}^{\prime}=35 \mathrm{MPa}$	$f_{c}^{\prime}=40 \mathrm{MPa}$


$f_{y}$	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.81$	$\beta_{1}=0.77$
300 MPa	0.0181	0.0226	0.0271	0.0301	0.0327
350 MPa	0.0155	0.0194	0.0232	0.0258	0.0281
400 MPa	0.0135	0.0169	0.0203	0.0226	0.0245
500 MPa	0.0108	0.0135	0.0163	0.0181	0.0196

4. repeat from 2. until $a$ found from step 3 matches $a$ used in step 2 .

## Design Chart Method:

1. calculate $R_{n}=\frac{M_{n}}{b d^{2}}$
2. find curve for $f^{\prime}{ }_{c}$ and $f_{y}$ to get $\rho$
3. calculate $A_{s}$ and $a$, where:

$$
A_{s}=\rho b d \text { and } a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}
$$

Any method can simplify the size of d using $\mathrm{h}=1.1 \mathrm{~d}$

## Maximum Reinforcement

Based on the limiting strain of
0.005 in the steel, $x($ or $c)=0.375 d$ so

$$
a=\beta_{1}(0.375 d) \text { to find } \mathrm{A}_{s-\max }
$$

( $\beta_{1}$ is shown in the table above)

## Minimum Reinforcement

Minimum reinforcement is provided even if the concrete can resist the tension. This is a means to control cracking.
Minimum required: $A_{s}=\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}}\left(b_{w} d\right)$ but not less than: $A_{s}=\frac{200}{f_{y}}\left(b_{w} d\right)$


Figure 3.8.1 Strength curves ( $R_{n}$ vs $\rho$ ) for singly reinforced rectangular sections. Upper limit of curves is at $\rho_{\text {max }}$. (tensile strain of 0.004 )
where $f_{c}^{\prime}$ is in psi. $\quad$ This can be translated to $\rho_{\min }=\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}}$ but not less than $\frac{200}{f_{y}}$

## Cover for Reinforcement

Cover of concrete over/under the reinforcement must be provided to protect the steel from corrosion. For indoor exposure, 1.5 inch is typical for beams and columns, 0.75 inch is typical for slabs, and for concrete cast against soil, 3 inch minimum is required.

## Bar Spacing

Minimum bar spacings are specified to allow proper consolidation of concrete around the reinforcement. The minimum spacing is the
 maximum of 1 in , a bar diameter, or 1.33 times the maximum aggregate size.

## T-beams and T-sections (pan joists)

Beams cast with slabs have an effective width, $b_{E}$, that sees compression stress in a wide flange beam or joist in a slab system with positive bending.

For interior T-sections, $b_{E}$ is the smallest of $L / 4, b_{w}+16 t$, or center to center of beams

For exterior T-sections, $b_{E}$ is the smallest of


Figure 9.3.1 Actual and equivalent stress distribution over flange width. next beam)

When the web is in tension the minimum reinforcement required is the same as for rectangular sections with the web width $\left(b_{w}\right)$ in place of $b$.

When the flange is in tension (negative bending), the minimum reinforcement required is the greater value of

$$
A_{s}=\frac{6 \sqrt{f_{c}^{\prime}}}{f_{y}}\left(b_{w} d\right) \quad \text { or } \quad A_{s}=\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}}\left(b_{f} d\right)
$$

where $f_{c}^{\prime}$ is in psi, $b_{w}$ is the beam width, and $b_{f}$ is the effective flange width

## Compression Reinforcement


(negative moment).
If a section is doubly reinforced, it means there is steel in the beam seeing compression. The force in the compression steel that may not be yielding is

$$
C_{s}=A_{s}{ }^{\prime}\left(f_{s}^{\prime}-0.85 f_{c}^{\prime}\right)
$$

The total compression that balances the tension is now: $T=C_{c}+C_{s}$. And the moment taken about the centroid of
 the compression stress is $M_{n}=T(d-a / 2)+C_{s}\left(a-d^{\prime}\right)$
where $A_{s}{ }^{\text {' }}$ is the area of compression reinforcement, and $d^{\prime}$ is the effective depth to the centroid of the compression reinforcement

Because the compression steel may not be yielding, the neutral axis $x$ must be found from the force equilibrium relationships, and the stress can be found based on strain to see if it has yielded.

## Slabs

One way slabs can be designed as "one unit"wide beams. Because they are thin, control of deflections is important, and minimum depths are specified, as is minimum reinforcement for shrinkage and crack control when not in flexure. Reinforcement is commonly small diameter bars and welded wire fabric.
Maximum spacing between bars is also specified for shrinkage and crack control as five times the slab thickness not exceeding $18 "$. For required flexure reinforcement the spacing limit is three times the slab thickness not exceeding $18 "$.

TABLE 9.5(a)-MINIMUM THICKNESS OF NONPRESTRESSED BEAMS OR ONE-WAY SLABS UNLESS DEFLECTIONS ARE COMPUTED

Minimum thickness, $\boldsymbol{h}$   Simply sup-   ported				One end   continuous
Members not supporting or attached to partitions or   other construction likely to be damaged by large   deflections.				
Member				

Notes:
Vahues given shall be used directly for members with normalweight concrete
and Grade 60 reinforcement. For other conditions, the values shall be modified as follows:
a) For lightweight concrete having equilibrium density, $w_{c}$, in the range of 90
to $115 \mathrm{lb} / \mathrm{ft}^{3}$, the values shall be multiplied by ( $1.65-0.005 w_{c}$ ) but not less
than 1.09 .
b) For $f_{y}$ other than $60,000 \mathrm{psi}$, the values shall be multiplied by $\left(\mathbf{0 . 4}+\mathrm{f}_{y} \mathrm{H} \mathbf{1 0 0 , 0 0 0 )}\right.$.

Shrinkage and temperature reinforcement (and minimum for flexure reinforcement):
Minimum for slabs with grade 40 or 50 bars: $\quad \rho=\frac{A_{s}}{b t}=0.002$ or $A_{s-m i n}=0.002 b t$
Minimum for slabs with grade 60 bars:

$$
\rho=\frac{A_{s}}{b t}=0.0018 \text { or } A_{s-\min }=0.0018 b t
$$

## Shear Behavior

Horizontal shear stresses occur along with bending stresses to cause tensile stresses where the concrete cracks. Vertical reinforcement is required to bridge the cracks which are called shear stirrups (or stirrups).


The maximum shear for design, $V_{u}$ is the value at a distance of $d$ from the face of the support.

## Nominal Shear Strength

The shear force that can be resisted is the shear stress $\times$ cross section area: $V_{c}=v_{c} \times b_{w} d$

The shear stress for beams (one way) $v_{c}=2 \sqrt{f_{c}^{\prime}}$ so $\phi V_{c}=\phi 2 \sqrt{f_{c}^{\prime}} b_{w} d$

$$
\begin{array}{ll}
\text { where } & b_{w}=\text { the beam width or the minimum width of the stem. } \\
\phi=0.75 \text { for shear }
\end{array}
$$

One-way joists are allowed an increase of $10 \% \mathrm{~V}_{\mathrm{c}}$ if the joists are closely spaced.
Stirrups are necessary for strength (as well as crack control): $V_{s}=\frac{A_{v} f_{y} d}{s} \leq 8 \sqrt{f_{c}^{\prime}} b_{w} d$ (max)
where $\quad A_{v}=$ area of all vertical legs of stirrup
$\mathrm{s}=$ spacing of stirrups
d = effective depth

For shear design:

$$
V_{U} \leq \phi V_{C}+\phi V_{S} \quad \phi=0.75 \text { for shear }
$$

## Spacing Requirements

Stirrups are required when $\mathrm{V}_{\mathrm{u}}$ is greater than $\frac{\phi V_{c}}{2}$
Table 3-8 ACI Provisions for Shear Design*

		$\mathrm{V}_{\mathrm{u}} \leq \frac{\phi \mathrm{V}_{\mathrm{c}}}{2}$	$\phi V_{c} \geq \mathrm{V}_{\mathrm{u}}>\frac{\phi V_{c}}{2}$	$\mathrm{V}_{\mathrm{u}}>\phi \mathrm{V}_{\mathrm{c}}$
Required area of stirrups, $A_{V}{ }^{* *}$		none	$\frac{50 b_{w} s}{\mathrm{f}_{\mathrm{y}}}$	$\frac{\left(V_{u}-\phi V_{c}\right) \mathrm{S}}{\phi \mathrm{f}_{\mathrm{y}} \mathrm{~d}}$
Stirrup spacing, s	Required	-	$\frac{A_{v} f_{y}}{50 b_{w}}$	$\frac{\phi A_{v} f_{y} d}{V_{u}-\phi V_{c}}$
	Recommended Minimum ${ }^{\dagger}$	-	-	4 in.
	Maximum ${ }^{\dagger \dagger}$ (ACl 11.5.4)	-	$\frac{\mathrm{d}}{2}$ or 24 in .	$\frac{d}{2}$ or 24 in. for $\left(V_{u}-\phi V_{c}\right) \leq \phi 4 \sqrt{f_{c}^{\prime}} b_{w} d$
				$\frac{\mathrm{d}}{4}$ or 12 in. for $\left(\mathrm{V}_{\mathrm{u}}-\phi \mathrm{V}_{\mathrm{c}}\right)>\phi 4 \sqrt{\mathrm{fc}_{\mathrm{c}}^{\prime}} \mathrm{b}_{\mathrm{w}} \mathrm{d}$

*Members subjected to shear and flexure only; $\phi \mathrm{V}_{\mathrm{c}}=\phi 2 \sqrt{\mathrm{f}_{c}^{\prime}} \mathrm{b}_{\mathrm{w}} \mathrm{d}, \phi=0.75$ ( ACl 11.3.1.1)
${ }^{* *} A_{v}=2 \times A_{b}$ for $U$ stirrups; $f_{y} \leq 60 \mathrm{ksi}(A C l ~ 11.5 .2)$
$\dagger$ A practical limit for minimum spacing is $\mathrm{d} / 4$
$\dagger \dagger$ Maximum spacing based on minimum shear reinforcement ( $=\mathrm{A}_{\mathrm{v}} \mathrm{f}_{\mathrm{y}} / 50 \mathrm{~b}_{\mathrm{w}}$ ) must also be considered ( ACl 11.5.5.3).

Economical spacing of stirrups is considered to be greater than $\mathrm{d} / 4$. Common spacings of $\mathrm{d} / 4, \mathrm{~d} / 3$ and $\mathrm{d} / 2$ are used to determine the values of $\phi \mathrm{V}_{\mathrm{s}}$ at which

$$
\phi V_{s}=\frac{\phi A_{v} f_{y} d}{s}
$$ the spacings can be increased.

This figure shows the size of $V_{n}$ provided by $V_{c}+V_{s}$ (long dashes) exceeds $V_{u} / \phi$ in a step-wise function, while the spacing provided (short dashes) is at or less than the required $s$ (limited by the maximum allowed). (Note that the maximum shear permitted from the stirrups is $8 \sqrt{f_{c}^{\prime}} b_{w} d$ )


The minimum recommended spacing for the first stirrup is 2 inches from the face of the support.

## Torsional Shear Reinforcement

On occasion beam members will see twist along the axis caused by an eccentric shape supporting a load, like on an L-shaped spandrel (edge) beam. The torsion results in shearing stresses, and closed stirrups may be needed to resist the stress that the concrete cannot resist.


Fig. R11.6.3.6(b)-Definition of $\mathbf{A}_{\mathbf{o h}}$

## Development Length for Reinforcement

Because the design is based on the reinforcement attaining the yield stress, the reinforcement needs to be properly bonded to the concrete for a finite length (both sides) so it won't slip. This is referred to as the development length, $l_{\mathrm{d}}$. Providing sufficient length to anchor bars that need to reach the yield stress near the end of connections are also specified by hook lengths. Detailing reinforcement is a tedious job. Splices are also necessary to extend the length of reinforcement that come in standard lengths. The equations are not provided here.

## Development Length in Tension

With the proper bar to bar spacing and cover, the common development length equations are:

$$
\begin{array}{lll}
\text { \#6 bars and smaller: } & l_{d}=\frac{d_{b} F_{y}}{25 \sqrt{f_{c}^{\prime}}} & \text { or } 12 \text { in. minimum } \\
\text { \#7 bars and larger: } & l_{d}=\frac{d_{b} F_{y}}{20 \sqrt{f_{c}^{\prime}}} & \text { or } 12 \text { in. minimum }
\end{array}
$$

Development Length in Compression

$$
l_{d}=\frac{0.02 d_{b} F_{y}}{\sqrt{f_{c}^{\prime}}} \leq 0.0003 d_{b} F_{y}
$$

Hook Bends and Extensions
The minimum hook length is $l_{d h}=\frac{1200 d_{b}}{\sqrt{f_{c}^{\prime}}}$


Figure 9-17: Minimum requirements for $90^{\circ}$ bar hooks.


Figure 9-18: Minimum requirements for $180^{\circ}$ bar hooks.

## Modulus of Elasticity \& Deflection

$\mathrm{E}_{\mathrm{c}}$ for deflection calculations can be used with the transformed section modulus in the elastic range. After that, the cracked section modulus is calculated and $\mathrm{E}_{\mathrm{c}}$ is adjusted.

Code values:

$$
E_{c}=57,000 \sqrt{f_{c}^{\prime}} \text { (normal weight) } \quad E_{c}=w_{c}^{1.5} 33 \sqrt{f_{c}^{\prime}}, w_{c}=90 \mathrm{lb} / \mathrm{ft}^{3}-160 \mathrm{lb} / \mathrm{ft}^{3}
$$

Deflections of beams and one-way slabs need not be computed if the overall member thickness meets the minimum specified by the code, and are shown in Table 9.5(a) (see Slabs).

## Criteria for Flat Slab \& Plate System Design

Systems with slabs and supporting beams, joists or columns typically have multiple bays. The horizontal elements can act as one-way or two-way systems. Most often the flexure resisting elements are continuous, having positive and negative bending moments. These moment and shear values can be found using beam tables, or from code specified approximate design factors. Flat slab two-way systems have drop panels (for shear), while flat plates do not.

## Criteria for Column Design

(American Concrete Institute) ACI 318-02 Code and Commentary:

$$
P_{u} \leq \phi_{c} P_{n} \quad \text { where }
$$

$\mathrm{P}_{\mathrm{u}}$ is a factored load
$\phi$ is a resistance factor
$\mathrm{P}_{\mathrm{n}}$ is the nominal load capacity (strength)

Load combinations, ex: $\quad 1.4 \mathrm{D}$ ( D is dead load) $1.2 \mathrm{D}+1.6 \mathrm{~L}$ ( L is live load)

For compression, $\phi_{c}=0.75$ and $\mathrm{P}_{\mathrm{n}}=0.85 \mathrm{P}_{\mathrm{o}}$ for spirally reinforced, $\phi_{c}=0.65$ and $\mathrm{P}_{\mathrm{n}}=0.8 \mathrm{P}_{\mathrm{o}}$ for tied columns where $P_{o}=0.85 f_{c}^{\prime}\left(A_{g}-A_{s t}\right)+f_{y} A_{s t}$ and $\mathrm{P}_{\mathrm{o}}$ is the name of the maximum axial force with no concurrent bending moment.

Columns which have reinforcement ratios, $\rho_{g}=\frac{A_{s t}}{A_{g}}$, in the range of $1 \%$ to $2 \%$ will usually be the most economical, with $1 \%$ as a minimum and $8 \%$ as a maximum by code.

Bars are symmetrically placed, typically.


Spiral ties are harder to construct.

## Columns with Bending (Beam-Columns)

Concrete columns rarely see only axial force and must be designed for the combined effects of axial load and bending moment. The interaction diagram shows the reduction in axial load a column can carry with a bending moment.

Design aids commonly present the interaction diagrams in the form of load vs. equivalent eccentricity for standard column sizes and bars used.

## Rigid Frames

Monolithically cast frames with beams and column elements will have members with shear, bending and axial loads. Because the joints can rotate, the effective length must be determined from methods like that presented in the handout on Rigid Frames. The charts for evaluating $k$ for non-sway and sway frames can be found in the ACI code.


Figure 5-3 Transition Stages on Interaction Diagram

## Frame Columns

Because joints can rotate in frames, the effective length of the column in a frame is harder to determine. The stiffness (EI/L) of each member in a joint determines how rigid or flexible it is. To find k , the relative stiffness, G or $\Psi$, must be found for both ends, plotted on the alignment charts, and connected by a line for braced and unbraced fames.

$$
G=\Psi=\frac{\Sigma E I / l_{c}}{\Sigma E I / l_{b}}
$$

where
$\mathrm{E}=$ modulus of elasticity for a member


I = moment of inertia of for a member
$l_{c}=$ length of the column from center to center
$l_{\mathrm{b}}=$ length of the beam from center to center

- For pinned connections we typically use a value of 10 for $\Psi$.
- For fixed connections we typically use a value of 1 for $\Psi$.


Braced - non-sway frame


(a)

(b)

Sway Frames

Example 1
Determine the design moment capacity for the reinforced concrete cross section shown Assume $f_{c}^{f}=3000$ psi and Grade 60 reinforcing steel.


Example 2 (a) Determine the ultimate moment capacity of a beam with dimensions $b=10 \mathrm{in}$. and $d_{\text {effective }}=15 \mathrm{in}$. and that has three No. 9 bars ( 3.0 in. ${ }^{2}$ ) of tension-reinforcing steel. Assume that $\quad h=18 \mathrm{in} ., F_{y}=40 \mathrm{ksi}$, and $f_{c}^{\prime}=5 \mathrm{ksi}$. (b) Assume also that the section is used as a cantilever beam 10 ft long, where the service loads are dead load $=400 \mathrm{lb} / \mathrm{ft}$ and live load $=300 \mathrm{lb} / \mathrm{ft}$. Is the beam adequate in bending? Calculate the ultimate moment capacity of the beam first.

## Solution:

(a) $\quad a=A_{s} F_{y} / 0.85 f_{c}^{\prime} b=(3)(40,000) /(0.85)(5000)(10)=2.82 \mathrm{in}$.

$$
\phi M_{n}=\phi A_{s} F_{y}[d-a / 2]=0.9(3)(40,000)[15-(2.82) /(2)]=1,466,640 \mathrm{in} .-\mathrm{lb}
$$

Check for overreinforcement, $c=0.375 \cdot 15=5.625$. Depth of stress block $a=0.80 \cdot 5.625 \mathrm{in} .=$ $4.5 \mathrm{in} . A_{s, \text { max }}=(0.85)(5 \mathrm{ksi})(4.5 \mathrm{in}).(10 \mathrm{in}) /.(40 \mathrm{ksi})=4.78 \mathrm{in} .^{2}$ The beam is not over reinforced Check for minimum steel: $A_{s, \min }=\frac{3 \sqrt{f_{c}^{\prime \prime}}}{F_{y}} b d=0.80 \mathrm{in}^{2}$, so beam is sufficiently
reinforced.

$$
\begin{array}{ll}
\text { (b) } \quad & U=1.2 D+1.6 L=1.2(400)+1.6(300)=960 \mathrm{lb} / \mathrm{ft}  \tag{b}\\
& M_{u}=w_{u} L^{2} / 2=(960)\left(10^{2}\right) / 2=48,000 \mathrm{ft} \mathrm{lb}=576,000 \mathrm{in} . \mathrm{lb} \\
\text { Since } \quad & M_{u}=576,000<\phi M_{n}=1,466,640, \text { lb-in beam is adequate in bending. }
\end{array}
$$

## EXAMPLE

Determine the ultimate moment capacity of a beam of dimensions $b=250 \mathrm{~mm}$ and $d=350 \mathrm{~mm}$ and that has $300 \mathrm{~mm}^{2}$ of reinforcing steel. Assume that $F_{y}=400 \mathrm{MPa}$ and $f^{\prime}{ }_{c}=25 \mathrm{MPa}$.

Solution:

$$
\begin{aligned}
a & =\frac{A_{s} F_{y}}{0.85 f_{c}^{\prime} b}=\frac{(300)(400)}{(0.85)(25)(250)}=22.6 \mathrm{~mm} \\
\phi M_{n} & =\phi A_{s} F_{y}\left(d-\frac{a}{2}\right)=0.9(300)(400)\left(350-\frac{22.6}{2}\right)=36.5 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

## Example 3

Example 1. The service load bending moments on a beam are 58 kip$\mathrm{ft}[78.6 \mathrm{kN}-\mathrm{m}]$ for dead load and $38 \mathrm{kip-ft}[51.5 \mathrm{kN}-\mathrm{m}$ ] for live load. The beam is 10 in . [ 254 mm ] wide, $f_{c}^{\prime}$ is 3000 psi [ 27.6 MPa ], and $f_{y}$ is 60 ksi [ 414 MPa ]. Determine the depth of the beam and the tensile reinforcing required.


Example 3 (continued)


## Example 4

A simply supported beam 20 ft long carries a service dead load of $300 \mathrm{lb} / \mathrm{ft}$ and a live load of $500 \mathrm{lb} / \mathrm{ft}$. Design an appropriate beam (for flexure only). Use grade 40 steel and concrete strength of 5000 psi .

## SOLUTION:

Find the design moment, $\mathrm{M}_{\mathrm{u}}$, from the factored load combination of $1.2 \mathrm{D}+1.6 \mathrm{~L}$. It is good practice to guess a beam size to include self weight in the dead load, because "service" means dead load of everything except the beam itself.

Guess a size of 10 in $x 12 \mathrm{in}$. Self weight for normal weight concrete is the density of $150 \mathrm{lb} / \mathrm{ft}^{3}$ multiplied by the cross section area: self weight $=150 \frac{\mathrm{lb} / \mathrm{ft}^{3}}{}(10 \mathrm{in})(12 \mathrm{in}) \cdot\left(\frac{1 \mathrm{ft}}{12 \mathrm{in}}\right)^{2}=125 \mathrm{lb} / \mathrm{ft}$
$W_{u}=1.2(300 \mathrm{lb} / \mathrm{ft}+125 \mathrm{lb} / \mathrm{ft})+1.6(500 \mathrm{lb} / \mathrm{ft})=1310 \mathrm{lb} / \mathrm{ft}$
The maximum moment for a simply supported beam is $\frac{w l^{2}}{8}: \quad \quad \mathrm{M}_{\mathrm{u}}=\frac{w_{u} l^{2}}{8}=\frac{1310 \mathrm{lb} / \mathrm{ft}(20 \mathrm{ft})^{2}}{8} 65,500 \mathrm{lb}-\mathrm{ft}$
$\mathrm{M}_{\mathrm{n}}$ required $=\mathrm{M}_{\mathrm{u}} / \phi=\frac{65,500^{\mathrm{lb}-\mathrm{ft}}}{0.9}=72,778 \mathrm{lb}-\mathrm{ft}$

To use the design chart aid, find $\mathrm{R}_{\mathrm{n}}=\frac{M_{n}}{b d^{2}}$, estimating that d is about 1.75 inches less than h :
$d=12 \mathrm{in}-1.75 \mathrm{in}-(0.375)=10.25$ in (NOTE: If there are stirrups, you must also subtract the diameter of the stirrup bar.)
$\mathrm{R}_{\mathrm{n}}=\frac{72,778^{\mathrm{lb}-\mathrm{ft}}}{(10 \mathrm{in})(10.25 \mathrm{in})^{2}} \cdot(12 \mathrm{in} / \mathrm{ft})=831 \mathrm{psi}$
$\rho$ corresponds to approximately 0.023 , so the estimated area required, $A_{s,}$ can be found:
$A_{s}=\rho b d=(0.023)(10 \mathrm{in})(10.25 \mathrm{in})=2.36 \mathrm{in}^{2}$
The number of bars for this area can be found from handy charts.
(Whether the number of bars actually fit for the width with cover and space between bars must also be considered. If you are at $\rho_{\max }$ do not choose an area bigger than the maximum!)

Try $\mathrm{A}_{\mathrm{s}}=2.37 \mathrm{in}^{2}$ from $3 \# 8$ bars
$d=12$ in -1.5 in (cover) $-1 / 2(8 / 8$ in diameter bar $)=10$ in
Check $\rho=2.37 \mathrm{in}^{2} /(10 \mathrm{in})(10 \mathrm{in})=0.0237$ which is less than $\rho_{\max }=0.037$ OK (We cannot have an over reinforced beam!!)
Find the moment capacity of the beam as designed, $\phi \mathrm{M}_{\mathrm{n}}$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{A}_{\mathrm{s} f} \mathrm{y} / 0.85 \mathrm{f}^{\prime} \mathrm{cb}=2.37 \mathrm{in}^{2}(40 \mathrm{ksi}) /[0.85(5 \mathrm{ksi}) 10 \mathrm{in}]=2.23 \mathrm{in} \\
& \phi \mathrm{M}_{\mathrm{n}}=\phi A_{\mathrm{s} f} \mathrm{f}(\mathrm{~d}-\mathrm{a} / 2)=0.9\left(2.37 \mathrm{in}^{2}\right)(40 \mathrm{ksi})\left(10 \mathrm{in}-\frac{2.23 \mathrm{in}}{2}\right) \cdot\left(\frac{1}{12 \mathrm{in} / \mathrm{ft}}\right)=63.2 \mathrm{k}-\mathrm{ft} \ngtr 65.5 \mathrm{k}-\mathrm{ft} \text { needed (not OK) }
\end{aligned}
$$

So, we can increase d to 13 in , and $\phi \mathrm{M}_{\mathrm{n}}=70.3 \mathrm{k}$-ft (OK). Or increase $\mathrm{A}_{\mathrm{s}}$ to $2 \# 10$ 's ( $2.54 \mathrm{in}{ }^{2}$ ), for a $=2.39$ in and $\phi \mathrm{M}_{\mathrm{n}}$ of 67.1 k-ft (OK). Don't exceed $\rho_{\text {max }}$

## Example 5

A simply supported beam 20 ft long carries a service dead load of $425 \mathrm{lb} / \mathrm{ft}$ (including self weight) and a live load of $500 \mathrm{lb} / \mathrm{ft}$. Design an appropriate beam (for flexure only). Use grade 40 steel and concrete strength of 5000 psi .

## SOLUTION:

Find the design moment, $\mathrm{M}_{\mathrm{u}}$, from the factored load combination of $1.2 \mathrm{D}+1.6 \mathrm{~L}$. If self weight is not included in the service loads, you need to guess a beam size to include self weight in the dead load, because "service" means dead load of everything except the beam itself.
$W_{u}=1.2(425 \mathrm{lb} / \mathrm{ft})+1.6(500 \mathrm{lb} / \mathrm{ft})=1310 \mathrm{lb} / \mathrm{tt}$
The maximum moment for a simply supported beam is $\frac{w l^{2}}{8}: \quad M_{u}=\frac{w_{u} l^{2}}{8}=\frac{1310 \mathrm{lb} / f t(20 f t)^{2}}{8} 65,500 \mathrm{lb}-\mathrm{ft}$
$M_{n}$ required $=M_{u} / \phi=\frac{65,500^{l b-f t}}{0.9}=72,778 \mathrm{lb}-\mathrm{ft}$
To use the design chart aid, we can find $\mathrm{R}_{\mathrm{n}}=\frac{M_{n}}{b d^{2}}$, and estimate that h is roughly $1.5-2$ times the size of b , and $\mathrm{h}=1.1 \mathrm{~d}$ (rule of thumb): $d=h / 1.1=(2 b) / 1.1$, so $d \approx 1.8 b$ or $b \approx 0.55 d$.

We can find $\mathrm{R}_{\mathrm{n}}$ at the maximum reinforcement ratio for our materials off of the chart at about 1200 psi , with $\rho_{\max }=0.037$.
(Practical $\rho_{\max }$ at a strain $=0.005$ is 0.0319 ). Let's substitute $b$ for a function of d :
$R_{\mathrm{n}}=1200 \mathrm{psi}=\frac{72,778^{\text {lb-ft }}}{(0.55 d)(d)^{2}} \cdot\left(12^{\mathrm{in} / f t}\right) \quad$ Rearranging and solving for $\mathrm{d}=11.0$ inches

That would make b roughly 6 , which is impractical. 10 in is commonly the smallest width.
So if $h$ is commonly 1.5 to 2 times the width, $b, h$ ranges from 14 to 20 inches. ( $10 \times 1.5=15$ and $10 \times 2=20$ )
Choosing a depth of 14 inches, $\mathrm{d} \cong 14-1.5$ (clear cover) $-1 / 2\left(1^{\prime \prime}\right.$ diameter bar guess) $-3 / 8$ in (stirrup diameter) $=11.625 \mathrm{in}$.
Now calculating an updated $\mathrm{R}_{\mathrm{n}}=\frac{72,77 \mathrm{db}-\mathrm{ft}}{(10 \mathrm{in})(11625 \mathrm{in})^{2}} \cdot(12 \mathrm{in} / \mathrm{ft})=646.2 \mathrm{psi}$
$\rho$ now is 0.020 , so the estimated area required, $A_{s}$, can be found:
$\mathrm{A}_{\mathrm{s}}=\rho b d=(0.020)(10 \mathrm{in})(11.625 \mathrm{in})=1.98 \mathrm{in}^{2}$
The number of bars for this area can be found from handy charts.
(Whether the number of bars actually fit for the width with cover and space between bars must also be considered. If you are at $\rho_{\max }$ do not choose an area bigger than the maximum!)

Try $\mathrm{A}_{\mathrm{s}}=2.37 \mathrm{in}^{2}$ from $3 \# 8$ bars. (or 2.0 in² from $2 \# 9$ bars. $4 \# 7$ bars don't fit...)
$d($ actually $)=14 \mathrm{in} .-1.5 \mathrm{in}($ cover $)-1 / 2(8 / 8$ in bar diameter $)-3 / 8 \mathrm{in} .($ stirrup diameter $)=11.625 \mathrm{in}$.
Check $\rho=2.37 \mathrm{in}^{2} /(10 \mathrm{in})(11.625 \mathrm{in})=0.0203$ which is less than $\rho_{\max }=0.037$ OK (We cannot have an over reinforced beam!!)
Find the moment capacity of the beam as designed, $\phi \mathrm{M}_{n}$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{A}_{\mathrm{s} y} / / 0.85 \mathrm{f}^{\prime} \mathrm{c} b=2.37 \mathrm{in}^{2}(40 \mathrm{ksi}) /[0.85(5 \mathrm{ksi}) 10 \mathrm{in}]=2.23 \mathrm{in} \\
& \phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{y}(\mathrm{~d}-\mathrm{a} / 2)=0.9\left(2.37 \mathrm{in}^{2}\right)(40 \mathrm{ksi})\left(11.625 \mathrm{in}-\frac{2.23 \mathrm{in}}{2}\right) \cdot\left(\frac{1}{12^{\mathrm{in} / \mathrm{tr}}}\right)=74.7 \mathrm{k}-\mathrm{ft}>65.5 \mathrm{k}-\mathrm{ft} \text { needed }
\end{aligned}
$$

OK! Note: If the section doesn't work, you need to increase $d$ or $A_{s}$ as long as you don't exceed $\rho_{\max }$

## Example 6

A simply supported beam 25 ft long carries a service dead load of $2 \mathrm{k} / \mathrm{ft}$, an estimated self weight of $500 \mathrm{lb} / \mathrm{ft}$ and a live load of $3 \mathrm{k} / \mathrm{ft}$. Design an appropriate beam (for flexure only). Use grade 60 steel and concrete strength of 3000 psi.

## SOLUTION:

Find the design moment, $\mathrm{M}_{\mathrm{u}}$, from the factored load combination of $1.2 \mathrm{D}+1.6 \mathrm{~L}$. If self weight is estimated, and the selected size has a larger self weight, the design moment must be adjusted for the extra load.
$\mathrm{w}_{\mathrm{u}}=1.2(2 \mathrm{k} / \mathrm{ft}+0.5 \mathrm{kft})+1.6(3 \mathrm{k} / \mathrm{ft})=7.8 \mathrm{k} / \mathrm{ft}$
So, $\mathrm{M}_{\mathrm{u}}=\frac{w_{u} l^{2}}{8}=\frac{7.8 \mathrm{k} / f \mathrm{ft}(25 \mathrm{ft})^{2}}{8} 609.4 \mathrm{k}-\mathrm{ft}$
$\mathrm{M}_{\mathrm{n}}$ required $=\mathrm{M}_{\mathrm{u}} / \phi=\frac{609.4^{k-f t}}{0.9}=677.1 \mathrm{k}-\mathrm{ft}$
To use the design chart aid, we can find $R_{n}=\frac{M_{n}}{b d^{2}}$, and estimate that $h$ is roughly $1.5-2$ times the size of $b$, and $h=1.1 \mathrm{~d}$ (rule of thumb): $d=h / 1.1=(2 b) / 1.1$, so $d \approx 1.8 b$ or $b \approx 0.55 d$.

We can find $\mathrm{R}_{\mathrm{n}}$ at the maximum reinforcement ratio for our materials off of the chart at about 770 psi , with $\rho_{\max }=0.016$.
(Practical $\rho_{\max }$ at a strain $=0.005$ is 0.0135 ). Let's substitute $b$ for a function of d :
$\mathrm{R}_{\mathrm{n}}=770 \mathrm{psi}=\frac{677.1^{k-f t}\left(1000^{\mathrm{lb/k}}\right)}{(0.55 d)(d)^{2}} \cdot(12 \mathrm{in} / \mathrm{ft}) \quad \quad$ Rearranging and solving for $\mathrm{d}=26.6$ inches
That would make b 13.3 in. (from 0.55 d ). Let's try 14 . So,
$h \cong \mathrm{~d}+1.5$ (clear cover) $+1 / 2\left(1^{\prime \prime}\right.$ diameter bar guess) $+3 / 8$ in $($ stirrup diameter $)=26.6+2.375=28.975 \mathrm{in}$.
Choosing a depth of 29 inches, $d \cong 29-1.5$ (clear cover) $-1 / 2(1$ " diameter bar guess) $-3 / 8$ in (stirrup diameter) $=26.625$ in.
Now calculating an updated $\mathrm{R}_{\mathrm{n}}=\frac{677,100^{\mathrm{lb}-\mathrm{ft}}}{(14 \mathrm{in})(26.625 \mathrm{in})^{2}} \cdot(12 \mathrm{in} / \mathrm{ft})=819 \mathrm{psi} \quad$ OOPS! This is larger than the chart limit!

We can't just use $\rho_{\text {max. }}$. The way to reduce $R_{n}$ is to increase b or d or both. Let's try increasing h to 30 in., then $R_{n}=760$ psi with $d=27.625$ in.. That puts us at $\rho_{\text {max. }}$. We'd have to remember to keep UNDER the area of steel calculated, which is hard to do. Let's increase $h$ again to 31 in., then $R_{n}=708.3$ psi with $d=28.625$ in. From the chart, $\rho \approx 0.013$, so the estimated area required, $A_{s}$, can be found: $\quad A_{s}=\rho b d=(0.013)(14 \mathrm{in})(28.625 \mathrm{in})=5.2 \mathrm{in}^{2}$

The number of bars for this area can be found from handy charts. Our charts say there can be $3-6$ bars that fit when $3 / 4$ " aggregate is used. We'll assume 1 inch spacing between bars. The actual limit is the maximum of 1 in, the bar diameter or 1.33 times the maximum aggregate size.

Try $A_{s} 5.0=$ in² from $5 \# 9$ bars. Check the width: $14-3$ ( 1.5 in cover each side) -0.75 (two \#3 stirrup legs) $-5^{*} 1.128-4^{* 1}$ in. $=$ +0.61 OK.
d (actually) $=31 \mathrm{in} .-1.5 \mathrm{in}$ (cover) $-1 / 2(1.27$ in bar diameter) $-3 / 8 \mathrm{in}$. (stirrup diameter) $=28.5 \mathrm{in}$.
Find the moment capacity of the beam as designed, $\phi \mathrm{M}_{\mathrm{n}}$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{A}_{s} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime} \mathrm{cb}=5 \mathrm{in}^{2}(60 \mathrm{ksi}) /[0.85(3 \mathrm{ksi}) 14 \mathrm{in}]=8.4 \mathrm{in} \\
& \phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)=0.9\left(5 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(28.49 \mathrm{in}-\frac{8.4 \mathrm{in}}{2}\right) \cdot\left(\frac{1}{12 \mathrm{in} / \mathrm{ft}}\right)=546.5 \mathrm{k}-\mathrm{ft}<609 \mathrm{k}-\mathrm{ft} \text { needed!! (NO GOOD) }
\end{aligned}
$$

More steel isn't likely to increase the capacity much unless we are close. It looks like we need more steel and lever arm. Try h=32 in. for $d=29.49$ in. AND $b=15$ in., then $A_{s}=0.013(15 \mathrm{in})(29.49 \mathrm{in})=5.75 \mathrm{in}^{2} .6 \# 9$ 's won't fit, so increase b to 16 in. and $\phi \mathrm{M}_{\mathrm{n}}=677.1 \mathrm{k}$-ft (!!!)

Check $\rho=6 \mathrm{in}^{2} /(16 \mathrm{in})(29.49 \mathrm{in})=0.0127$ which is less than $\rho_{\max }=0.014$ GOOD (We cannot have an over reinforced beam!!) Check self weight: $(16 \mathrm{in})(32 \mathrm{in}) /\left(12^{\mathrm{in} / \mathrm{ft}}\right)^{2 *} 150 \mathrm{lb} / \mathrm{ft}^{3}=533 \mathrm{lb} / \mathrm{ft}$. The new design moment is $\mathrm{M}_{\mathrm{u}}=659.4 \mathrm{k}-\mathrm{ft}<\phi \mathrm{M}_{\mathrm{n}} \quad \mathrm{OK}$

## Example 7

Example 3. A T-section is to be used for a beam to resist positive moment. The following data are given: beam span is 18 ft [ 5.49 m ], beams are 9 ft [ 2.74 m ] center to center, slab thickness is 4 in . [ 0.102 m ], beam stem dimensions are $b_{w}=15 \mathrm{in}$. [0.381 m] and $d=22 \mathrm{in}$. [0.559 m], $f^{\prime}{ }_{c}$ $=4 \mathrm{ksi}[27.6 \mathrm{MPa}], f_{v}=60 \mathrm{ksi}[414 \mathrm{MPa}$ ]. Find the required area of steel and select the reinforcing bars for a dead load moment of $125 \mathrm{kip}-\mathrm{ft}[170$ $\mathrm{kN}-\mathrm{m}$ ] plus a live load moment of $100 \mathrm{kip}-\mathrm{ft}$ [ $136 \mathrm{kN}-\mathrm{m}$ ].


## Example 8

Design a T-beam for a floor with a 4 in slab supported by 22 -ft-span-length beams cast monolithically with the slab. The beams are 8 ft on center and have a web width of 12 in . and a total depth of 22 in .; $f^{\prime}{ }_{c}=3000 \mathrm{psi}$ and $f_{y}=60 \mathrm{ksi}$. Service loads are 125 psf and 200 psf dead load which does not include the weight of the floor system.

## SOLUTION:

1. Establish the design moment:

$$
\begin{aligned}
\text { slab weight }=\frac{96(4)}{144}(0.150) & =0.400 \mathrm{kip} / \mathrm{ft} \\
\text { stem weight }=\frac{12(18)}{144}(0.150) & =\underline{0.225} \\
\text { total } & =0.625 \mathrm{kip} / \mathrm{ft}
\end{aligned}
$$

$$
\begin{align*}
& \text { service } \mathrm{DL}=8(0.200)=1.60 \mathrm{kips} / \mathrm{ft} \\
& \text { service } \mathrm{LL}=8(0.125)=1.00 \mathrm{kip} / \mathrm{ft} \tag{O.K.}
\end{align*}
$$

Calculate the factored load and moment:

$$
\begin{aligned}
w_{u} & =1.2(0.625+1.60)+1.6(1.00)=4.27 \mathrm{kip} / \mathrm{ft} \\
M_{u} & =\frac{w_{u} \ell^{2}}{8}=\frac{4.27(22)^{2}}{8}=258 \mathrm{ft}-\mathrm{kips}
\end{aligned}
$$

2. Assume an effective depth $d=h-3$ in.:

$$
d=22-3=19 \mathrm{in} .
$$

3. Determine the effective flange width:

$$
\begin{align*}
1 / 4 \text { span length } & =0.25(22)(12)=66 \mathrm{in} .  \tag{O.K}\\
b_{w}+16 h_{f} & =12+16(4)=76 \mathrm{in} . \\
\text { beam spacing } & =96 \mathrm{in} .
\end{align*}
$$

Use an effective flange width $b=66 \mathrm{in}$.
4. Determine whether the beam behaves as a true T-beam or as a rectangular beam by computing the practical moment strength $\phi M_{n f}$ with the full effective flange assumed to be in compression. This assumes that the bottom of the compressive stress block coincides with the bottom of the flange, as shown in Figure 3-10. Thus

$$
\begin{aligned}
\phi M_{n f} & =\phi\left(0.85 f_{c}^{\prime}\right) b h_{f}\left(d-\frac{h_{f}}{2}\right) \\
& =0.9(0.85)(3)(66) \frac{4(19-4 / 2)}{12}=858 \mathrm{ft}-\mathrm{kips}
\end{aligned}
$$

8. Calculate the required steel area:

$$
\begin{aligned}
\text { required } A_{s} & =\rho b d \\
& =0.0024(66)(19)=3.01 \mathrm{in.}^{2}
\end{aligned}
$$

9. Select the steel bars. Use 3\#9 $\left(A_{s}=3.00 \mathrm{in.}^{2}\right)$

$$
\operatorname{minimum} b_{w}=7.125 \text { in }
$$

(O.K.)

Check the effective depth $d$ :

$$
d=22-1.5-0.38-\frac{1.125}{2}=19.56 \mathrm{in} .
$$

19.49 in. $>19$ in.
10. Check $A_{s, \text { min }}$. From Table A-5:

$$
\begin{aligned}
A_{s, \min } & =0.0033 b_{w} d \\
& =0.0033(12)(19)=0.75 \mathrm{in.}^{2} \\
0.75 \mathrm{in.}^{2} & <3.00 \mathrm{in}^{2}
\end{aligned}
$$

11. Check $A_{s, \text { max }}$ :

$$
\begin{aligned}
A_{s, \max } & =0.0135(66)(19) \\
& =16.93 \mathrm{in}^{2}>3.00 \mathrm{in.}^{2}
\end{aligned}
$$

12. Verify the moment capacity:

$$
\begin{aligned}
& \text { (Is } M_{u} \leq \phi M_{n} \text { ) } \\
& a=(3.00)(60) /[0.85(3)(66)]=1.07 \mathrm{in} \text {. } \\
& \phi M_{n}=0.9(3.00)(60)\left(19.56-\frac{1.07}{2}\right) 1 / 12 \\
& =256.9 .1 \mathrm{ft}-\mathrm{kips} \\
& \text { (Not O.K) }
\end{aligned}
$$

Choose more steel, $\mathrm{A}_{\mathrm{s}}=3.16$ in 2 from 4-\#8's

$$
d=19.62 \mathrm{in}, \mathrm{a}=1.13 \mathrm{in}
$$

$$
\phi M_{n}=271.0 \mathrm{ft}-\mathrm{kips}, \text { which is } \mathrm{OK}
$$

13. Sketch the design
14. Since 858 ft -kips $>258 \mathrm{ft}-\mathrm{kips}$, the total effective flange need not be completely utilized in compression (i.e., $a<h_{f}$ ), and the T-beam behaves as a wide rectangular beam with a width $b$ of 66 in .
15. Design as a rectangular beam with $b$ and $d$ as known values (see Section 2-15):

$$
\text { required } R_{n}=\frac{M_{u}}{\phi b d^{2}}=\frac{258(12)}{0.9(66)(19)^{2}}=0.1444 \mathrm{ksi}
$$

7. From Table A-8, select the required steel ratio to provide a $R_{n}$ of 0.1444 ksi

$$
\text { required } \rho=0.0024
$$

## Example 9

Design a T-beam for the floor system shown for which $b_{w}$ and $d$ are given. $M_{D}=200 \mathrm{ft}-\mathrm{k}, \mathrm{M}_{\mathrm{L}}=425 \mathrm{ft}-\mathrm{k}$, $f^{\prime}{ }_{c}=3000 \mathrm{psi}$ and $f_{y}=60 \mathrm{ksi}$, and simple span $=18 \mathrm{ft}$.

## SOLUTION

## Effective Flange Width

(a) $\frac{1}{4} \times 18^{\prime}=4^{\prime} 6^{\prime \prime}=\underline{54^{\prime \prime}}$

(b) $15^{\prime \prime}+(2)(8)(3)=63^{\prime \prime}$
(c) $6^{\prime} 0^{\prime \prime}=72^{\prime \prime}$

Moments Assuming $\boldsymbol{\phi}=\mathbf{0 . 9 0}$

$$
\begin{aligned}
& M_{u}=(1.2)(200)+(1.6)(425)=920 \mathrm{ft}-\mathrm{k} \\
& M_{n}=\frac{M_{u}}{0.90}=\frac{920}{0.90}=1022 \mathrm{ft}-\mathrm{k}
\end{aligned}
$$

First assume $a \leq h_{f}$ (which is very often the case). Then the design would proceed like that of a rectangular beam with a width equal to the effective width of the T beam flange.

$$
\begin{aligned}
& \frac{M_{u}}{\phi b d^{2}}=\frac{920(12,000)}{(0.9)(54)(24)^{2}}=394.4 \mathrm{psi} \\
& \quad \text { from Table A.12, } \rho=0.0072 \\
& a=\frac{\rho f_{y} d}{0.85 f_{c}^{\prime}}=\frac{0.0072(60)(24)}{(0.85)(3)}=4.06 \mathrm{in} .>h_{f}=3 \mathrm{in} .
\end{aligned}
$$

The beams acts like a T beam, not a rectangular beam, and the values for $\rho$ and $a$ above are not correct. If the value of $a$ had been $\leq h_{f}$, the value of $A_{s}$ would have been simply $\rho b d=0.0072(54)(24)=9.33 \mathrm{in}^{2}$. Now break the beam up into two parts (Figure 5.7) and design it as a $T$ beam.

Assuming $\phi=0.90$

$$
\begin{aligned}
A_{s f} & =\frac{(0.85)(3)(54-15)(3)}{60}=4.97 \mathrm{in} .^{2} \\
M_{u f} & =(0.9)(4.97)(60)\left(24-\frac{3}{2}\right)=6039 \mathrm{in} .-\mathrm{k}=503 \mathrm{ft}-\mathrm{k} \\
M_{u w} & =920-503=417 \mathrm{ft}-\mathrm{k}
\end{aligned}
$$

Designing a rectangular beam with $b_{w}=15 \mathrm{in}$. and $d=24 \mathrm{in}$. to resist $417 \mathrm{ft}-\mathrm{k}$

$$
\begin{aligned}
\frac{M_{u w}}{\phi b_{w} d^{2}} & =\frac{(12)(417)(1000)}{(0.9)(15)(24)^{2}}=643.5 \\
\rho_{w} & =0.0126 \text { from Appendix Table A. } 12 \\
A_{s w} & =(0.0126)(15)(24)=4.54 \mathrm{in.}^{2} \\
A_{s} & =4.97+4.54=9.51 \mathrm{in.}^{2}
\end{aligned}
$$


(a)

(b)

(c)

Figure 5.7 Separation of T beam into rectangular parts.

## Example 10

Example 6. A one-way solid concrete slab is to be used for a simple span of 14 ft [ 4.27 m ]. In addition to its own weight, the slab carries a superimposed dead load of 30 psf [ 1.44 kPa ] plus a live load of 100 psf [4.79 kPa ]. Using $f^{\prime}{ }_{c}=3 \mathrm{ksi}$ [20.7 MPa] and $f_{y}=40 \mathrm{ksi}$ [ 276 MPa ], design the slab for minimum overall thickness.


TABLE 13.6 Areas Provided By Spaced Reinforcement

	Bar   Spacing   (in.)								
	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11
3	0.44	0.80	1.24	1.76	2.40	3.16	4.00		
3.5	0.38	0.69	1.06	1.51	2.06	2.71	3.43	4.35	
4	0.33	0.60	0.93	1.32	1.80	2.37	3.00	3.81	4.68
4.5	0.29	0.53	0.83	1.17	1.60	2.11	2.67	3.39	4.16
5	0.26	0.48	0.74	1.06	1.44	1.89	2.40	3.05	3.74
5.5	0.24	0.44	0.68	0.96	1.31	1.72	2.18	2.77	3.40
6	0.22	0.40	0.62	0.88	1.20	1.58	2.00	2.54	3.12
7	0.19	0.34	0.53	0.75	1.03	1.35	1.71	2.18	2.67
8	0.16	0.30	0.46	0.66	0.90	1.18	1.50	1.90	2.34
9	0.15	0.27	0.41	0.59	0.80	1.05	1.33	1.69	2.08
10	0.13	0.24	0.37	0.53	0.72	0.95	1.20	1.52	1.87
11	0.12	0.22	0.34	0.48	0.65	0.86	1.09	1.38	1.70
12	0.11	0.20	0.31	0.44	0.60	0.79	1.00	1.27	1.56
13	0.10	0.18	0.29	0.40	0.55	0.73	0.92	1.17	1.44
14	0.09	0.17	0.27	0.38	0.51	0.68	0.86	1.09	1.34
15	0.09	0.16	0.25	0.35	0.48	0.63	0.80	1.01	1.25
16	0.08	0.15	0.23	0.33	0.45	0.59	0.75	0.95	1.17
18	0.07	0.13	0.21	0.29	0.40	0.53	0.67	0.85	1.04
24	0.05	0.10	0.15	0.22	0.30	0.39	0.50	0.63	0.78

## Example 11

## nple 2-9

Design a simple-span one-way slab to carry a uniformly distributed live load of 400 psf . The span is 10 ft (center to center of supports). Use $f_{c}^{\prime}=4000 \mathrm{psi}$ and $f_{y}=60,000 \mathrm{psi}$. Select the thickness to be not less than the ACI minimum thickness requirement.

## Solution:

Determine the required minimum $h$ and use this to estimate the slab dead weight.

1. From ACI Table 9.5(a), for a simply supported, solid, one-way slab,

$$
\operatorname{minimum} h=\frac{\ell}{20}=\frac{10(12)}{20}=6.0 \mathrm{in} .
$$

Try $h=6$ in. and design a 12 -in.-wide segment.
2. Determine the slab weight dead load:

$$
\frac{6(12)}{144}(0.150)=0.075 \mathrm{kip} / \mathrm{ft}
$$

The total design load is

$$
\begin{aligned}
w_{u} & =1.2 w_{\mathrm{DL}}+1.6 w_{\mathrm{LL}} \\
& =1.2(0.075)+1.6(0.400) \\
& =0.730 \mathrm{kip} / \mathrm{ft}
\end{aligned}
$$

3. Determine the design moment:

$$
M_{u}=\frac{w_{u} \ell^{2}}{8}=\frac{0.73(10)^{2}}{8}=9.125 \mathrm{ft}-\mathrm{kips}
$$

4. Establish the approximate $d$. Assuming No. 6 bars and minimum concrete cover on the bars of $3 / 4 \mathrm{in}$.,

$$
\text { assumed } d=6.0-0.75-0.375=4.88 \mathrm{in} .
$$

5. Determine the required $R_{n}$ :

$$
\text { required } \begin{aligned}
R_{n} & =\frac{M_{u}}{\phi b d^{2}} \\
& =\frac{9.125(12)}{0.9(12)(4.88)^{2}}=0.4257 \mathrm{ksi}
\end{aligned}
$$

6. From Table A-10, for a required $R_{n}=0.4257$, the required $\rho=0.0077$. (Note that the required $\rho$ selected is the next higher value from Table A10.) Thus

$$
\begin{equation*}
\rho_{\max }=0.0181>0.0077 \tag{O.K.}
\end{equation*}
$$

Use $\rho=0.0077$.
7. required $A_{s}=\rho b d=0.0077(12)(4.88)=0.45 \mathrm{in} .{ }^{2} / \mathrm{ft}$
8. Select the main steel (from Table A-4). Select No. 5 bars at $7 / \frac{1}{2}$ in. o.c. $\left(A_{s}=0.50 \mathrm{in}^{2}{ }^{2}\right)$. The assumption on bar size was satisfactory. The code requirements for maximum spacing have been discussed in Section 2-13. Minimum spacing of bars in slabs, practically, should not be less than 4 in.. although the ACI Code allows bars to be placed closer together, as discussed in Example 2-7. Check the maximum spacing (ACI Code, Section 7.6.5):

$$
\begin{align*}
\text { maximum spacing } & =3 h \text { or } 18 \mathrm{in} . \\
3 h & =3(6)=18 \mathrm{in} . \\
71 / 2 \mathrm{in} . & <18 \mathrm{in} . \tag{O.K.}
\end{align*}
$$

Therefore use No. 5 bars at $71 / 2$ in. o.c.

## Example 12

Example 7. Design the required shear reinforcement for the simple beam shown in Figure 13.18 . Use $f_{c}^{\prime}=3 \mathrm{ksi}$ [20.7 MPa] and $f_{y}=40 \mathrm{ksi}$ [ 276 MPa ] and single U-shaped stirrups.


## Example 13

For the simply supported concrete beam shown in Figure 5-61, determine the stirrup spacing (if required) using No. 3 U stirrups of Grade $60\left(f_{y}=60 \mathrm{ksi}\right)$. Assume $f^{\prime}{ }_{c}=3000 \mathrm{psi}$.


Figure 5-61: Simply supported concrete beam for Example 5-15.

$$
\begin{array}{lll}
f_{c}^{\prime}=3000 \mathrm{psi} . & \text { For \#3 bars, } & A_{s}=0.11 \mathrm{in.}^{2}, \\
F_{y}=60 \mathrm{ksi} . & \text { with } 2 \text { legs, then } & A_{\mathrm{v}}=0.22 \mathrm{in.}^{2}
\end{array}
$$

Solution:

$$
V_{u}=50 \mathrm{kips} \text { (neglecting weight of the beam) }
$$

$$
\begin{aligned}
\phi V_{c} & =\phi 2 \sqrt{f_{c}^{\prime}} b_{w} d \\
& =(0.75) \frac{2 \sqrt{3000}(12)(32.5)}{1000}=32.0 \mathrm{kips}<V_{u} \quad \therefore \text { Need Stirrups }
\end{aligned}
$$

Note: If $V_{u}=\frac{1}{2} \varphi V_{c}$, minimum stirrups would still be required.

$$
\begin{aligned}
V_{u} & \leq \phi V_{c}+\phi V_{s} \\
& \therefore \phi V_{s}=V_{u}-\phi V_{c}=50-32.0=18.0 \mathrm{kips} \quad\left(<\phi 4 \sqrt{f_{c}^{\prime}} b_{w} d=64.1 \mathrm{kips}\right) \\
s_{\text {req'd }} & \leq \frac{\phi A_{v} F_{y} d}{\phi V_{s}}=\frac{(0.75)\left(0.22 \mathrm{in}^{2}\right)(60 \mathrm{ksi})(32.5 \mathrm{in})}{18.0 \mathrm{k}} \\
& =17.875 \mathrm{in} . \\
s_{\max }= & \frac{d}{2}=\frac{32.5}{2}=16.2 \mathrm{in} . \quad \text { controls } \\
& =24 \mathrm{in} .
\end{aligned}
$$

$\left[\begin{array}{c}s_{r e q^{\prime} d} \\ \text { when } \phi V_{c}>V_{u}>\frac{\phi V_{c}}{2}\end{array} \quad \frac{A_{v} F_{y}}{50 b_{w}}=\frac{(0.22)(60,000)}{50(12)}=22.0\right.$ in., but $16 "(\mathrm{~d} / 2)$ would be the maximum $\left.\begin{array}{c}\text { as well. }\end{array}\right]$
$\therefore$ Use \#3 U@ 16" max spacing

## Example 14

Design the shear reinforcement for the simply supported reinforced concrete beam shown with a dead load of $1.5 \mathrm{k} / \mathrm{ft}$ and a live load of $2.0 \mathrm{k} / \mathrm{ft}$. Use 5000 psi concrete and Grade 60 steel. Assume that the point of reaction is at the end of the beam.


SOLUTION:


## Shear diagram:

Find self weight $=1 \mathrm{ft} \times(27 / 12 \mathrm{ft}) \times 150 \mathrm{lb} / \mathrm{tt}^{3}=338 \mathrm{lb} / \mathrm{ft}=0.338 \mathrm{k} / \mathrm{ft}$
$\mathrm{w}_{\mathrm{u}}=1.2(1.5 \mathrm{k} / \mathrm{ft}+0.338 \mathrm{k} / \mathrm{ft})+1.6(2 \mathrm{k} / \mathrm{ft})=5.41 \mathrm{k} / \mathrm{ft}(=0.451 \mathrm{k} / \mathrm{n})$
$\mathrm{V}_{\mathrm{u}(\text { max })}$ is at the ends $=\mathrm{w}_{\mathrm{u}} \mathrm{L} / 2=5.41 \mathrm{k} / \mathrm{ft}(24 \mathrm{ft}) / 2=64.9 \mathrm{k}$
$\mathrm{V}_{\mathrm{u}(\text { support })}=\mathrm{V}_{\mathrm{u}(\text { max })}-\mathrm{W}_{\mathrm{u}}($ distance $)=64.9 \mathrm{k}-5.41 \mathrm{k} / \mathrm{ft}(6 / 12 \mathrm{ft})=62.2 \mathrm{k}$
$V_{u}$ for design is d away from the support $=\mathrm{V}_{\mathrm{u}(\text { support })}-\mathrm{w}_{\mathrm{u}}(\mathrm{d})=62.2 \mathrm{k}-5.41 \mathrm{k} / \mathrm{ft}(23.5 / 12 \mathrm{ft})=51.6 \mathrm{k}$

## Concrete capacity:

We need to see if the concrete needs stirrups for strength or by requirement because $\mathrm{V}_{u} \leq \phi \mathrm{V}_{\mathrm{c}}+\phi \mathrm{V}_{\mathrm{s}}$ (design requirement) $\phi V_{c}=\phi 2 \sqrt{f_{c}^{\prime}} b_{w} \mathrm{~d}=0.75(2) \sqrt{5000} \mathrm{psi}(12 \mathrm{in})(23.5 \mathrm{in})=299106 \mathrm{lb}=29.9 \mathrm{kips}(<51.6 \mathrm{k}!)$

## Stirrup design and spacing

We need stirrups: $A_{v}=V_{s} s / f_{y} d$
$\phi V_{s} \geq V_{u}-\phi V_{c}=51.6 \mathrm{k}-29.9 \mathrm{k}=21.7 \mathrm{k}$
Spacing requirements are in Table 3-8 and depend on $\not \subset \mathcal{V} / 2=15.0 \mathrm{k}$ and $2 \not \mathcal{V}_{\mathrm{c}}=59.8 \mathrm{k}$

$$
\begin{aligned}
& \text { Locating end points: } \\
& \begin{array}{c}
29.9 \mathrm{k}=64.9 \mathrm{k}-0.451 \mathrm{k} / \mathrm{in} \times(\mathrm{a}) \\
\mathrm{a}=78 \text { in } \\
15 \mathrm{k}=64.9 \mathrm{k}-0.451 \mathrm{k} / \mathrm{in} \times(\mathrm{b}) \\
b=111 \mathrm{in} .
\end{array}
\end{aligned}
$$

2 legs for a \#3 is $0.22 \mathrm{in}^{2}$, so $\mathrm{S}_{\text {req'd }} \leq \phi \mathrm{A}_{\mathrm{v} y} \mathrm{~d} / \phi \mathrm{V}_{\mathrm{s}}=0.75\left(0.22 \mathrm{in}^{2}\right)(60 \mathrm{ksi})(23.5 \mathrm{in}) / 21.7 \mathrm{k}=10.72$ in Use s $=10$ " our maximum falls into the $\mathrm{d} / 2$ or $24^{\prime \prime}$, so $\mathrm{d} / 2$ governs with 11.75 in Our 10 " is ok.

This spacing is valid until $\mathrm{V}_{\mathrm{u}}=\phi \mathrm{V}_{\mathrm{c}}$ and that happens at $(64.9 \mathrm{k}-29.9 \mathrm{k}) / 0.451 \mathrm{k} / \mathrm{in}=78$ in
We can put the first stirrup at a minimum of 2 in from the support face, so we need 10 " spaces for ( $78-2-6 \mathrm{in}$ )/10 in = 7 even ( 8 stirrups altogether ending at 78 in)

After 78 " we can change the spacing to the required (but not more than the maximum of $\mathrm{d} / 2=11.75 \mathrm{in} \leq 24 \mathrm{in}$ );

$$
\mathrm{s}=\mathrm{A}_{\mathrm{v}} \mathrm{f}_{\mathrm{y}} / 50 \mathrm{~b}_{\mathrm{w}}=0.22 \mathrm{in}^{2}(60,000 \mathrm{psi}) / 50(12 \mathrm{in})=22 \mathrm{in}
$$

We need to continue to 111 in , so $(111-78 \mathrm{in}) / 11 \mathrm{in}=3$ even


## Example 15

Example 1. A solid one-way slab is to be used for a framing system similar to that shown in Figure 14.1. Column spacing is 30 ft . with evenly spaced beams occurring at 10 ft . center to center. Superimposed loads on the structure (floor live load plus other construction dead load) are a dead load of 38 psf [ 1.82 kPa ] and a live load of 100 psf [ 4.79 kPa ]. Use $f_{c}^{\prime}=3$ ksi [20.7 MPa] and $f_{y}=40 \mathrm{ksi}$ [275 MPa]. Determine the thickness for the slab and select its reinforcement.




## Example 15 (continued)



## Example 16

## Example 6-1

The floor system shown in Figure 6-4 consists of a continuous one-way slab supported by continuous beams. The service loads on the floor are 25 psf dead load (does not include weight of slab) and 250 psf live load. Use $f_{c}^{\prime}=3000 \mathrm{psi}$ (normal-weight concrete) and $f_{y}=60,000$ psi. The bars are uncoated.
Design the continuous one-way floor slab.

## Solution:

The primary difference in this design from previous flexural designs is that, because of continuity, the ACI coefficients and equations will be used to determine design shears and moments.

A. Continuous one-way floor slab

1. Determine the slab thickness. The slab will be designed to satisfy the ACI minimum thickness requirements from Table 9.5(a) of the code and this thickness will be used to estimate slab weight.

With both ends continuous,

$$
\operatorname{minimum} h=\frac{1}{28} \ell_{n}=\frac{1}{28}(11)(12)=4.71 \mathrm{in} .
$$

With one end continuous,

$$
\operatorname{minimum} h=\frac{1}{24} \ell_{n}=\frac{1}{24}(11)(12)=5.5 \mathrm{in} .
$$

Try a $51 / 2$-in.-thick slab. Design a 12 -in.-wide segment ( $b=12 \mathrm{in}$.).
2. Determine the load:

$$
\begin{aligned}
\text { slab dead load } & =\frac{5.5}{12}(150)=68.8 \mathrm{psf} \\
\text { total dead load } & =25.0+68.8=93.8 \mathrm{psf} \\
\qquad w_{u} & =1.2 w_{\mathrm{DL}}+1.6 w_{\mathrm{LL}}=1.2(93.8)+1.6(250)=112.6+400.0=516.2 \mathrm{psf} \quad(\text { design load })
\end{aligned}
$$

Because we are designing a slab segment that is 12 in . wide, the foregoing loading is the same as $512.6 \mathrm{lb} / \mathrm{ft}$ or $0.513 \mathrm{kip} / \mathrm{ft}$.

## Example 16 (continued)

3. Determine the moments and shears. Moments are determined using the ACI moment equations. Refer to Figures 6-1 and 6-4. Thus

$$
\begin{array}{ll}
+M_{u}=\frac{1}{14} w_{u} \ell_{n}^{2}=\frac{1}{14}(0.513)(11)^{2}=4.43 \mathrm{ft}-\mathrm{kips} & \\
\text { (end span) } \\
+M_{u}=\frac{1}{16} w_{u} \ell_{n}^{2}=\frac{1}{16}(0.513)(11)^{2}=3.88 \mathrm{ft}-\mathrm{kips} & \\
\text { (interior span) } \\
-M_{u}=\frac{1}{10} w_{u} \ell_{n}^{2}=\frac{1}{10}(0.513)(11)^{2}=6.20 \mathrm{ft}-\mathrm{kips} & \\
\text { (end span }- \text { first interior } \text { support) } \\
-M_{u}=\frac{1}{11} w_{u} \ell_{n}^{2}=\frac{1}{11}(0.513)(11)^{2}=5.64 \mathrm{ft}-\mathrm{kips} & \\
\text { (interior span }- \text { both supports) } \\
-M_{u}=\frac{1}{24} w_{u} \ell_{n}^{2}=\frac{1}{24}(0.513)(11)^{2}=2.58 \mathrm{ft}-\mathrm{kips} & \\
\text { (end span }- \text { exterior support) }
\end{array}
$$

Similarly, the shears are determined using the ACI shear equations. In the end span at the face of the first interior support,

$$
V_{u}=1.15 \frac{w_{u} \ell_{n}}{2}=1.15(0.513)\left(\frac{11}{2}\right)=3.24 \mathrm{kips} \quad \text { (end span }- \text { first interior support) }
$$

whereas at all other supports,

$$
V_{u}=\frac{w_{u} \ell_{n}}{2}=(0.513)\left(\frac{11}{2}\right)=2.82 \mathrm{kips}
$$

4. Design the slab. Assume \#4 bars for main steel with $3 / 4 \mathrm{in}$. cover: $d=5.5-0.75-1 / 2(0.5)=4.5 \mathrm{in}$.
5. Design the steel. (All moments must be considered.) For example, the negative moment in the end span at the first interior support:

$$
\begin{aligned}
& R_{n}=\frac{M_{u}}{\phi b d^{2}}=\frac{6.20(12)(1000)}{0.9(12)(4.5)^{2}}=340^{\text {ft-kips }} \quad \text { so } \rho \cong 0.006 \\
& A_{s}=\rho b d=0.006(12)(4.5)=0.325 \mathrm{in}^{2} \text { per ft. width of slab } \therefore \text { Use \#4 at } 7 \text { in. (16.5 in. max. spacing) }
\end{aligned}
$$

The minimum reinforcement required for flexure is the same as the shrinkage and temperature steel.
(Verify the moment capacity is achieved: $a 0.67 \mathrm{in}$. and $\phi M_{n}=6.38 \mathrm{ft}$-kips $>6.20 \mathrm{ft}$-kips)
For grade 60 the minimum for shrinkage and temperature steel is:

$$
A_{s-\min }=0.0018 b t=0.0018(12)(5.5)=0.12 \text { in }^{2} \text { per } \mathrm{ft} . \text { width of slab } \therefore \text { Use } \# 3 \text { at } 11 \mathrm{in} .(18 \text { in. max spacing })
$$

6. Check the shear strength.

$$
\phi V_{c}=\phi 2 \sqrt{f_{c}^{\prime}} b d=0.75(2) \sqrt{3000}(12)(4.5)=4436.6 \mathrm{lb}=4.44 \mathrm{kips}
$$

$V_{u} \leq \phi V_{c}$ Therefore the thickness is O.K.
7. Development length for the flexure reinforcement is required. (Hooks are required at the spandrel beam.) For example, \#6 bars:
$l_{d}=\frac{d_{b} F_{y}}{25 \sqrt{f_{c}^{\prime}}} \quad$ or 12 in. minimum
With grade 40 steel and 3000 psi concrete:
$l_{d}=\frac{6 / 8 \mathrm{in}(40,000 \mathrm{psi})}{25 \sqrt{3000} p s i}=21.9 \mathrm{in}$
(which is larger than 12 in .)
8. Sketch:


## Example 17

A building is supported on a grid of columns that is spaced at 30 ft on center in both the north-south and east-west directions. Hollow core planks with a 2 in. topping span 30 ft in the east-west direction and are supported on precast L and inverted T beams. Size the hollow core planks assuming a live load of $100 \mathrm{lb} / \mathrm{ft}^{2}$. Choose the shallowest plank with the least reinforcement that will span the 30 ft while supporting the live load.

## SOLUTION:

The shallowest that works is an 8 in . deep hollow core plank.
The one with the least reinforcing has a strand pattern of $68-S$, which contains 6 strands of diameter $8 / 16 \mathrm{in} .=1 / 2$ in. The $S$ indicates that the strands are straight. The plank supports a superimposed service load of $124 \mathrm{lb} / \mathrm{ft}^{2}$ at a span of 30 ft with an estimated camber at erection of 0.8 in . and an estimated long-time camber of 0.2 in .

The weight of the plank is $81 \mathrm{lb} / \mathrm{tt}^{2}$.


Figure 6.88 Allowed load on 4 ft -wide, 8 in.-deep hollow-core planks (HCPs). (Copyright Prestressed/Precast Concrete Institute ( PCl ). Reprinted with permission. All rights reserved.)

## Example 18

Example 1. A square tied column with $f_{c}^{\prime}=5 \mathrm{ksi}$ and steel with $f_{y}=60$ ksi sustains an axial compression load of 150 kips dead load and 250 kips live load with no computed bending moment. Find the minimum practical column size if reinforcing is a maximum of $4 \%$ and the maximum size if reinforcing is a minimum of $1 \%$. Also, design for $\mathrm{e}=6 \mathrm{in}$.



## Example 19

Determine the capacity of a $16 "$ x 16 " column with 8 - \#10 bars, tied. Grade 40 steel and 4000 psi concrete.

## SOLUTION:

Find $\phi \mathrm{P}_{\mathrm{n}}$, with $\phi=0.65$ and $\mathrm{P}_{\mathrm{n}}=0.80 \mathrm{P}_{0}$ for tied columns and

$$
P_{o}=0.85 f_{c}^{\prime}\left(A_{g}-A_{s t}\right)+f_{y} A_{s t}
$$



Steel area (found from reinforcing bar table for the bar size):

$$
\mathrm{A}_{\mathrm{st}}=8 \text { bars } \times\left(1.27 \mathrm{in}^{2}\right)=10.16 \mathrm{in}^{2}
$$

Concrete area (gross):

$$
\mathrm{Ag}_{\mathrm{g}}=16 \text { in } \times 16 \text { in }=256 \text { in }^{2}
$$

Grade 40 reinforcement has $\mathrm{fy}_{\mathrm{y}}=40,000$ psi and $f_{c}^{\prime}=4000 \mathrm{psi}$
$\phi \mathrm{P}_{\mathrm{n}}=(0.65)(0.80)\left[0.85(4000 \mathrm{psi})\left(256 \mathrm{in}^{2}-10.16 \mathrm{in}^{2}\right)+(40,000 \mathrm{psi})\left(10.16 \mathrm{in}^{2}\right)\right]=646,026 \mathrm{lb}=646 \mathrm{kips}$

## Example 20

$16 " \times 16 "$ precast reinforced columns support inverted T girders on corbels as shown. The unfactored loads on the corbel are 81 k dead, and 72 k live. The unfactored loads on the column are 170 k dead and 150 k live. Determine the reinforcement required using the interaction diagram provided. Assume that half the moment is resisted by the column above the corbel and the other half is resisted by the column below. Use grade 50 steel and 5000 psi concrete.



## Example 21

## EXAMPLE 5-4

Design a short square tied column to carry an axial dead load of 300 kip and a live load of 200 kip . Assume that the applied moments on the column are negligible. Use $f_{c}^{\prime}=4,000 \mathrm{psi}$ and $f_{y}=60,000 \mathrm{psi}$.

## Solution

Step 1 The factored load, $P_{u}$, is:

$$
\begin{aligned}
P_{u} & =1.2 P_{D}+1.6 P_{L} \\
P_{u} & =1.2(300)+1.6(200) \\
P_{u} & =680 \mathrm{kip}
\end{aligned}
$$

Assume $\rho_{g}=0.03$.
Step 2 The required area of the column, $A_{g}$, is:

$$
\begin{aligned}
A_{g} & =\frac{P_{u}}{0.8 \phi\left[0.85 f_{c}^{\prime}\left(1-\rho_{g}\right)+f_{y} \rho_{g}\right]} \\
A_{g} & =\frac{680}{0.80(0.65)[0.85(4)(1-0.03)+60(0.03)]} \\
A_{g} & =257 \mathrm{in}^{2}
\end{aligned}
$$

Step 3 For a square column, the size, $h$, is:

$$
\begin{aligned}
h & =\sqrt{A_{g}}=\sqrt{257} \\
\therefore h & =16.0 \mathrm{in} .
\end{aligned}
$$

Try a 16 in. $\times 16$ in. column:

$$
A_{g}=(16)(16)=256 \mathrm{in}^{2}
$$

Step 4 The required amount of steel, $A_{s t}$, is:

$$
\begin{aligned}
A_{s t} & =\frac{P_{u}-0.8 \phi\left(0.85 f_{c}^{\prime} A_{g}\right)}{0.8 \phi\left(f_{y}-0.85 f_{c}^{\prime}\right)} \\
A_{s t} & =\frac{680-0.8 \times 0.65(0.85 \times 4 \times 256)}{0.8 \times 0.65(60-0.85 \times 4)}=7.73 \mathrm{in}^{2}
\end{aligned}
$$

Step 5 Select the size and number of bars. For a square column with bars uniformly distributed along the edges, we keep the number of bars as multiples of four. Using Table A2-9, $8 \# 9$ bars $\left(A_{s}=8 \mathrm{in}^{2}\right)$ are selected.

$$
\text { From Table A5-1 } \longrightarrow \text { Maximum of } 12 \# 9 \text { bars } \quad \therefore \text { ok }
$$

Step 6 Because the longitudinal bars are \#9, select \#3 bars for the ties. The maximum spacing of the ties $\left(s_{\max }\right)$ is:

$$
\begin{aligned}
s_{\max } & =\min \left\{16 d_{b}, 48 d_{t}, b_{\min }\right\} \\
s_{\max } & =\min \{16(1.128), 48(3 / 8), 16\} \\
s_{\max } & =\min \{18.0,18.0,16.0\} \\
\therefore s_{\max } & =16 \mathrm{in} .
\end{aligned}
$$

The selected ties are \#3 @ 16 in.


## Example 22

Design a 10 ft long circular spiral column for a braced system to support the service dead and live loads of 300 k and 460 k , respectively, and the service dead and live moments of $100 \mathrm{ft}-\mathrm{k}$ each. The moment at one end is zero. Use $f_{c}^{\prime}=4,000 \mathrm{psi}$ and $f_{y}=60,000 \mathrm{psi}$.

## Solution

1. $P_{v}=1.2(300)+1.6(460)=1096 \mathrm{k}$
$M_{u}=1.2(100)+1.6(100)=280 \mathrm{ft}-\mathrm{k}$
2. Assume $\rho_{g}=0.01$, from Equation 16.10:

$$
\begin{aligned}
A_{g} & =\frac{P_{u}}{0.60\left[0.85 f_{c}^{\prime}\left(1-\rho_{g}\right)+f_{y} \rho_{g}\right]} \\
& =\frac{1096}{0.60[0.85(4)(1-0.01)+60(0.01)]} \\
& =460.58 \mathrm{in.} .^{2}
\end{aligned}
$$

$\frac{\pi h^{2}}{4}=460.58$
or $h=24.22 \mathrm{in}$.
Use $h=24 \mathrm{in} ., A_{g}=452 \mathrm{in} .^{2}$
3. Assume $\# 9$ size of bar and $3 / 8 \mathrm{in}$. spiral center-to-center distance
$=24-2$ (cover) -2 (spiral diameter) -1 (bar diameter)
$=24-2(1.5)-2(3 / 8)-1.128=19.12 \mathrm{in}$.

ACI 7.7: Concrete exposed to earth or weather:
No. 6 through No. 18 bars....... 2 in. minimum
$\gamma=\frac{19.12}{24}=0.8$

Use the interaction diagram Appendix D. 21
4. $K_{n}=\frac{P_{u}}{\phi f_{c}^{\prime} A_{g}}=\frac{1096}{(0.75)(4)(452)}=0.808$
$R_{n}=\frac{M_{u}}{\phi f_{c}^{\prime} A_{g} h}=\frac{3360}{(0.75)(4)(452)(24)}=0.103$
5. At the intersection point of $K_{n}$ and $R_{n^{\prime}} \rho_{g}=0.02$
6. The point is above the strain line $=1$, hence $\phi=0.75 \mathbf{O K}$
7. $A_{\mathrm{st}}=(0.02)(452)=9.04 \mathrm{in} .^{2}$

From Appendix D.2, select 12 bars of \#8, $A_{s t}=9.48$ in. ${ }^{\text { }}$
From Appendix D. 14 for a core diameter of $24-3=21$ in. 17 bars of \#8 can be arranged in a row
8. Selection of spirals

From Appendix D.13, size $=3 / 8 \mathrm{in}$.
pitch $=2 \frac{1}{4}$ in.
Clear distance $=2.25-3 / 8=1.875>1 \mathrm{in}$. OK
9. $K=1, I=10 \times 12=120 \mathrm{in}$., $r=0.25(24)=6 \mathrm{in}$.
$\frac{K I}{r}=\frac{1(120)}{6}=20$
$\left(\frac{M_{1}}{M_{2}}\right)=0$
ACI 10.12: In nonsway frames it shall be permitted to ignore slenderness effects for
$34-12\left(\frac{M_{1}}{M_{2}}\right)=34$ compression members that satisfy: $\frac{k l_{u}}{r} \leq 34-12\left(M_{1} / M_{2}\right)$
since $(K l / r)<34$, short column.

Factored Moment Resistance of Concrete Beams, $\phi M_{n}(\mathrm{k}-\mathrm{ft})$ with $\boldsymbol{f}^{\prime}{ }_{c}=\mathbf{4 k s i}, f_{y}=\mathbf{6 0} \mathbf{k s i}{ }^{\mathrm{a}}$

$b x d$ (in)	Approximate Values for $\mathrm{a} / \mathrm{d}$		
	0.1	0.2	0.3
	Approximate Values for $\rho$		
	0.0057	0.01133	0.017
$10 \times 14$	2 \#6	2 \#8	3 \#8
	53	90	127
$10 \times 18$	3 \#5	2 \#9	3 \#9
	72	146	207
$10 \times 22$	2 \#7	3 \#8	(3 \#10)
	113	211	321
$12 \times 16$	2 \#7	3 \#8	4 \#8
	82	154	193
$12 \times 20$	2 \#8	3 \#9	4 \#9
	135	243	306
$12 \times 24$	2 \#8	3 \#9	(4 \#10)
	162	292	466
$15 \times 20$	3 \#7	4 \#8	5 \#9
	154	256	383
$15 \times 25$	3 \#8	4 \#9	4 \#11
	253	405	597
$15 \times 30$	3 \#8	5 \#9	(5 \#11)
	304	608	895
$18 \times 24$	3 \#8	5 \#9	6 \#10
	243	486	700
$18 \times 30$	3 \#9	6 \#9	(6 \#11)
	385	729	1074
$18 \times 36$	3 \#10	6 \#10	(7 \#11)
	586	1111	1504
$20 \times 30$	3 \# 10	7 \# 9	6 \# 11
	489	851	1074
$20 \times 35$	4 \#9	5 \#11	(7 \#11)
	599	1106	1462
$20 \times 40$	6 \#8	6 \#11	(9 \#11)
	811	1516	2148
$24 \times 32$	6 \#8	7 \#10	(8 \#11)
	648	1152	1528
$24 \times 40$	6 \#9	7 \#11	(10 \#11)
	1026	1769	2387
$24 \times 48$	5 \#10	(8 \#11)	(13 \#11)
	1303	2426	3723

${ }^{a}$ Table yields values of factored moment resistance in kip-ft with reinforcement indicated. Reinforcement choices shown in parentheses require greater width of beam or use of two stack layers of bars. (Adapted and corrected from Simplified Engineering for Architects and Builders, 11 th ed, Ambrose and Tripeny, 2010.
Column interaction Diagrams



IGURE D. 17 Column interaction diagram for tied column with bars on all faces. (Courtesy of the A
'oncrete Institute, Farmington Hills, MI.)
FIGURE D. 15 Column interaction diagram for tied column with bars on end faces only. (Courtesy of the American Concrete Institute, Farmington Hills, MI.)


$R_{n}=P_{n} e / f_{c}^{\prime} A_{g} h$
FIGURE D. 19 Column interaction diagram for tied column with bars on all faces. (Courtesy of the American
Concrete Institute, Farmington Hills, MI.)


FIGURE D. 20 Column interaction diagram for circular spiral column. (Courtesy of the American Concrete
Institute, Farmington Hills, MI.)

## Beam / One-Way Slab Design Flow Chart



## Beam / One-Way Slab Design Flow Chart - continued



## APPENDIX E - STEEL REINFORCEMENT INFORMATION

As an aid to users of the ACI Building Code, information on sizes, areas, and weights of various steel reinforcement is presented.

## ASTM STANDARD REINFORCING BARS

Bar size, no.	Nominal   diameter, in.	Nominal area,   in. 2	Nominal weight,   $\mathrm{lb} / \mathrm{ft}$
3	0.375	0.11	0.376
4	0.500	0.20	0.668
5	0.625	0.31	1.043
6	0.750	0.44	1.502
7	0.875	0.60	2.044
8	1.000	0.79	2.670
9	1.128	1.00	3.400
10	1.270	1.27	4.303
11	1.410	1.56	5.313
14	1.693	2.25	7.650
18	2.257	4.00	13.600

## ASTM STANDARD PRESTRESSING TENDONS

Type*	Nominal diameter, in.	Nominal area, in. ${ }^{2}$	Nominal weight, $\mathrm{lb} / \mathrm{ft}$
Seven-wire strand (Grade 250)	1/4 (0.250)	0.036	0.122
	5/16 (0.313)	0.058	0.197
	3/8 (0.375)	0.080	0.272
	7/16 (0.438)	0.108	0.367
	$1 / 2$ (0.500)	0.144	0.490
	(0.600)	0.216	0.737
Seven-wire strand (Grade 270)	$3 / 8$ (0.375)	0.085	0.290
	7/16 (0.438)	0.115	0.390
	$1 / 2(0.500)$	0.153	0.520
	(0.600)	0.217	0.740
Prestressing wire	0.192	0.029	0.098
	0.196	0.030	0.100
	0.250	0.049	0.170
	0.276	0.060	0.200
Prestressing bars (plain)	3/4	0.44	1.50
	$7 / 8$	0.60	2.04
	1	0.78	2.67
	1-1/8	0.99	3.38
	1-1/4	1.23	4.17
	1-3/8	1.48	5.05
Prestressing bars (deformed)	5/8	0.28	0.98
	3/4	0.42	1.49
	1	0.85	3.01
	1-1/4	1.25	4.39
	1-3/8	1.58	5.56

* Availability of some tendon sizes should be investigated in advance.


## APPENDIX E

## ASTM STANDARD WIRE REINFORCEMENT

W \& D size		Nominal diameter, in.	Nominal area, in. ${ }^{2}$	$\underset{\text { weight, } \mathrm{lb} / \mathrm{ft}}{\mathrm{Nominal}}$	Area, in. ${ }^{2} / \mathrm{ft}$ of width for various spacings							
		Center-to-center spacing, in.										
Plain	Deformed				2	3	4	6	8	10	12	
W31	D31		0.628	0.310	1.054	1.86	1.24	0.93	0.62	0.465	0.372	0.31
W30	D30	0.618	0.300	1.020	1.80	1.20	0.90	0.60	0.45	0.366	0.30	
W28	D28	0.597	0.280	0.952	1.68	1.12	0.84	0.56	0.42	0.336	0.28	
W26	D26	0.575	0.260	0.934	1.56	1.04	0.78	0.52	0.39	0.312	0.26	
W24	D24	0.553	0.240	0.816	1.44	0.96	0.72	0.48	0.36	0.288	0.24	
W22	D22	0.529	0.220	0.748	1.32	0.88	0.66	0.44	0.33	0.264	0.22	
W20	D20	0.504	0.200	0.680	1.20	0.80	0.60	0.40	0.30	0.24	0.20	
W18	D18	0.478	0.180	0.612	1.08	0.72	0.54	0.36	0.27	0.216	0.18	
W16	D16	0.451	0.160	0.544	0.96	0.64	0.48	0.32	0.24	0.192	0.16	
W14	D14	0.422	0.140	0.476	0.84	0.56	0.42	0.28	0.21	0.168	0.14	
W12	D12	0.390	0.120	0.408	0.72	0.48	0.36	0.24	0.18	0.144	0.12	
W11	D11	0.374	0.110	0.374	0.66	0.44	0.33	0.22	0.165	0.132	0.11	
W10.5		0.366	0.105	0.357	0.63	0.42	0.315	0.21	0.157	0.126	0.105	
W10	D10	0.356	0.100	0.340	0.60	0.40	0.30	0.20	0.15	0.12	0.10	
W9.5		0.348	0.095	0.323	0.57	0.38	0.285	0.19	0.142	0.114	0.095	
W9	D9	0.338	0.090	0.306	0.54	0.36	0.27	0.18	0.135	0.108	0.09	
W8.5		0.329	0.085	0.289	0.51	0.34	0.255	0.17	0.127	0.102	0.085	
W8	D8	0.319	0.080	0.272	0.48	0.32	0.24	0.16	0.12	0.096	0.08	
W7.5.		0.309	0.075	0.255	0.45	0.30	0.225	0.15	0.112	0.09	0.075	
W7	D7	0.298	0.070	0.238	0.42	0.28	0.21	0.14	0.105	0.084	0.07	
W6.5		0.288	0.065	0.221	0.39	0.26	0.195	0.13	0.097	0.078	0.065	
W6	D6	0.276	0.060	0.204	0.36	0.24	0.18	0.12	0.09	0.072	0.06	
W5.5		0.264	0.055	0.187	0.33	0.22	0.165	0.11	0.082	0.066	0.055	
W5	D5	0.252	0.050	0.170	0.30	0.20	0.15	0.10	0.075	0.06	0.05	
W4.5		0.240	0.045	0.153	0.27	0.18	0.135	0.09	0.067	0.054	0.045	
W4	D4	0.225	0.040	0.136	0.24	0.16	0.12	0.08	0.06	0.048	0.04	
W3.5		0.211	0.035	0.119	0.21	0.14	0.105	0.07	0.052	0.042	0.035	
W3		0.195	0.030	0.102	0.18	0.12	0.09	0.06	0.045	0.036	0.03	
W2.9		0.192	0.029	0.098	0.174	0.116	0.087	0.058	0.043	0.035	0.029	
W2.5		0.178	0.025	0.085	0.15	0.10	0.075	0.05	0.037	0.03	0.025	
W2		0.159	0.020	0.068	0.12	0.08	0.06	0.04	0.03	0.024	0.02	
W1.4		0.135	0.014	0.049	0.084	0.056	0.042	0.028	0.021	0.017	0.014	

ACI 318 Building Code and Commentary

## STEEL REINFORCEMENT INFORMATION

Table 3.7.1
Total Areas for Various Numbers of Reinforcing Bars

	Nominal Diameter (in.)	Weight   (lb/ft)	Number of Bars									
Size			1	2	3	4	5	6	7	8	9	10
\#3	0.375	0.376	0.11	0.22	0.33	0.44	0.55	0.66	0.77	0.88	0.99	1.10
\#4	0.500	0.668	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00
\#5	0.625	1.043	0.31	0.62	0.93	1.24	1.55	1.86	2.17	2.48	2.79	3.10
\#6	0.750	1.502	0.44	0.88	1.32	1.76	2.20	2.64	3.08	3.52	3.96	4.40
\#7	0.875	2.044	0.60	1.20	1.80	2.40	3.00	3.60	4.20	4.80	5.40	6.00
\#8	1.000	2.670	0.79	1.58	2.37	3.16	3.95	4.74	5.53	6.32	7.11	7.90
\#9	1.128	3.400	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
+10	1.270	4.303	1.27	2.54	3.81	5.08	6.35	7.62	8.89	10.16	11.43	12.70
\#11	1.410	5.313	1.56	3.12	4.68	6.24	7.80	9.36	10.92	12.48	14.04	15.60
$\pm 14^{a}$	1.693	7.65	2.25	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50
+18 ${ }^{\text {a }}$	2.257	13.60	4.00	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00

" 14 and \#18 bars are used primarily as column reinforcement and are rarely used in beams.

Table 3-7 Areas of Bars per Foot Width of Slab-A $\mathrm{A}_{\mathrm{s}}$ (in. ${ }^{2} / \mathrm{ft}$ )

$\begin{aligned} & \hline \text { Bar } \\ & \text { size } \\ & \hline \end{aligned}$	Bar spacing (in.)												
	6	7	8	9	10	11	12	13	14	15	16	17	18
\#3	0.22	0.19	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09	0.08	0.08	0.07
\#4	0.40	0.34	0.30	0.27	0.24	0.22	0.20	0.18	0.17	0.16	0.15	0.14	0.13
\#5	0.62	0.53	0.46	0.41	0.37	0.34	0.31	0.29	0.27	0.25	0.23	0.22	0.21
\#6	0.88	0.75	0.66	0.59	0.53	0.48	0.44	0.41	0.38	0.35	0.33	0.31	0.29
\#7	1.20	1.03	0.90	0.80	0.72	0.65	0.60	0.55	0.51	0.48	0.45	0.42	0.40
\#8	1.58	1.35	1.18	1.05	0.95	0.86	0.79	0.73	0.68	0.63	0.59	0.56	0.53
\#9	2.00	1.71	1.50	1.33	1.20	1.09	1.00	0.92	0.86	0.80	0.75	0.71	0.67
\#10	2.54	2.18	1.91	1.69	1.52	1.39	1.27	1.17	1.09	1.02	0.95	0.90	0.85
\#11	3.12	2.67	2.34	2.08	1.87	1.70	1.56	1.44	1.34	1.25	1.17	1.10	1.04

Table 3-4 Maximum Bar Spacing in One-Way Slabs for Crack Control (in.)*

Bar   Size	Exterior Exposure   $(z=129$ kips/in. $)$				Interior Exposure   $(z=156$ kips/in.)			
	$3 / 4$	1	$1-1 / 2$	2	$3 / 4$	1	$1-1 / 2$	2
	Cover (in.)	Cover (in.)						
$\# 4$	--	14.7	7.5	4.5	--	--	13.3	8.0
$\# 5$	--	13.4	7.0	4.3	--	--	12.4	7.6
$\# 6$	--	12.2	6.5	4.1	--	--	11.6	7.2
$\# 7$	16.3	11.1	6.1	3.9	--	--	10.8	6.8
$\# 8$	14.7	10.2	5.8	3.7	--	--	10.2	6.5
$\# 9$	13.3	9.4	5.4	3.5	--	16.6	9.6	6.2
$\# 10$	12.0	8.6	5.0	3.3	--	15.2	8.9	5.9
$\# 11$	10.9	7.9	4.7	3.1	--	14.0	8.4	5.6

*Valid for $f_{s}=0.6 f_{y}=36 \mathrm{ksi}$, and single layer of reinforcement. Spacing should not exceed 3 times slab thickness nor 18 in. (ACl 7.6.5). No value indicates spacing greater than 18 in.

Table 3-3 Maximum Number of Bars in a Single Layer

$\begin{gathered} \text { Bar } \\ \text { Size } \end{gathered}$	Maximum size coarse aggregate-3/4 in.										
	Beam width, $\mathrm{b}_{\mathrm{w}}$ (in.)										
	10	12	14	16	18	20	22	24	26	28	30
\#5	3	5	6	7	8	10	11	12	13	15	16
\#6	3	4	6	7	8	9	10	11	12	14	15
\#7	3	4	5	6	7	8	9	10	11	12	13
\#8	3	4	5	6	7	8	9	10	11	12	13
\#9	2	3	4	5	6	7	8	8	9	10	11
\#10	2	3	4	4	5	6	7	8	8	9	10
\#11	2	3	3	4	5	5	6	7	8	8	9


$\begin{gathered} \text { Bar } \\ \text { Size } \\ \hline \end{gathered}$	Maximum size coarse aggregate-1 in.										
	Beam width, $\mathrm{b}_{\mathrm{w}}$ (in.)										
	10	12	14	16	18	20	22	24	26	28	30
\#5	3	4	5	6	7	8	9	10	11	12	13
\#6	3	4	5	6	7	8	9	10	10	11	12
\#7	2	3	4	5	6	7	8	9	10	10	11
\#8	2	3	4	5	6	7	7	8	9	10	11
\#9	2	3	4	5	5	6	7	8	9	9	10
\#10	2	3	4	4	5	6	7	7	8	9	10
\#11	2	3	3	4	5	5	6	7	8	8	9



Figure 3-2 Cover and Spacing Requirements for Tables 3-2 and 3-3
Table 3-2 Minimum Number of Bars in a Single Layer (ACI 10.6)*

$\begin{aligned} & \text { Bar } \\ & \text { Size } \end{aligned}$	INTERIOR EXPOSURE ( $\mathrm{z}=175 \mathrm{kips} / \mathrm{in}$.)										
	Beam width, $\mathrm{b}_{\mathrm{w}}$ (in.)										
	10	12	14	16	18	20	22	24	26	28	30
\#5	1	2	2	2	2	2	3	3	3	3	3
\#6	1	2	2	2	2	2	3	3	3	3	3
\#7	2	2	2	2	2	3	3	3	3	3	4
\#8	2	2	2	2	2	3	3	3	3	4	4
\#9	2	2	2	2	3	3	3	3	3	4	4
\#10	2	2	2	2	3	3	3	3	4	4	4
\#11	2	2	2	3	3	3	3	4	4	4	4

## Torsion

## Notation:



## Deformation in Torsionally Loaded Members

Axi-symmetric cross sections subjected to axial moment or torque will remain plane and undistorted.

At a section, internal torque (resisiting applied torque) is made up of shear forces parallel to the area and in the direction of the torque. The distribution of the shearing stresses depends on the angle of twist, $\phi$. The cross section remains plane and undistored.

## Shearing Strain




Shearing strain is the angle change of a straight line segment along the axis.

$$
\gamma=\frac{\rho \phi}{L}
$$

where
$\rho$ is the radial distance from the centroid to the point under strain.
The maximum strain is at the surface, a distance c from the centroid: $\quad \gamma_{\max }=\frac{c \phi}{L}$

G is the Shear Modulus or Modulus of Rigidity: $\quad \tau=G \cdot \gamma$

## Shearing Strain and Stress

In the linear elastic range: the torque is the summation of torsion stresses over the area:

$$
T=\frac{\tau J}{\rho} \quad \text { gives: } \quad \tau=\frac{T \rho}{J}
$$

Maximum torsional stress, $\tau_{\text {max }}$, occurs at the outer diameter (or perimeter).

## Polar Moment of Inertia

For axi-symmetric shapes, there is only one value for polar moment of inertia, J , determined by the radius, c :
solid section: $J=\frac{\pi c^{4}}{2} \quad$ hollow section: $\quad J=\frac{\pi\left(c_{o}{ }^{4}-c_{i}{ }^{4}\right)}{2}$


## Combined Torsion and Axial Loading

Just as with combined axial load and shear, combined torsion and axial loading result in maximum shear stress at a $45^{\circ}$ oblique "plane" of twist.


## Shearing Strain

In the linear elastic range: $\quad \phi=\frac{T L}{J G} \quad$ and for composite shafts: $\quad \phi=\sum_{i} \frac{T_{i} L_{i}}{J_{i} G_{i}}$

## Torsion in Noncircular Shapes

J is no longer the same along the lateral axes. Plane sections do not remain plane, but distort. $\tau_{\max }$ is still at the furthest distance away from the centroid. For rectangular shapes:

$$
\tau_{\max }=\frac{T}{c_{1} a b^{2}} \quad \phi=\frac{T L}{c_{2} a b^{3} G}
$$

For $\mathrm{a} / \mathrm{b}>5$ :

$$
c_{1}=c_{2}=\frac{1}{3}(1-0.630 b / a)
$$

TABLE 3.1. Coefficients for
Rectangular Bars in Torsion

$\boldsymbol{a} / \boldsymbol{b}$	$\boldsymbol{c}_{1}$	$\boldsymbol{c}_{2}$
1.0	0.208	0.1406
1.2	0.219	0.1661
1.5	0.231	0.1958
2.0	0.246	0.229
2.5	0.258	0.249
3.0	0.267	0.263
4.0	0.282	0.281
5.0	0.291	0.291
10.0	0.312	0.312
$\infty$	0.333	0.333



## Open Sections

For long narrow shapes where $a / b$ is very large $(\mathrm{a} / \mathrm{b} \rightarrow \infty) \mathrm{c}_{1}=\mathrm{c}_{2}=1 / 3$ and:

$$
\tau_{\max }=\frac{T}{1 / 3 a b^{2}} \quad \phi=\frac{T L}{1 / 3 a b^{3} G}
$$



## Shear Flow of Closed Thin Walled Sections

q is the internal shearing force per unit length, and is constant on a cross section even though the thickness of the wall may very. $\boldsymbol{A}$ is the area bounded by the centerline of the wall section; $s_{i}$, is a length segment of the wall and $t_{i}$ is the corresponding thickness of the length segment.

$$
\begin{aligned}
& \tau=\frac{T}{2 t \mathscr{Q}} \\
& \phi=\frac{T L}{4 t Q^{2}} \sum_{i} \frac{s_{i}}{t_{i}}
\end{aligned}
$$

The shear flow must wrap around at all edges, and the total torque is distributed among the areas making up the cross section in proportion to the torsional rigidity of each rectangle $\left(\mathrm{ab}^{2} / 3\right)$. The total angle of twist is the sum of the $\phi$ values from each rectangle. $t_{i}$ is the thickness of each rectangle and $b_{i}$ is the length of each rectangle.

$$
\tau_{\max }=\frac{T t_{\max }}{1 / 3 \Sigma b_{i} t_{i}^{3}} \quad \phi=\frac{T L}{1 / 3 G \Sigma b_{i} t_{i}^{3}}
$$



## Example 1

## Example 8.9.1

Compare the torsional resisting moment $T$ and the torsional constant $J$ for the sections of Fig. 8.9.4 all having about the same cross-sectional area. The maximum shear stress $\tau$ is 14 ksi .

## SOLUTION

(a) Circular thin-wall section.

$10^{\prime \prime}$ diam. pipe
$A=16.1 \mathrm{sq}$ in.

$12 \times 6$ structural
tubing
$A=15.9 \mathrm{sq} \mathrm{in}$.

$$
\begin{aligned}
& T=\frac{\tau J}{\rho}=\frac{(14 \mathrm{ksi})\left(393.7 \mathrm{in}^{4}\right)}{5.25 \mathrm{in}} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in}}=87.5 \mathrm{k}-f t \\
& J=\frac{\pi\left(c_{o}^{4}-c_{i}^{4}\right)}{2}=\frac{\pi\left((5.25 \mathrm{in})^{4}-(4.75 \mathrm{in})^{4}\right)}{2}=393.7 \mathrm{in}^{4}
\end{aligned}
$$

(b) Rectangular box section. $\quad \tau=\frac{T}{2 t \emptyset}$

$$
\begin{aligned}
& T=\tau 2 t Q=(14 k s i) 2(0.5 \mathrm{in})\left(72 \mathrm{in}^{2}\right) \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in}}=84 k-f t \\
& A \cdot \approx(12 \mathrm{in})(6 \mathrm{in})=72 \mathrm{in}^{2}
\end{aligned}
$$

(c) Channel section. Since for this open section,

$$
\tau_{\max }=\frac{T t_{\max }}{\frac{1}{3} \sum b_{i} t_{i}^{3}}=\frac{T t}{J} \quad T=\frac{\tau J}{t_{\max }} \frac{(14 k s i)\left(4.08 \mathrm{in}^{4}\right)}{1 \mathrm{in}} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in}}=4.8 \mathrm{k}-\mathrm{ft}
$$

the maximum shear stress will be in the flange. Also,

$$
J=\sum \frac{b t^{3}}{3} \quad J=\frac{1}{3}\left[10 \operatorname{in}(0.5 \mathrm{in})^{3}+(5.5 \mathrm{in})(1 \mathrm{in})^{3}+(5.5 \mathrm{in})(1 \mathrm{in})^{3}\right]=4.08 \mathrm{in}^{4}
$$

One-Way Frame Analysis
Simplified Design, $3^{\text {rd }}$ ed., PCA 2004

## Notation:

$D$	$=$ shorthand for dead load
$l_{n}$	$=$ clear span from face of support to
	face of support in concrete design

$$
\left.\begin{array}{rl}
w_{d}= & \text { load per unit length on a beam from } \\
& \text { dead load }
\end{array}\right)
$$

### 2.3 FRAME ANALYSIS BY COEFFICIENTS

The ACI Code provides a simplified method of analysis for both one-way construction (ACI 8.3.3) and twoway construction (ACI 13.6). Both simplified methods yield moments and shears based on coefficients. Each method will give satisfactory results within the span and loading limitations stated in Chapter 1. The direct design method for two-way slabs is discussed in Chapter 4.

### 2.3.1 Continuous Beams and One-Way Slabs

When beams and one-way slabs are part of a frame or continuous construction, ACI 8.3.3 provides approximate moment and shear coefficients for gravity load analysis. The approximate coefficients may be used as long as all of the conditions illustrated in Fig. 2-2 are satisfied: (1) There must be two or more spans, approximately equal in length, with the longer of two adjacent spans not exceeding the shorter by more than 20 percent; (2) loads must be uniformly distributed, with the service live load not more than 3 times the dead load (LD $\leq 3$ ): and (3) members must have uniform cross section throughout the span. Also, no redistribution of moments is permitted (ACI 8.4). The moment coefficients defined in ACI 8.3.3 are shown in Figs. 2-3 through 2-6. In all cases, the shear in end span members at the interior support is taken equal to $1.15 \mathrm{w}_{\mathrm{u}} \mathrm{l}_{\mathrm{n}} / 2$. The shear at all other supports is $w_{u} / 2$ (see Fig. 2-7). $w_{u} \ell_{\mathrm{n}}$ is the combined factored load for dead and live loads, $w_{u}=1.2 w_{d}+1.6 w_{f}$. For beams, $w_{u}$ is the uniformly distributed load per unit length of beam (plf), and the coefficients yield total moments and shears on the beam. For one-way slabs, $w_{u}$ is the uniformly distributed load per unit area of slab (psf), and the moments and shears are for slab strips one foot in width. The span length $\ell_{n}$ is defined as the clear span of the beam or slab. For negative moment at a support with unequal adjacent spans, $f_{n}$ is the average of the adjacent clear spans. Support moments and shears are at the faces of supports.


Figure 2-2 Conditions for Analysis by Coefficients (ACl 8.3.3)


Figure 2-3 Positive Moments-All Cases


Figure 2-4 Negative Moments-Beams and Slabs


Figure 2-5 Negative Moments-Slabs with spans $\leq 10 f t$


Figure 2-6 Negative Moments-Beams with Stiff Columns $\left(\Sigma K_{d} / \Sigma K_{b}>8\right)$


Figure 2-7 End Shears-All Cases

## Thickness and Cover Requirements for Fire Protection Simplified Design, PCA 1993

Table 10-1 Minimum Thickness for Floor and Roof Slabs and Cast-In-Place Walls, in. (Load Bearing and Nonload-Bearing)

	Fire resistance rating				
Concrete type	1 hr.	$1^{1 / 2} \mathrm{hr}$.	2 hr.	3 hr.	4 hr.
Siliceous aggregate	3.5	4.3	5.0	6.2	7.0
Carbonate aggregate	3.2	4.0	4.6	5.7	6.6
Sand-lightweight	2.7	3.3	3.8	4.6	5.4
Lightweight	2.5	3.1	3.6	4.4	5.1

Table 10-2 Minimum Concrete Column Dimensions, in.

	Fire resistance rating					
Concrete type	1 hr.	$1 / 2 \mathrm{hr}$.	2 hr.	3 hr.	4 hr.	
Siliceous aggregate	8	8	10	12	14	
Carbonate aggregate	8	8	10	12	12	
Sand-lightweight	8	8	9	10.5	12	

Table 10-3 Minimum Cover for Reinforced Concrete Floor or Roof Slabs, in.

	Restrained Slabs*				Unrestrained Slabs* *			
	Fire resistance rating				Fire resistance rating			
Concrete type	1 hr.	$1 / 2 \mathrm{hr}$.	2 hr.	3 hr.	1 hr.	$1 / 2 \mathrm{hr}$.	2 hr.	3 hr .
Siliceous aggregate	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	1	$11 / 4$
Carbonate aggregate	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$1 / 4$
Sand-lightweight	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$1 \frac{1 / 4}{4}$

*See Table 10-5

Table 10-4 Minimum Cover to Main Reinforcing Bars in Reinforced Concrete Beams, in. (Applicable to All Types of Structural Concrete)

		Fire resistance rating					
Restrained or   unrestrained*	Beam width,   in.**	1 hr.	$1^{1 / 2} \mathbf{h r}$.	2 hr.	3 hr.	4 hr.	
Restrained	5	$3 / 4$	$3 / 4$	$3 / 4$	1	$1^{1 / 4}$	
Restrained	7	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	
Restrained	$\geq 10$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	
Unrestrained	5	$3 / 4$	1	$1 / 4$	-	-	
Unrestrained	7	$3 / 4$	$3 / 4$	$3 / 4$	$1^{3 / 4}$	3	
Unrestrained	$\geq 10$	$3 / 4$	$3 / 4$	$3 / 4$	1	$1^{3 / 4}$	

- See Table 10-5
**For beam widths between the tabulated values, the minimum cover can be determined by interpolation.
Table 10-6 Minimum Cover for Reinforced Concrete Columns, in.

	Fire resistance rating				
Concrete type	1 hr.	$1^{1 / 2} \mathrm{hr}$.	2 hr.	3 hr.	4 hr.
Siliceous aggregate	$1^{1 / 2}$	$1^{1 / 2}$	$1^{1 / 2}$	$1^{1 / 2}$	2
Carbonate aggregate	$1^{1 / 2}$	$1 \frac{1}{2}$	$1^{1 / 2}$	$1^{1 / 2}$	$1^{1 / 2} 2$
Sand-lightweight	$1^{1 / 2}$	$1^{1 / 2}$	$1^{1 / 2}$	$1^{1 / 2}$	$1^{1 / 2} 2$

# Openings in Concrete Slab Systems 

from Notes on ACI 318-99, Portland Cement Association, 1999

### 11.12.5 Openings in Slabs

The effect of openings (vertical holes through slabs) on the shear strength of slabs must be investigated when the openings are within the column strip areas of slabs or within middle strip areas when the openings are closer than 10 times the slab thickness ( 10 h ) from a column. A reduction in shear strength is made by considering as ineffective that portion of the critical section $b_{o}$ which is enclosed by straight lines projecting from the column centroid to the edges of the opening. Ineffective portions of critical sections $b_{o}$ are illustrated in Fig. 18-10. For slabs with shear reinforcement, the ineffective portion of the perimeter $b_{o}$ is one-half of that without shear reinforcement. The one-half factor is interpreted to apply equally to shearhead reinforcement and bar or wire reinforcement.


Figure 18-10 Effect of Slab Openings on Shear Strength

### 13.4 OPENINGS IN SLAB SYSTEMS

Openings of any size are permitted in slab systems without beams if special analysis indicates that both strength and serviceability of the slab system, considering the effects of the opening, are satisfied. Without special analysis, openings up to a certain size are permitted as illustrated in Fig. 18-11. The size of openings located within intersecting middle strip areas is unlimited. Within the area of the slab common to intersecting column
strips, size of openings is the most restrictive, due to their effect on slab shear strength or load transfer near slabcolumn connections. See discussion on effect of slab openings on shear strength (11.12.5) and Fig. 18-10. Without special analysis, size of openings within intersecting column strips is limited to one-sixteenth of the slab span length in either direction $(1 / 8(\ell / 2)=\ell / 16)$. Within the slab area common to one column and one middle strip, opening size is limited to one-eighth the span length in either direction $(1 / 4(\ell / 2)=\ell / 8)$.

The total amount of reinforcement required for the panel without openings, in both directions, must be maintained; reinforcement interrupted by any opening must be replaced, one-half on each side of the opening.


Figure 18-11 Openings in Slab Systems without Beams

## Foundation Design

Notation:	
$a \quad=$ name for width dimension	$p$ = pressure
$A \quad=$ name for area	$p_{A}=$ active soil pressure
$\begin{aligned} b & =\text { width of retaining wall stem at base } \\ & =\text { width resisting shear stress } \end{aligned}$	$\begin{aligned} P & =\text { name for axial force vector } \\ & =\text { force due to a pressure } \end{aligned}$
$b_{o} \quad=$ perimeter length for two-way shear in concrete footing design	$\begin{aligned} & P_{D} \quad=\text { dead load axial force } \\ & P_{L}=\text { live load axial force } \end{aligned}$
$B \quad=$ spread footing or retaining wall base dimension in concrete design	$\begin{array}{ll} P_{u} & =\text { factored axial force } \\ q & =\text { soil bearing pressure } \end{array}$
$c c \quad=$ shorthand for clear cover   $d=$ effective depth from the top of a    reinforced concrete member to the    centroid of the tensile steel   $=$ name for diameter	```\(q_{a}=\) allowable soil bearing stress in allowable stress design, as is \(q_{\text {allowable }}\) \(q_{g} \quad=\) gross soil bearing pressure \(q_{\text {net }}=\) net allowed soil bearing pressure, as is \(q_{n}\)```
$e \quad=$ eccentric distance of application of a force ( P ) from the centroid of a cross section	$q_{u} \quad=$ ultimate soil bearing strength in allowable stress design   $=$ factored soil bearing capacity in
$=$ symbol for stress	concrete footing design from load
$f_{c}^{\prime}=$ concrete design compressive stress	factors, as is $q_{n u}$
$F_{\text {horizontal-resisting }}=$ total force resisting horizontal sliding	$\begin{array}{ll} R & =\text { name for reaction force vector } \\ S F & =\text { shorthand for factor of safety } \end{array}$
$F_{\text {sliding }}=$ total sliding force	$=$ thickness of retaining wall stem at
$F_{x}=$ force in the x direction	top
F.S. = shorthand for factor of safety	$T$ = name of a tension force
$h_{f} \quad=$ height of a concrete spread footing	$V \quad=$ name for volume
$H$ = height of retaining wall	$V_{c} \quad=$ shear force capacity in concrete
$H_{A}=$ horizontal force due to active soil pressure	$\begin{aligned} V_{u}= & \text { factored shear for reinforced } \\ & \text { concrete design } \end{aligned}$
$l_{d} \quad=$ development length for reinforcing steel	$\begin{array}{ll} w & =\text { name for width } \\ w_{u} & =\text { load per unit length on a beam from } \end{array}$
$L \quad=$ name for length or span length	load factors
$M \quad=$ moment due to a force	$W$ = name for force due to weight
$M_{n} \quad=$ nominal flexure strength with the steel reinforcement at the yield stress and concrete at the concrete design strength for reinforced concrete beam design	$x=$ horizontal distance   $\bar{y}=$ the distance in the y direction from a    reference axis to the centroid of a    shape   $\phi \quad=$ resistance factor
$M_{\text {overturring }}=$ total overturning moment	= density or unit weight of con
$\begin{gathered} M_{\text {resisting }}=\text { total moment resisting overturning } \\ \text { about a point } \end{gathered}$	$\gamma_{s}=$ density or unit weight of soil
$\begin{aligned} M_{u}= & \text { maximum moment from factored } \\ & \text { loads for LRFD beam design } \end{aligned}$	$\begin{aligned} \pi & =\text { pi }\left(3.1415 \text { radians or } 180^{\circ}\right) \\ \rho & =\text { reinforcement ratio in concrete } \end{aligned}$
$n \quad=$ name for number	beam design $=\mathrm{A}_{8} / \mathrm{bd}$
$\begin{array}{ll} N \quad= & \text { name for normal force to a surface } \\ o \quad= & \text { point of overturning of a retaining } \\ & \text { wall, commonly at the "toe" } \end{array}$	$\mu \quad=$ coefficient of static friction

## Foundations

A foundation is defined as the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock. The design differs from structural design in that the choices in material and framing system are not available, and quality of materials cannot be assured. Foundation design is dependent on geology and climate of the site.

## Soil Mechanics

Soil is another building material and the properties, just like the ones necessary for steel and concrete and wood, must be known before designing. In addition, soil has other properties due to massing of the material, how soil particles pack or slide against each other, and how water affects the behavior. The important properties are

- specific weight (density)
- allowable soil pressure
- factored net soil pressure - allowable soil pressure less surcharge with a factor of safety
- shear resistance
- backfill pressure
- cohesion \& friction of soil
- effect of water
- settlement
- rock fracture behavior


## Structural Strength and Serviceability

There are significant serviceability considerations with soil. Soils can settle considerably under foundation loads, which can lead to redistribution of moments in continuous slabs or beams, increases in

punched wedge stresses and cracking. Excessive loads can cause the soil to fail in bearing and in shear. The presence of water can cause soils to swell or shrink and freeze and thaw, which causes heaving. Fissures or fault lines can cause seismic instabilities.

A geotechnical engineer or engineering service can use tests on soil bearings from the site to determine the ultimate bearing capacity, $\mathrm{q}_{\mathrm{u}}$. Allowable stress design is utilized for soils because of the variability do determine the allowable bearing capacity, $\mathrm{q}_{\mathrm{a}}=\mathrm{q}_{\mathrm{u}} /($ safety factor $)$.

Values of $\mathrm{q}_{\mathrm{a}}$ range from 3000-4000 psi for most soils, while clay type soils have lower capacities and sandy soils to rock have much higher capacities.

Soil acts somewhat like water, in that it exerts a lateral pressure because of the weight of the material above it, but the relationship is not linear. Soil can have an active pressure from soil behind a retaining wall and a passive pressure from soil in front of the footing. Active pressure is typically greater than passive pressure.

## Foundation Materials



Typical foundation materials include:

- plain concrete
- reinforced concrete
- steel
- wood
- composites, ie. steel tubing filled with concrete


## Foundation Design

Table 7-1 Average Bearing Capacities of Various Foundation Beds

Soil	Bearing Capacity, qa   (kst)
Alluvial soil	$\leq 1$
Soft clay	2
Firm clay	4
Wet sand	4
Sand and clay mixed	4
Fine dry sand (compact)	6
Hard clay	8
Coarse dry sand (compact)	8
Sand and gravel mixed (compact)	10
Gravel (compact)	12
Soft rock	16
Hard pan or hard shale	20
Medium rock	30
Hard rock	80

## Generalized Design Steps

Design of foundations with variable conditions and variable types of foundation structures will be different, but there are steps that are typical to every design, including:

1. Calculate loads from structure, surcharge, active \& passive pressures, etc.
2. Characterize soil - hire a firm to conduct soil tests and produce a report that includes soil material properties
3. Determine footing location and depth - shallow footings are less expensive, but the variability of the soil from the geotechnical report will drive choices
4. Evaluate soil bearing capacity - the factor of safety is considered here
5. Determine footing size - these calculations are based on working loads and the allowable soil pressure
6. Calculate contact pressure and check stability
7. Estimate settlements
8. Design the footing structure - design for the material based on applicable structural design codes which may use allowable stress design, LRFD or limit state design (concrete).

## Shallow Foundation Types

Considered simple and cost effective because little soil is removed or disturbed.

Spread footing - A single column bears on a square or rectangular pad to distribute the load over a bigger area.
Wall footing - A continuous wall bears on a wide pad to distribute the load.

Eccentric footing - A spread or wall footing that also must resist a moment in addition to the axial column load.

Combined footing - Multiple columns (typically two) bear on a rectangular or trapezoidal shaped footing.

Unsymmetrical footing - A footing with a shape that does not
 evenly distribute bearing pressure from column loads and moments. It typically involves a hole or a non-rectangular shape influenced by a boundary or property line.
Strap footing - A combined footing consisting of two spread footings with a beam or strap connecting the slabs. The purpose of this is to limit differential settlements.

Mat foundation - A slab that supports multiple columns. The mat can be stiffened with a grid or grade beams. It is typically used when the soil capacity is very low.

## Deep Foundation Types

Considerable material and excavation is required, increasing cost and effort.
Retaining Walls - A wall that retains soil or other materials, and must resist sliding and overturning. Can have counterforts, buttresses or keys.

Basement Walls - A wall that encloses a basement space, typically next to a floor slab, and that may be restrained at the top by a floor slab.
Piles - Next choice when spread footings or mats won't work, piles are used to distribute loads by end bearing to strong soil or friction to low strength soils. Can be used to resist uplift, a moment causing overturning, or to compact soils. Also useful when used in combination to control settlements of mats or slabs.

Drilled Piers - Soil is removed to the shape of the pier and concrete is added.

Caissons -Water and possibly wet soil is held back or excavated while the footing is constructed or dropped into place.


Pile Types

## Loads and Stresses

Bearing loads must be distributed to the soil materials, but because of their variability and the stiffness of the footing pad, the resulting stress, or soil pressure, is not necessarily uniform. But we assume it is for design because dealing with the complexity isn't worth the time or effort.

The increase in weight when replacing soil with concrete is called the overburden. Overburden may also be the result of adding additional soil to the top of the excavation for a retaining wall. It is extra uniformly distributed load that is considered by reducing the allowable soil pressure (instead of increasing the loads), resulting in a net allowable soil pressure, $\mathrm{q}_{\mathrm{net}}$ :

$$
q_{\text {net }}=q_{\text {allowable }}-h_{f}\left(\gamma_{c}-\gamma_{s}\right)
$$

In order to design the footing size, the actual stress P/A must be less than or equal to the allowable pressure:

$$
\frac{P}{A} \leq q_{n e t}
$$



RIGID footing on sand


RIGID footing on clay


## Design Stresses

The result of a uniform pressure on the underside of a footing is identical to a distributed load on a slab over a column when looked at upside down. The footing slab must resist bending, one-way shear and two-way shear (punching).

one-way shear

two-way shear

## Stresses with Eccentric Loading

Combined axial and bending stresses increase the pressure on one edge or corner of a footing. We assume again a linear distribution based on a constant relationship to settling. If the pressure combination is in tension, this effectively means the contact is gone between soil and footing and the pressure is really zero. To avoid zero pressure, the eccentricity must stay within the kern. The maximum pressure must not exceed the net allowable soil pressure.

If the contact is gone, the maximum pressure can be determined knowing that the volume of the pressure wedge has to equal the column load, and the centroid of the pressure wedge coincides with the effective eccentricity.

Wedge volume is $V=\frac{w p x}{2}$ where $w$ is the width, $p$ is the soil pressure, and $x$ is the wedge length (3a), so $p=\frac{2 P}{w x} \operatorname{or} \frac{2 N}{w x}$ (and $e=\frac{M}{P} \operatorname{or} \frac{M}{N}$ and $a=1 / 2$ width $-e$ )


Overturning is considered in design such that the resisting moment from the soil pressure (equivalent force at load centroid) is greater than the overturning moment, M, by a factor of safety of at least 1.5

$$
S F=\frac{M_{\text {resist }}}{M_{\text {overtuming }}} \geq 1.5
$$

where

$$
\begin{aligned}
& \mathrm{M}_{\text {resist }}=\text { average resultant soil pressure } \times \text { width } \times \text { location of load centroid with respect to } \\
& \quad \text { column centroid } \\
& \mathrm{M}_{\text {overturning }}=\mathrm{P} \times \mathrm{e}
\end{aligned}
$$

## Combined Footings

The design of combined footing requires that the centroid of the area be as close as possible to the resultant of the two column loads for uniform pressure and settling.

## Retaining Walls

The design of retaining walls must consider overturning, settlement, sliding and bearing pressure. The water in the retained
 soil can significantly affect the loading and the active pressure of the soil. The lateral force acting at a height of $\mathrm{H} / 3$ is determined from the active pressure, $p_{A}$, (in force/cubic area) as:

$$
H_{A}=\frac{p_{A} H^{2}}{2}
$$

Overturning is considered the same as for eccentric footings:

$$
S F=\frac{M_{\text {resist }}}{M_{\text {overtuming }}} \geq 1.5-2
$$

where
$\mathrm{M}_{\mathrm{resist}}=$ summation of moments about " o " to resist rotation, typically including the moment due to the weight of the stem and base and the moment due to the passive pressure.
$\mathrm{M}_{\text {overturning }}=$ moment due to the active pressure about " o ".
Sliding must also be avoided:

$$
S F=\frac{F_{\text {horizontatresist }}}{F_{\text {sliding }}} \geq 1.25-2
$$


where:
$F_{\text {horizontal-resist }}=$ summation of forces to resist sliding, typically including the force from the passive pressure and friction $(\mathrm{F}=\mu \cdot \mathrm{N}$ where $\mu$ is a constant for the materials in contact and N is the normal force to the ground acting down and shown as R ).
$\mathrm{F}_{\text {sliding }}=$ sliding force as a result of active pressure.

For sizing, some rules of thumbs are:

- footing size, B
- reinforced concrete, $B \approx 2 / 5-2 / 3$ wall height $(H)$
- footing thickness, $h_{f} \approx 1 / 12-1 / 8$ footing size (B)
- base of stem, $\mathrm{b} \approx 1 / 10-1 / 12$ wall height $\left(\mathrm{H}+\mathrm{h}_{\mathrm{f}}\right)$

- top of stem, $\mathrm{t} \geq 12$ inches


## Example 1

Example 2. Design a square column footing for the following data: Soil density $=100 \mathrm{lb} / \mathrm{ft}^{3}$, Concrete density $=150 \mathrm{lb} / \mathrm{ft}^{3}$
Column load $=200 \mathrm{kips}[890 \mathrm{kN}$ ] dead load and $300 \mathrm{kips}[1334 \mathrm{kN}$ live load
Column size $=15 \mathrm{in}$. $[380 \mathrm{~mm}]$ square
Maximum allowable soil pressure $=4000 \mathrm{psf}[200 \mathrm{kPa}]$
Concrete design strength $=3000 \mathrm{psi}[21 \mathrm{MPa}$ ]
Yield stress of steel reinforcement $=40 \mathrm{ksi}[280 \mathrm{MPa}]$



## Example 2

For the 16 in . thick 8.5 ft . square reinforced concrete footing carrying 150 kips dead load and 100 kips live load on a 24 in . square column, determine if the footing thickness is adequate for 4000 psi . A 3 in . cover is required with concrete in contact with soil.
Also determine the moment for reinforced concrete design.

## SOLUTION:

1. Find design soil pressure: $q_{u}=\frac{P_{u}}{A}$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{u}}=1.2 \mathrm{D}+1.6 \mathrm{~L}=1.2(150 \mathrm{k})+1.6(100 \mathrm{k})=340 \mathrm{k} \\
& q_{u}=\frac{340 \mathrm{k}}{(8.5 \mathrm{ft})^{2}}=4.71 \mathrm{k} / \mathrm{ft}^{2}
\end{aligned}
$$

2. Evaluate one-way shear at $d$ away from column face (Is $\mathrm{V}_{u}<\phi \mathrm{V}_{\mathrm{c}}$ ?)

$$
d=h_{f}-\text { c.c. }- \text { distance to bar intersection }
$$


presuming \#8 bars:
$\mathrm{d}=16 \mathrm{in} .-3 \mathrm{in}$. (soil exposure) - $1 \mathrm{in} . \mathrm{x}$ (1 layer of \#8's) $=12 \mathrm{in}$.
$\mathrm{V}_{\mathrm{u}}=$ total shear $=\mathrm{q}_{\mathrm{u}}$ (edge area)
$V_{u}$ on a 1 ft strip $=\mathrm{q}_{\mathrm{u}}($ edge distance $)(1 \mathrm{ft})$
$V_{u}=4.71 \mathrm{k} / \mathrm{ft}^{2}[(8.5 \mathrm{ft}-2 \mathrm{ft}) / 2-(12 \mathrm{in}).(1 \mathrm{ft} / 12 \mathrm{in})].(1 \mathrm{ft})=10.6 \mathrm{k}$
$\phi V_{n}=$ one-way shear resistance $=\phi 2 \sqrt{f_{c}^{\prime}}$ bd
for $a$ one foot strip, $b=12$ in.
$\not \subset V_{c}=0.75(2 \sqrt{4000} \mathrm{psi})(12 \mathrm{in}).(12 \mathrm{in})=.13.7 \mathrm{k}>10.6 \mathrm{k}$ OK
3. Evaluate two-way shear at $\mathrm{d} / 2$ away from column face (Is $\mathrm{V}_{\mathrm{u}}<\phi \mathrm{V}_{\mathrm{c}}$ ?)

$$
\begin{aligned}
& \mathrm{b}_{0}=\text { perimeter }=4(24 \mathrm{in} .+12 \mathrm{in} .)=4(36 \mathrm{in} .)=144 \mathrm{in} \\
& \mathrm{~V}_{\mathrm{u}}=\text { total shear on area outside perimeter }=\mathrm{P}_{\mathrm{u}}-\mathrm{q}_{\mathrm{u}} \text { (punch area) } \\
& \mathrm{V}_{\mathrm{u}}=340 \mathrm{k}-\left(4.71 \mathrm{k} / \mathrm{ft}^{2}\right)(36 \mathrm{in} .)^{2}(1 \mathrm{ft} / 12 \mathrm{in} .)^{2}=297.6 \mathrm{kips}
\end{aligned}
$$



$$
\phi \mathrm{V}_{\mathrm{n}}=\text { two-way shear resistance }=\phi 4 \sqrt{f_{c}^{\prime}} \mathrm{b}_{\mathrm{o}} \mathrm{~d}=0.75(4 \sqrt{4000} \mathrm{psi})(144 \mathrm{in} .)(12 \mathrm{in} .)=327.9 \mathrm{k}>297.6 \mathrm{k} \text { OK }
$$

4. Design for bending at column face

$$
\begin{aligned}
& M_{u}=w_{u} L^{2} / 2 \text { for a cantilever. } L=(8.5 \mathrm{ft}-2 \mathrm{ft}) / 2=3.25 \mathrm{ft}, \text { and } w_{u} \text { for a } 1 \mathrm{ft} \text { strip }=q_{u}(1 \mathrm{ft}) \\
& M_{u}=4.71 \mathrm{k} / \mathrm{ft}^{2}(1 \mathrm{ft})(3.25 \mathrm{ft})^{2} / 2=24.9 \mathrm{k}-\mathrm{ft}(\text { per } \mathrm{ft} \text { of width })
\end{aligned}
$$

To complete the reinforcement design, use $b=12 \mathrm{in}$. and trial $d=12$ in., choose $\rho$, determine $A_{s}$, find if $\phi M_{n}>M_{u} . \ldots$.
5. Check transfer of load from column to footing:

$$
\phi P_{\mathrm{n}}=\phi 0.85 f^{\prime}{ }^{\prime} A_{1} \sqrt{A_{2} / A_{1}} \leq \phi 0.85 f_{c}^{\prime} 2 A_{1}=0.65(0.85)(4000 \mathrm{psi})(2)(12 \mathrm{in} .)(12 \mathrm{in} .)=636.5 \mathrm{k}>340 \mathrm{k} \text { OK }
$$

## Example 3

Example 8-1: Evaluate the suitability of a 4-ft square footing supporting a 1-ft square column ( $P_{D}=75 \mathrm{kips}$ and $P_{L}$ $=25 \mathrm{kips}$ ) for an allowable soil pressure of $7 \mathrm{k} / \mathrm{ft}^{2}$ using a) gross soil pressure, b) net soil pressure. The bottom of the one-foot thick footing is set at 5 ft below grade. The unit weight of soil is given as 125 pcf .
a) gross soil pressure, $q_{g}$ :

- footing weight: $(4)(4)(1)(0.150)$	$=$	2.4
- column weight: $(1)(1)(4)(0.150)$	$=$	0.6
- soil weight: $(4)(16-1)(0.125)$	$=$	7.5
- service loads: $75+25$	$=\frac{100.0}{110.5} \mathrm{kips}$	

$$
q_{g}=\frac{P}{A}=\frac{110.5}{16}=6.9 \mathrm{kips} / \mathrm{ft}^{2}<7 \mathrm{kips} / \mathrm{ft}^{2} \underline{\mathrm{O} . \mathrm{K}}
$$

b) net soil pressure, $q_{n}$ :

$$
q_{n}=\frac{100}{16}=6.25 \mathrm{kips} / \mathrm{ft}^{2}<q_{n}=7-1(0.150-0.125)=6.975 \mathrm{kips} / \mathrm{ft}^{2} \underline{\mathrm{O} . \mathrm{K} .}
$$

c) $q_{n u}=\frac{1.2(75)+1.6(25)}{16}=8.13 \mathrm{kips} / \mathrm{ft}^{2}$

## Example 4

Determine the depth required for the group of 4 friction piles having 12 in . diameters if the column load is 100 kips and the frictional resistance is $400 \mathrm{lbs} / \mathrm{ft}^{2}$.

SOLUTION:
The downward load is resisted by a friction force. Friction is determined by multiplying the friction resistance (a stress) by the area: $F=f A_{S K I N}$
The area of n cylinders is: $A_{\text {SKIN }}=n\left(2 \pi \frac{d}{2} L\right)$
Our solution is to set $\mathrm{P} \leq \mathrm{F}$ and solve for length:

$$
\begin{aligned}
& 100 k \leq 400 \mathrm{lb} / \mathrm{ft}^{2}\left(4^{\text {piles }}\right)(2 \pi)\left(\frac{12 i n}{2}\right) L \cdot\left(\frac{1 f t}{12 \mathrm{in}}\right) \cdot\left(\frac{1 \mathrm{k}}{1000 \mathrm{lb}}\right) \\
& L \geq 19.9 \mathrm{ft} / \mathrm{pile}
\end{aligned}
$$



## Example 5

Determine the depth required for the friction and bearing pile having a 36 in. diameter if the column load is 300 kips , the frictional resistance is $600 \mathrm{lbs} / \mathrm{ft}^{2}$ and the end bearing pressure allowed is 8000 psf .

SOLUTION:
The downward load is resisted by a friction force and a bearing force, which can be determined from multiplying the bearing pressure by the area in contact: $F=f A_{\text {SKIN }}+q A_{\text {TIP }}$
The area of a circle is: $A_{T I P}=\pi \frac{d^{2}}{4}$


Our solution is to set $P \leq F$ and solve for length:

$$
\begin{aligned}
& 300 \mathrm{k} \leq 600 \mathrm{lb} / \mathrm{ft}^{2} 2 \pi\left(\frac{36 \mathrm{in}}{2}\right) L \cdot\left(\frac{1 \mathrm{ft}}{12 \mathrm{in}}\right) \cdot\left(\frac{1 \mathrm{k}}{1000 \mathrm{lb}}\right)+8000 \mathrm{lb} / f t^{2} \pi \frac{(36 \mathrm{in})^{2}}{4} \cdot\left(\frac{1 \mathrm{ft}}{12 \mathrm{in}}\right)^{2} \cdot\left(\frac{1 \mathrm{k}}{1000 \mathrm{lb}}\right) \\
& L \geq 43.1 \mathrm{ft}
\end{aligned}
$$

## Design of Isolated Square and Rectangular Footings (ACI 318-02)

## Notation:



NOTE: This procedure assumes that the footing is concentrically loaded and carries no moment so that the soil pressure may be assumed to be uniformly distributed on the base.

1) Find service dead and live column loads:
$P_{D}=$ Service dead load from column
$\mathrm{P}_{\mathrm{L}}=$ Service live load from column
$\mathrm{P}=\mathrm{P}_{\mathrm{D}}+\mathrm{P}_{\mathrm{L}}$ (typically - see ACI 9.2)
2) Find design (factored) column load, Pu :
$\mathrm{P}_{\mathrm{U}}=1.2 \mathrm{P}_{\mathrm{D}}+1.6 \mathrm{P}_{\mathrm{L}}$
3) Find an approximate footing depth, $\mathrm{h}_{\mathrm{f}}$

$h_{f}=d+4^{\prime \prime}$ and is usually in multiples of 2,4 or 6 inches.
a) For rectangular columns

$$
4 d^{2}+2(b+c) d=\frac{P_{u}}{\phi v_{c}}
$$

b) For round columns

$$
d^{2}+a d=\frac{P_{u}}{\phi v_{c}} \quad a=\sqrt{\frac{\pi d^{2}}{4}}
$$

where: $a$ is the equivalent square column size

$$
\begin{aligned}
& v_{c}=4 \sqrt{f_{c}^{\prime}} \text { for two-way shear } \\
& \phi=0.75 \text { for shear }
\end{aligned}
$$

4) Find net allowable soil pressure, $q_{\text {net: }}$

By neglecting the weight of any additional top soil added, the net allowable soil pressure takes into account the change in weight when soil is removed and replaced by concrete:


$$
q_{\text {net }}=q_{\text {allowable }}-h_{f}\left(\gamma_{c}-\gamma_{s}\right)
$$

where $\gamma_{c}$ is the unit weight of concrete (typically $150 \mathrm{lb} / \mathrm{ft}^{3}$ ) and $\gamma_{s}$ is the unit weight of the displaced soil
5) Find required area of footing base and establish length and width:

$$
A_{\text {req }} \geq \frac{P}{q_{\text {net }}}
$$

For square footings choose $B \geq \sqrt{A_{\text {req }}}$
For rectangular footings choose $B \times L \geq A_{\text {req }}$


## 6) Check transfer of load from column to footing: ACI 15.8

a) Find load transferred by bearing on concrete in column: ACI 10.17
basic: $\phi P_{n}=\phi 0.85 f_{c}^{\prime} A_{1}$ where $\phi=0.65$ and $A_{l}$ is the area of the column
with confinement: $\phi P_{n}=\phi 0.85 f_{c}^{\prime} A_{1} \sqrt{\frac{A_{2}}{A_{1}}}$ where $\sqrt{\frac{A_{2}}{A_{1}}}$ cannot exceed 2.
IF the column concrete strength is lower than the footing, calculate $\phi P_{n}$ for the column too.
b) Find load to be transferred by dowels:

$$
\phi P_{\text {dowels }}=P_{u}-\phi P_{n}
$$

IF $\phi P_{n} \geq P_{u}$ only nominal dowels are required.

c) Find required area of dowels and choose bars

Req. dowel $A_{s}=\frac{\phi P_{\text {dowels }}}{\phi f_{y}}$ where $\phi=0.65$ and $f_{y}$ is the reinforcement grade
Choose dowels to satisfy the required area and nominal requirements:
i) Minimum of 4 bars
ii) $\quad$ Minimum $A_{s}=0.005 A_{g}$ ACI 15.8.2.1
where $A_{g}$ is the gross column area
iii) 4-\#5 bars

d) Check dowel embedment into footing for compression: ACI 12.3 $l_{d c}=\frac{0.02 f_{y} d_{b}}{\sqrt{f_{c}^{\prime}}}$ but not less than $0.0003 f_{y} d_{b}$ or $8^{\prime \prime}$ where $d_{b}$ is the bar diameter

NOTE: The footing must be deep enough to accept $l_{d c}$. Hooks are not considered effective in compression and are only used to support dowels during construction.
e) Find length of lapped splices of dowels with column bars: ACI 12.16 $l_{s}$ is the largest of:
i) larger of $l_{d c}$ or $0.0005 f_{y} d_{b}\left(f_{y}\right.$ of grade 60 or less) of smaller bar $\left(0.0009 f_{y}-24\right) d_{b}\left(f_{y}\right.$ over grade 60$)$
ii) $\quad l_{d c}$ of larger bar
iii) not less than 12 "


See ACI 12.17.2 for possible reduction in $l_{s}$
7) Check two-way (slab) shear:
a) Find dimensions of loaded area:
i) For concrete columns, the area coincides with the column area, if rectangular, or equivalent square area if circular (see 3)b))
ii) For steel columns an equivalent loaded area whose boundaries are halfway between the faces of the steel column and the edges of the steel base plate is used: ACI 15.4.2c.

$b=b_{f}+\frac{\left(B-b_{f}\right)}{2}$ where $b_{f}$ is the width of column flange and $B$ is base plate side

$$
c=d_{f}+\frac{\left(C-d_{f}\right)}{2} \text { where } d_{f} \text { is the depth of column flange and } C \text { is base plate side }
$$

b) Find shear perimeter: ACI 11.12.1.2

Shear perimeter is located at a distance of $d / 2$ outside boundaries of loaded area and length is $b_{o}=2(c+d)+2(b+d)$
(average $d=h_{f}-3$ in. cover -1 assumed bar diameter)
c) Find factored net soil pressure, $q_{u}$ :
$q_{u}=\frac{P_{u}}{B^{2}}$ or $\frac{P_{u}}{B \times L}$
d) Find total shear force for two-way shear, $V_{u 2}$ :
$V_{u 2}=P_{u}-q_{u}(c+d)(b+d)$
e) Compare $V_{u 2}$ to two-way capacity, $\phi V_{n}$ :

$V_{u 2} \leq \phi\left(2+\frac{4}{\beta_{c}}\right) \sqrt{f_{c}^{\prime}} b_{o} d \leq \phi 4 \sqrt{f_{c}^{\prime}} b_{o} d$
ACI 11.12.2.1
where $\phi=0.75$ and $\beta_{c}$ is the ratio of long side to short side of the column
NOTE: This should be acceptable because the initial footing size was chosen on the basis of two-way shear limiting. If it is not acceptable, increase $h_{f}$ and repeat steps starting at b).

8) Check one-way (beam) shear:

The critical section for one-way shear extends across the width of the footing at a distance $d$ from the face of the loaded area (see 7)a) for loaded area). The footing is treated as a cantilevered beam. ACI 11.12.1.1
a) Find projection, $L^{\prime}$ :
i) For square footing:

$$
L^{\prime}=\frac{B}{2}-(d+b / 2) \text { where } \mathrm{b} \text { is the smaller dim. of }
$$ the loaded area

ii) For rectangular footings:
$L^{\prime}=\frac{L}{2}-(d+\bullet / 2)$ where $\bullet$ is the dim. parallel to the long side of the footing
b) Find total shear force on critical section, $V_{u l}$ :

$$
V_{u 1}=B L^{\prime} q_{u}
$$

c) Compare $V_{u 1}$ to one-way capacity, $\phi V_{n}$ :
$V_{u 1} \leq \phi 2 \sqrt{f_{c}^{\prime}} B d$ ACI 11.12.3.1 where $\phi=0.75$


NOTE: If it is not acceptable, increase $\mathrm{h}_{\mathrm{f}}$.

## 9) Check for bending stress and design reinforcement:

Square footings may be designed for moment in one direction and the same reinforcing used in the other direction. For rectangular footings the moment and reinforcing must be calculated separately in each direction. The critical section for moment extends across the width of the footing at the face of the loaded area. ACI 15.4.1, 15.4.2.
a) Find projection, $L_{m}$ :

$$
L_{m}=\frac{B}{2}-\frac{\bullet}{2} \text { where } \bullet \text { is the smaller dim. of column for a square }
$$ footing. For a rectangular footing, use the value perpendicular to the critical section.

b) Find total moment, $\mathrm{M}_{\mathrm{u}}$, on critical section:

$$
M_{u}=q_{u} \frac{B L_{m}^{2}}{2} \quad \text { (find both ways for a rectangular footing) }
$$


c) Find required $A_{s}$ :
$R_{n}=\frac{M_{n}}{b d^{2}}=\frac{M_{u}}{\phi b d^{2}}$, where $\phi=0.9$, and $\rho$ can be found
from Figure 3.8.1 of Wang \& Salmon.
or:
i) guess $a$
ii) $A_{s}=\frac{0.85 f_{c}^{\prime} b a}{f_{y}}$
iii) solve for $a=2\left(d-\frac{M_{u}}{\phi A_{s} f_{y}}\right)$

iv) repeat from ii) until a converges, solve for $A_{s}$

Minimum $A_{s}$

$$
\begin{array}{ll}
=0.0018 \mathrm{bh} & \text { Grade } 60 \text { for temperature and shrinkage control } \\
=0.002 \mathrm{bh} & \text { Grade } 40 \text { or } 50
\end{array}
$$

ACI 10.5.4 specifies the requirements of $\mathbf{7 . 1 2}$ must be met, and max. spacing of 18 "
d) Choose bars:

For square footings use the same size and number of bars uniformly spaced in each direction (ACI 15.4.3). Note that required $A_{s}$ must be furnished in each direction.

For rectangular footings bars in long direction should be uniformly spaced. In the short direction bars should be distributed as follows (ACI 15.4.4 ):
i) In a band of width $B_{s}$ centered on column:
$\#$ bars $=\frac{2}{L / B+1} \cdot(\#$ bars in $B) \quad($ integer $)$
ii) Remaining bars in short direction should be uniformly spaced in outer portions of footing.

e) Check development length:

Find required development length, $l_{d}$, in tension from handout or from equations in ACI 12.2. $l_{d}$ must be less than ( $L_{m}-2 "$ ) (end cover). If not possible, use more bars of smaller diameter.

## Masonry Design

Notation:	
$A \quad=$ name for area	$j \quad=$ multiplier by effective depth of
$A_{n}=$ net area, equal to the gross area subtracting any reinforcement	masonry section for moment arm, jd $k \quad=$ multiplier by effective depth of
$A_{n v}=$ net shear area of masonry	masonry section for neutral axis, kd
$A_{s} \quad=$ area of steel reinforcement in masonry design	$\begin{array}{ll} L & =\text { name for length or span length } \\ M & =\text { internal bending moment } \end{array}$
$A_{s t}=$ area of steel reinforcement in masonry column design	$\begin{aligned} & =\text { type of masonry mortar } \\ M_{m} & =\text { moment capacity of a reinforced } \end{aligned}$
$A C I=$ American Concrete Institute	
$A S C E=$ American Society of Civil Engineers	
$C=$ name for a compression force masonry beam governed by masonry	
	stress   MSJC $=$ Masonry Structural Joint Council
$C M U=$ shorthand for concrete masonry unit   $d \quad=$ effective depth from the top of a reinforced masonry beam to the centroid of the tensile steel	$\begin{array}{ll} n & = \\ & \text { modulus of elasticity transformation } \\ & \text { coefficient for steel to masonry } \\ n . a . & =\text { shorthand for neutral axis (N.A.) } \\ N= & \text { type of masonry mortar } \end{array}$
$=$ eccentric distance of application of a force $(P)$ from the centroid of a cross section	$\begin{aligned} N C M A= & \text { National Concrete Masonry } \\ & \text { Association } \\ O= & \text { type of masonry mortar } \end{aligned}$
$f_{a}=$ axial stress	$P \quad=$ name for axial force vector
$f_{b} \quad=$ bending stress	$P_{a}=$ allowable axial load in columns
$f_{m}=$ calculated compressive stress in	$\begin{array}{ll} r & =\text { radius of gyration } \\ S & =\text { section modulus } \end{array}$
$f_{m}^{\prime}=$ masonry design compressive stress	$\begin{aligned} & =\text { type of masonry mortar } \\ S_{x} & =\text { section modulus with respect to a } \end{aligned}$
$f_{s}=$ stress in the steel reinforcement for masonry design	$\begin{aligned} & \quad \mathrm{x} \text {-axis } \\ = & \text { name for thickness } \end{aligned}$
$f_{v} \quad=$ shear stress	$T \quad=$ name for a tension force
$F_{a}=$ allowable axial stress	$T_{s}=$ tension force in the steel
$F_{b}=$ allowable bending stress	reinforcement for masonry design
$F_{s} \quad=$ allowable tensile stress in reinforcement for masonry design	$\begin{aligned} T M S & =\text { The Masonry Society } \\ w & =\text { name for distributed load } \end{aligned}$
$F_{t} \quad=$ allowable tensile stress	$\beta_{1}=$ coefficient for determining stress
$F_{v} \quad=$ allowable shear stress	block height, $c$, in masonry LRFD
$F_{v m}=\text { allowable shear stress of the }$	design
$F_{v s}=$ allowable shear stress of the shear	$\varepsilon_{m} \quad=$ strain in the masonry
reinforcement	$\varepsilon_{s} \quad=$ strain in the steel
$\begin{aligned} h \quad & =\text { name for height } \\ & =\text { effective height of a wall or column } \end{aligned}$	$\rho \quad=\underset{\text { design }}{\text { reinforcement ratio in masonry }}$
$I_{x}=\underset{\mathrm{x} \text {-axis }}{\text { moment }}$ of inertia with respect to an	

## Reinforced Masonry Design

Structural design standards for reinforced masonry are established by the Masonry Standards Joint Committee consisting of ACI, ASCE and The Masonry Society (TMS), and presents allowable stress design as well as limit state (strength) design.

## Materials

$f_{\mathrm{m}}=$ masonry prism compressive strength from testing
Reinforcing steel grades are the same as those used for reinforced concrete beams.
Units can be brick, concrete or stone.
Mortar consists of masonry cement, lime, sand, and water. Grades are named from the word MASONWORK, with average strengths of $2500 \mathrm{psi}, 1800 \mathrm{psi}, 750 \mathrm{psi}, 350 \mathrm{psi}$, and 75 psi , respectively.

Grout is a flowable mortar, usually with a high amount of water to cement material. It is used to fill voids and bond reinforcement.

## Allowable Stress Design

For unreinforced masonry, like masonry walls, tension stresses are allowed in flexure. Masonry walls typically see compression stresses too.

For reinforced masonry, the steel is presumed to resist all tensile stresses and the tension in the masonry is ignored.

Factors of Safety are applied to the limit stresses for allowable stress values:

bending (unreinforced)	$\mathrm{F}_{\mathrm{b}}=1 / 3 f_{m}^{\prime}$
bending (reinforced)	$\mathrm{F}_{\mathrm{b}}=0.45 f_{m}^{\prime}$
bending (tension/unreinforced)	table 2.2 .3 .2
beam shear (unreinforced for flexure)	$\mathrm{F}_{\mathrm{v}}=1.5 \sqrt{f_{m}^{\prime}} \leq 120 \mathrm{psi}$
beam shear (reinforced) $-\mathrm{M} /(\mathrm{Vd}) \leq 0.25$	$\mathrm{~F}_{\mathrm{v}}=3.0 \sqrt{f_{m}^{\prime}}$
beam shear (reinforced) $-\mathrm{M} /(\mathrm{Vd}) \geq 1.0$	$\mathrm{~F}_{\mathrm{v}}=2.0 \sqrt{f_{m}^{\prime}}$
Grades 40 or 50 reinforcement	$\mathrm{F}_{\mathrm{s}}=20 \mathrm{ksi}$
Grades 60 reinforcement	$\mathrm{F}_{\mathrm{s}}=32 \mathrm{ksi}$
Wire joint reinforcement	$\mathrm{F}_{\mathrm{s}}=30 \mathrm{ksi}$

where $f{ }^{\prime}{ }_{\mathrm{m}}=$ specified compressive strength of masonry

## Internal Equilibrium for Bending

$\mathrm{C}_{\mathrm{m}}=$ compression in masonry $=$ stress x area $=f_{m} \frac{b(k d)}{2}$
$\mathrm{T}_{\mathrm{s}}=$ tension in steel $=$ stress x area $=A_{s} f_{s}$
$C_{m}=T_{s}$ and $\cdot$

$$
\begin{aligned}
& M_{m}=T_{s}(d-k d / 3)=T_{s}(j d) \\
& M_{s}=C_{m}(j d)
\end{aligned}
$$


where
$\mathrm{f}_{\mathrm{m}}=$ compressive stress in the masonry from flexure
$\mathrm{f}_{\mathrm{s}}=$ tensile stress in the steel reinforcement
$\mathrm{kd}=$ the height to the neutral axis
$b=$ width of stress area
$d=$ effective depth of section $=$ depth to n.a. of reinforcement
$\mathrm{jd}=$ moment arm from tension force to compression force
$\mathrm{A}_{\mathrm{s}}=$ area of steel
$\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{m}}$ used to transform steel to equivalent area of masonry for elastic stresses
$\rho=$ reinforcement ratio

## Criteria for Beam Design

For flexure design:

$$
M_{m}=f_{m} b \frac{k d}{2} j d=0.5 f_{m} b d^{2} j k \text { or } M_{s}=A_{s} f_{s} j d=\rho b d^{2} j f_{s}
$$

The design is adequate when $f_{b} \leq F_{b}$ in the masonry and $f_{s} \leq F_{s}$.in the steel.
Shear stress is determined by $f_{v}=V / A_{n v}$ where $A_{n v}$ is net shear area. Shear strength is determined from the shear capacity of the masonry and the stirrups: $F_{v}=F_{v m}+F_{v s}$. Stirrup spacings are limited to $\mathrm{d} / 2$ but not to exceed 48 in .
where:

$$
\begin{aligned}
& F_{v m}=\frac{1}{2}\left[\left(4.0-1.75\left(\frac{M}{V d}\right)\right) \sqrt{f_{m}^{\prime}}\right]+0.25 \frac{P}{A_{n}} \quad \text { where } \mathrm{M} /(\mathrm{Vd}) \text { is positive and cannot exceed } 1.0 \\
& F_{v s}=0.5\left(\frac{A_{v} F_{s} d}{A_{n v} s}\right) \quad\left(F_{v}=3.0 \sqrt{f_{m}^{\prime}} \text { when } \mathrm{M} /(\mathrm{Vd}) \geq 0.25\right) \\
& \left(F_{v}=2.0 \sqrt{f_{m}^{\prime}} \text { when } \mathrm{M}(\mathrm{Vd}) \geq 1.0 .\right) \text { Values can be linearly interpolated. }
\end{aligned}
$$

## Load and Resistance Factor Design

The design methodology is similar to reinforced concrete ultimate strength design. It is useful with high shear values and for seismic design. The limiting masonry strength is $0.80 f^{\prime}$ m.


## Criteria for Column Design

(Masonry Joint Code Committee) Building Code Requirements and Commentary for Masonry Structures define a column as having $\mathrm{b} / \mathrm{t}<3$ and $\mathrm{h} / \mathrm{t}>4$.
where

$$
\begin{aligned}
& b=\text { width of the "wall" } \\
& t=\text { thickness of the "wall" } \\
& h=\text { height of the "wall" }
\end{aligned}
$$

A slender column has a minimum dimension of 8 " on one side and $\mathrm{h} / \mathrm{t} \leq 25$.
Columns must be reinforced, and have ties. A minimum eccentricity (causing bending) of 0.1 times the side dimension is required.

## Allowable Axial Load for Reinforced Masonry

$$
\begin{array}{ll}
P_{a}=\left[0.25 f_{m}^{\prime} A_{n}+0.65 A_{s t} F_{s}\left[1-\left(\frac{h}{140 r}\right)^{2}\right]\right. & \text { for } \mathrm{h} / \mathrm{t} \leq 99 \\
P_{a}=\left[0.25 f_{m}^{\prime} A_{n}+0.65 A_{s t} F_{s}\left(\frac{70 r}{h}\right)^{2}\right. & \text { for } \mathrm{h} / \mathrm{t}>99
\end{array}
$$



Allowable Axial Stresses for Unreinforced Masonry

$$
\begin{array}{ll}
F_{a}=0.25 f_{m}^{\prime}\left[1-\left(\frac{h}{140 r}\right)^{2}\right] & \text { for } \mathrm{h} / \mathrm{t} \leq 99 \\
F_{a}=0.25 f_{m}^{\prime}\left(\frac{70 r}{h}\right)^{2} & \text { for } \mathrm{h} / \mathrm{t}>99
\end{array}
$$

where
$h=$ effective length
$r=$ radius of gyration
$\mathrm{A}_{\mathrm{n}}=$ effective (or net) area of masonry
$\mathrm{A}_{\mathrm{st}}=$ area of steel reinforcement
$f_{m}^{\prime}=$ specified masonry compressive strength
$\mathrm{F}_{\mathrm{s}}=$ allowable compressive stress in column reinforcement with lateral confinement.

## Combined Stresses

When maximum moment occurs somewhere other than at the end of the column or wall, a "virtual" eccentricity can be determined from $e=M / P$.

Masonry Columns and Walls
There are no modification factors, but in addition to satisfying $\frac{f_{a}}{F_{a}}+\frac{f_{b}}{F_{b}} \leq 1.0$, the tensile stress cannot exceed the allowable: $f_{b}-f_{a} \leq F_{t}$ or the compressive stress exceed allowable for reinforced masonry: $f_{a}+f_{b} \leq F_{b}$ provided $f_{a} \leq F_{a}$.

## Example 1

Determine if the unreinforced CMU wall can sustain its loads with the wind. Specify a mortar type and unit strength per MSJC.

$$
\begin{aligned}
& \frac{f_{a}}{F_{a}}+\frac{f_{b}}{F_{b}} \leq 1.0 \quad F_{b}=1 / 3 f_{m}^{\prime} \quad f_{b}=\frac{M}{S} \quad f_{a}=\frac{P}{A} \\
& F_{a}=0.25 f_{m}^{\prime}\left[1-\left(\frac{h}{140 r}\right)^{2}\right] \text { for } \frac{h}{r} \leq 99 \\
& F_{a}=0.25 f_{m}^{\prime}\left(\frac{70 r}{h}\right)^{2} \text { for } \frac{h}{r}>99
\end{aligned}
$$

$$
\begin{aligned}
& \frac{h}{r}=\frac{12 f t(12 \mathrm{in})}{3.21 \mathrm{in}}=44.9 \text { so } F_{a}=0.25 f_{m}^{\prime}\left[1-\left(\frac{12 \cdot 12 \mathrm{in}}{140 \cdot 3.21 \mathrm{in}}\right)^{2}\right]=0.224 f_{m}^{\prime} \\
& f_{a}=\frac{4 k(1000 \mathrm{tb} / \mathrm{k})}{30 \mathrm{in}^{2}}=133 \mathrm{psi}
\end{aligned}
$$

## Case "A" with wind

at midheight of wall : $\quad\left(1 \mathrm{f} \cdot \mathrm{kips} / \mathrm{ft}^{2}\right)(\mathrm{ft}) \quad(\mathrm{in} / \mathrm{ft})$

$$
\begin{aligned}
& M=\frac{P e}{2}+\frac{w h^{2}}{8}=\frac{4 k i p x 3^{\prime \prime}}{2}+\left[\frac{(0.030)(12)^{2}}{8}\right] \times 12=12.5 \mathrm{kip}-\mathrm{in} . \\
& f_{b}=\frac{12,500 \mathrm{lb}-\mathrm{in}}{81.0 \text { in }^{3}}=154 \mathrm{psi} \quad f_{b} \leq 1 / 3 f_{m}^{\prime} \\
& \text { tension criterion : } \\
& f^{\prime}{ }_{m} \geq 154 /(1 / 3)=462 p s i \\
& \text { - } f_{a}+f_{b}=F_{t} \\
& -133 \text { psi }+154 \text { psi }=21 \text { psi } \\
& F_{t} \text { req'd }=21 \text { psi }
\end{aligned}
$$

## compression criterion :

$$
\frac{f_{a}}{F_{a}}+\frac{f_{b}}{F_{b}}<1 \quad \frac{133}{0.174 f_{m}^{\prime}}+\frac{154}{0.333 f_{m}^{\prime}}=1 ; \quad f_{m}^{\prime}=1056 p s i
$$

## Case "B" without wind

at top of wall : $\mathrm{M}=\mathrm{Pe}=12.0$ kip-in.
$f_{b}=12,000 \mathrm{lb}-\mathrm{in} / 81 \mathrm{in}^{3}=148 \mathrm{psi}$
tension criterion : $-f_{a}+f_{b}=F_{t}$

$$
-133 \text { psi }+148 \text { psi }=15 \text { psi } \quad F_{t ~ r e q ' d ~}^{\prime}=15 p s i
$$

Per MSJC Table 2.2.3.2, use PCL Type N mortar $\mathrm{F}_{\mathrm{t}}=25 \mathrm{psi}$
compression criterion: $\frac{f_{a}}{F_{a}}+\frac{f_{b}}{F_{b}} \leq 1.0$

$$
\frac{133}{0.224 f_{m}^{\prime}}+\frac{148}{0.333 f_{m}^{\prime}}=1.00 \quad f_{m}^{\prime}=1038 \mathrm{psi} \quad f_{m}^{\prime}=1056 \text { psi (governs) }
$$

Table 2.2.3.2 - Allowable flexural tensile stresses for clay and concrete masonry, psi (kPa)

Direction of flexural tensile stress and masonry type	Mortar types			
	Portland cement/lime or mortar cement		Masonry cement or air entrained portland cement/lime	
	M or S	N	M or S	N
Normal to bed joints Solid units Hollow units ${ }^{1}$ Ungrouted Fully grouted	$\begin{aligned} & 53(366) \\ & 33(228) \\ & 86(593) \end{aligned}$	$\begin{aligned} & 40(276) \\ & 25(172) \\ & 84(579) \end{aligned}$	$\begin{aligned} & 32(221) \\ & 20(138) \\ & 81(559) \end{aligned}$	$\begin{gathered} 20(138) \\ 12(83) \\ 77(531) \end{gathered}$
Parallel to bed joints in running bond   Solid units   Hollow units   Ungrouted and partially grouted   Fully grouted	$\begin{aligned} & 106(731) \\ & 66(455) \\ & 106(731) \end{aligned}$	$\begin{aligned} & 80(552) \\ & 50(345) \\ & 80(552) \end{aligned}$	$\begin{aligned} & 64(441) \\ & 40(276) \\ & 64(441) \end{aligned}$	$\begin{aligned} & 40(276) \\ & 25(172) \\ & 40(276) \end{aligned}$
Parallel to bed joints in masonry not laid in running bond   Continuous grout section parallel to bed joints Other	$\begin{gathered} 133(917) \\ 0(0) \end{gathered}$			

1 For partially grouted masonry, allowable stresses shall be determined on the basis of linear interpolation between fully grouted hollow units and ungrouted hollow units based on amount (percentage) of grouting.

# REINFORCED BRICK MASONRY BEAMS 


#### Abstract

Reinforced brick masonry (RBM) beams are an efficient and attractive means of spanning building openings. The addition of steel reinforcement and grout permits brick masonry to span considerable distances while maintaining continuity of the building facade. Attractive brick soffits and elimination of steel support members are two of the advantages of reinforced brick masonry beams. This Technical Notes addresses the design of reinforced brick masonry beams. Building code requirements are reviewed and design aids are provided to simplify the design process. Illustrations indicate the proper detailing and typical construction of reinforced brick masonry beams.


Key Words: beam, deflection, girder, lintel, reinforced brick masonry, reinforcement.

## INTRODUCTION

Reinforced brick masonry (RBM) beams are widely used as flexural members. Common applications of RBM beams include girders supporting floor and roof systems, and arches and lintels spanning openings for windows and doors. Girder is the term applied to a large beam with a long span that usually supports smaller framing members. A lintel is a beam over a wall opening, typically simply supported with no framing members. The main advantage of RBM beams is that the structural element and the architectural finish are one and the same. In some cases, however, they provide economical solutions without considering the savings due to a built-in finish. They are often built as an integral part of a masonry wall as illustrated in Figure 1. RBM beams are designed to carry all superimposed loads, including that portion of the wall weight above


Typical RBM Beam in Brick Veneer Wall
FIG. 1
supported by the beam. While steel lintels are more common, RBM beams provide distinct advantages over steel lintels. Among the advantages are:

1. More efficient use of materials. The masonry serves as a structural element with a relatively small amount of steel reinforcement added.
2. Elimination of differential movement. This movement is often the cause of cracks in masonry.
3. Inherent fire resistance.
4. Reduced maintenance. Periodic painting of exposed steel is eliminated.
5. Lower cost.

This Technical Notes provides a review of the design of RBM beams. Factors influencing design and performance are reviewed. Design recommendations and aids are provided and their use illustrated with an example. For additional information about RBM beams and design calculations, refer to the Masonry Designers' Guide (MDG) [2]. The MDG also provides an extensive review of the requirements of the Building Code Requirements for Mason ry Structures (ACI 530/ASCE 5/TMS 402-95)[1], hereafter termed the MSJC Code. Other Technical Notes in this series provide the history of RBM, material and construction requirements, and design of other RBM elements.

This Technical Notes does not address the design of deep beams (wall beams) or bond beams. A deep beam is one with a depth-to-span ratio exceeding 0.8 . Assumptions made in this Technical Notes regarding the distribution of stress in beams under flexure and the loading conditions do not apply to deep beams. Bond beams are formed by placing horizontal reinforcement in a wall without an opening underneath.

## NOTATION

Following are notations used in the text, figures, and table in this Technical Notes.
$\mathrm{A}_{\mathrm{v}}$ Area of shear reinforcement, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
b Length of bearing plate, $\mathrm{ft}(\mathrm{m})$
d Effective depth of beam, in. (mm)
$d_{b}$ Nominal diameter of reinforcement, in. (mm)
$\mathrm{F}_{\mathrm{s}}$ Allowable steel stress, psi (MPa)
$\mathrm{f}_{\mathrm{m}}^{\prime}$ Specified compressive strength of masonry, psi (MPa)
H Height of beam, in. (mm)
$1_{d}$ Embedment length of reinforcement, in. (mm)
$\mathrm{M}_{\mathrm{G}}$ Design moment due to gravity loads, in.-lb (N-m)
$\mathrm{M}_{\mathrm{s}}$ Design moment due to in-plane shear, in.-lb ( $\mathrm{N}-\mathrm{m}$ )
$\mathrm{M}_{\mathrm{w}}$ Design moment due to out-of-plane wind or seismic load, in.-lb (N-m)
P Design concentrated load, $\mathrm{lb}(\mathrm{kg})$
s Spacing of shear reinforcement, in. (mm)
V Design shear force, $\mathrm{lb}(\mathrm{kg})$
W Width of beam, in. (mm)
$\mathrm{w}_{\mathrm{p}}$ Design uniform distributed load, $\mathrm{lb} / \mathrm{ft}(\mathrm{kg} / \mathrm{m})$
y Distance from top of beam to bearing plate, $\mathrm{ft}(\mathrm{m})$

## DETERMINATION OF LOADING

The basic concept of a beam is as a pure flexural member. A flexural member spans an opening and transfers vertical gravity loads to its supports, as illustrated in Fig. 2(a). RBM beams act in this manner to support their own weight and other applied gravity loads. However, it is also common for RBM beams to be part of a masonry wall. As such, RBM beams are often subjected to out-of-plane wind and seismic forces, as depicted in Fig. 2(b). This causes bending of the RBM beam in the out-of-plane direction, which is often about the weak axis of the beam. In addition, reinforced masonry walls may be shear-resisting members, or "shear walls", which are part of the lateral load-resisting system of a building. In such a structural system, RBM beams may be used as connections between shear walls or piers, as illustrated in Fig. 2(c). Such beams are called coupling beams because they "couple" the shear walls or piers. If the relative sizes of the two piers being coupled are similar, the RBM beam is subject to considerable load when an in-plane shear force is applied to the wall. This is why damage to masonry shear walls is often concentrated at coupling beams following an earthquake or high-wind event.

The designer should consider all aspects of loading for an RBM beam. It is difficult to predict the loading condition that will produce the critical design condition. For example, a RBM beam that is part of a wall will be subject to a combination of gravity loads and out-ofplane wind or seismic loads. Many factors influence the loading conditions for RBM beams.

## Arching Action

Arching action is a property of all masonry walls which are laid in an overlapping bond pattern. Brick masonry will span, in a step-like manner similar to a corbel, over a wall opening when laid in running bond pattern. Vertical gravity loads above the openings are

transferred to the wall elements on each side. This is the reason why sizable holes can be created in masonry walls without causing collapse. Arching action will occur provided that the following conditions are met:

1. An overlapping bond pattern is used in the masonry surrounding the opening.
2. The masonry above the apex of a 45 degree isosceles triangle above the beam exceeds 12 in . ( 300 mm ).
3. There are no movement joints or adjacent wall openings that hinder the load path of arching action.
4. The abutments are sufficiently strong and rigid to resist the horizontal thrust due to arching action. These concepts are illustrated in Fig. 3.
Provided arching action occurs, the self weight of masonry wall carried by the beam may be safely as-

sumed as the weight within a triangular area above the beam formed by 45 degree angles, as shown in Fig. 3. The self weight of the wall must be added to the live and dead loads of floors and roofs which bear on the wall above the opening. If a stack bond pattern is used, the full area of brick masonry above the wall opening should be considered in the RBM beam design with no assumption of arching action.

## Concentrated Loads

Loads from beams, girders, trusses and other concentrated loads that frame into the wall must be applied to the RBM beam in the appropriate manner. Concentrated loads may be assumed to be distributed over a wall length equal to the base of a trapezoid whose top is at the point of load application and whose sides make an angle of 60 degrees with the horizontal. In Fig. 4, the portion of the concentrated load carried by the beam is distributed over the length indicated as a uniform load. The distributed load, $\mathrm{w}_{\mathrm{p}}$, on the RBM beam is computed by the following equation:

$$
\begin{equation*}
\mathrm{w}_{\mathrm{p}}=\mathrm{P} /(\mathrm{b}+2 \mathrm{y} \tan 30) \tag{Eq. 1}
\end{equation*}
$$

where:
$\mathrm{w}_{\mathrm{p}}=$ design uniform distributed load, $\mathrm{lb} / \mathrm{ft}(\mathrm{kg} / \mathrm{m})$
$\mathrm{P}=$ design concentrated load, $1 \mathrm{~b}(\mathrm{~kg})$
$\mathrm{b}=$ length of bearing plate, $\mathrm{ft}(\mathrm{m})$
$\mathrm{y}=$ distance from top of beam to bearing plate, $\mathrm{ft}(\mathrm{m})$
This is approximately 0.866 times P divided by y. Because the apex of the 45 degree triangle is above the top of the wall in this example, the RBM beam should be designed assuming no arching action occurs.

The designer should check the stress condition at bearing points for RBM beams. This applies to loads on the beam and to the beam's reaction on the wall. The MSJC Code limits the bearing stress to $0.25 \mathrm{f}_{\mathrm{m}}^{\prime}$, where $f_{m}^{\prime}$ is the specified compressive strength of masonry. A rule-of-thumb recommended for many years is to provide a minimum of 4 in . $(100 \mathrm{~mm})$ of bearing length for masonry beams. The masonry directly beneath a bearing point should be constructed with solid brick or with solidly grouted hollow brick. Concentrated loads should not bear directly on ungrouted hollow brick masonry because of the potential for localized cracking or crushing of the face shells.

## Construction Loads

When designing a RBM beam that is prefabricated or built on the ground and lifted into place, it is important to consider the loads during transport and handling. To address these loads, the beam may require reinforcement at both the top and bottom of the beam. Beams built in place are constructed on shores. These must be designed for the dead weight of the beam plus any superimposed load prior to adequate curing of the reinforced brickwork.

## Movement Joints

Movement joints are a necessity in masonry walls to accommodate differential movement and avoid cracking. It is common to place vertical expansion joints at or near the jamb of wall openings. In RBM buildings there is a reduced need for expansion joints and such joints may be spaced farther apart. Refer to Technical Notes 18 Series for a discussion of the placement of movement joints. The presence of a movement joint


Loads on RBM Beam
FIG. 4
near a RBM beam will influence the loads and support conditions for the beam. For example, a simple support condition should be assumed since arching action will not occur if a movement joint is at or near the jamb of the opening. Furthermore, the beam will not act as a coupling beam between shear walls. This is, in fact, one means of simplifying the design and function of a RBM beam by eliminating loads due to in-plane shear.

## DESIGN OF RBM BEAMS

RBM beam design should not be relegated to "rule-of-thumb" methods or arbitrary selection of beam configuration and steel reinforcement. In any beam design, a careful analysis of the loads to be carried and a calculation of the resultant stresses should be incorporated to provide adequate strength and to prevent excessive cracking and deflection.

In addition to adequate strength, it is preferred that beams exhibit ductile behavior when overloaded. If the beam is overloaded, it should deform (deflect) a considerable amount prior to collapse. Deformation allows redistribution of loads to other members and provides visual indication that the beam is overloaded. Some building codes stipulate a maximum reinforcement ratio for RBM beams for this purpose.

Another aspect is the relation between the RBM beam's strength and its cracking moment. Failure of unreinforced masonry in flexure is brittle, exhibiting sudden cracking and often collapse. Consequently, a reinforced beam should provide a moment strength in excess of its cracking moment. The amount of this overstrength is somewhat arbitrary, but a factor of 1.3 is required by the Uniform Building Code[3]. This means that the moment strength of a cracked-section, RBM beam should exceed 1.3 times the cracking moment of the beam. This is not a requirement of the MSJC Code, but is considered good engineering practice.

## Beam Sizing

In the design of an RBM beam, the required cross-sectional area of masonry is based primarily on the maximum bending moment. However, there are other factors to consider when sizing an RBM beam. For example, it is often desirable to have the width of the RBM beam coincide with the specified wall thickness. RBM beams are sometimes formed with special U-shaped, hollow brick for this reason. These brick may be manufactured specially for this purpose or they may be cut from full-size units at the site. Manufactured special shapes may not be readily available in many localities, so it is best to contact the brick manufacturer as early as possible before proceeding with a design based on their use. The beam's depth will be determined by the appropriate number of courses of masonry units present. The beam's depth should be taken as only those courses of solid brick or that are solidly grouted. The beam's depth may be limited by the height of the wall above an opening. In such cases, compression steel may be necessary when sufficient masonry area is not provided.

## Lateral Bracing

With short spans and relatively deep beams, there is litthe likelihood of excessive cracking, deflection or rotation. This may not be the case, however, for beams that are relatively long span, shallow or highly loaded. Such beams may be vulnerable to lateral torsional buckling. The designer should consider the lateral bracing conditions to ensure that the beam is laterally braced. The MSJC Code requires that the compression face of beams be laterally supported at a maximum spacing of 32 times the beam thickness. A brick veneer wall is laterally braced by wall ties to the backup system. A RBM beam that is part of a load-bearing wall system may not be laterally braced along its span length. In addition, movement joints at the jambs of a wall opening may result in a lack of lateral bracing for the beam at its supports. In such cases, attachment of the wall to the floor or roof diaphragm is the common means of providing lateral bracing for the beam.

## RBM Arches

Design of RBM arches should begin with an analysis assuming the arch is unreinforced, in accordance with Technical Notes 31A or the ARCH computer program available from the Brick Industry Association. Such an analysis will indicate the locations of highest moment and shear, and the horizontal thrust at the abutments. Should the analysis so indicate, the arch should be designed as a reinforced beam. Further, if the conditions shown in Fig. 3 are not met, or if movement joints are provided at the abutments so that the arch may spread under load, the arch should be designed as if it were a straight, simply supported beam as a conservative measure. Alternately, a finite element analysis of the arch may be conducted to determine design moment, shear, and thrust values.

RBM arches cause both a vertical bearing stress and a horizontal thrust on their abutments. The designer has the option of resisting the horizontal thrust of the arch by the abutments or providing room for movement as the RBM arch deforms under load. Judicious placement of vertical expansion joints and flashing will permit horizontal movement and simplify the arch design. This is recommended for longer span arches because providing adequate thrust resistance is difficult and movement joint spacing is limited. In this case, it is very important to provide adequate bearing at the abutments.

## STEEL REINFORCEMENT AND TIES

The quantity of reinforcement required for an RBM beam is typically determined by the applied loads. However, the applicable building code may prescribe a minimum amount of reinforcement and this may dictate the amount of reinforcement required in a RBM beam. For example, all building codes now stipulate a minimum amount of reinforcement for masonry members in areas prone to earthquakes. Some building codes re-
quire that reinforcement in masonry coupling beams be uniformly distributed throughout the beam's height. This may require additional reinforcement and grouting of the masonry above wall openings in RBM beams.

## Bond and Hooks

Typically, reinforcement is inserted in masonry beams to resist tension. The tension must be transferred from the masonry to the reinforcement. This is achieved through adequate bond between the steel reinforcement and the masonry. The bond stress along the length of the reinforcement should not exceed an allowable bond stress of $160 \mathrm{psi}(1.1 \mathrm{MPa})$, according to the MSJC Code Commentary. A minimum embedment length must be provided in order to not exceed this bond stress. Consequently, the MSJC Code stipulates a required bond length for reinforcement in tension, called the minimum embedment length. The minimum embedment length is computed by the following equation:

$$
\mathrm{l}_{\mathrm{d}}=0.0015 \mathrm{~d}_{\mathrm{b}} \mathrm{~F}_{\mathrm{s}}
$$

Eq. 2
where:
$l_{d}=$ embedment length of reinforcement, in. (mm)
$\mathrm{d}_{\mathrm{b}}=$ nominal diameter of reinforcement, in. (mm)
$\mathrm{F}_{\mathrm{s}}=$ allowable steel stress, psi (MPa)
Table 1 provides the minimum development lengths for various bar and wire sizes, based on Grade 60 ksi (414 $\mathrm{MPa})$ reinforcing bars and $70 \mathrm{ksi}(483 \mathrm{MPa})$ steel wire.

The ends of reinforcing bars and wires may require a standard hook to properly secure the reinforcement and to achieve its strength. In simply-supported beams, the peak moment is often at midspan. For this case, the reinforcement in RBM beams can likely be developed by the bond between the bar or wire and the surrounding masonry with no need for hooks at the ends of the beam. However, a cantilever RBM beam may require a hook at the support end. In addition, shear reinforce-

TABLE 1
Minimum Development Lengths

Reinforcement		Minimum Development Length, $\mathrm{l}_{\mathrm{d}}$ in. (mm)
Type	No., in. (mm)	
Bars 60 ksi   (414   MPa )	$\begin{array}{r} 3,0.38(09.5) \\ 4,0.50(12.7) \\ 5,0.63(15.9) \\ 6,0.75(19.1) \\ 7,0.88(22.2) \\ 8,1.00(25.4) \\ 9,1.13(28.7) \\ 10,1.27(32.3) \\ 11,1.41(35.8) \end{array}$	$\begin{array}{r} 13.5(343) \\ 18.0(457) \\ 22.5(572) \\ 27.0(686) \\ 31.5(800) \\ 36.0(914) \\ 40.6(1030) \\ 45.7(1160) \\ 50.8(1290) \end{array}$
Wires   70 ksi   (483   MPa )	W1.1, 11 Gage (3.1)   W1.7, 9 Gage (3.8)   W2.1, 8 Gage (4.1)   W2.8, 0.188 (4.8)   W4.9, 0.256 (6.4)	$\begin{array}{r} \text { min. } 6(152) \text { governs } \\ 6.7(170) \\ 7.3(185) \\ 8.3(214) \\ 11.3(286) \end{array}$

ment should always be terminated with a hook. Standard hooks for principal reinforcement may be either a 90 degree or 180 degree turn. Often, the designated space for grout and reinforcement in RBM beams is very small. It can be difficult for a contractor to execute a reinforcement detail properly. Consider that a 180 degree hook doubles the number of bars at a given cross section. The designer should always consider the reinforcement placement, tolerances, and cover restrictions stated in the building codes. Technical Notes 17A Revised provides further information on bar sizes, placement requirements and construction tolerances.

## Shear Reinforcement

Where shear reinforcement is required, it should be spaced so that every potential crack is crossed by shear reinforcement. Shear cracks are assumed to be oriented at a 45 degree angle to the longitudinal axis of the RBM beam. This restricts the spacing of shear reinforcement to onehalf the beam's effective depth, d . The spacing of shear reinforcement may be computed by the following equation:

$$
\mathrm{s}=\mathrm{A}_{\mathrm{v}} \mathrm{~F}_{\mathrm{s}} \mathrm{~d} / \mathrm{V}
$$

Eq. 3
where:
$\mathrm{s}=$ spacing of shear reinforcement, in. (mm)
$\mathrm{A}_{\mathrm{v}}=$ area of shear reinforcement, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$\mathrm{F}_{\mathrm{s}}=$ allowable stress for shear reinforcement, psi (MPa)
$\mathrm{d}=$ effective depth of beam, in. (mm)
$\mathrm{V}=$ design shear force, $\mathrm{lb}(\mathrm{kg})$
When shear reinforcement is required, it should be designed to resist the entire shear force. Shear reinforcement should always be placed parallel to the shear force. For RBM beams the shear reinforcement should be placed vertically. It can be difficult to provide shear reinforcement in RBM beams due to the limited size of grout spaces. This is especially the case with hollow brick units 6 in . ( 150 mm ) or less in thickness and grout spaces between wythes less than approximately 2 in. ( 50 mm ) in width. Consequently, it may be advantageous to increase the beam's depth so that shear reinforcement is not necessary. In fact, this is often the method used by designers to determine the minimum depth of a RBM beam required for a given loading.

## Ties

There are two instances when it may be necessary to include ties in reinforced brick beams. These instances occur only when the beam is formed by grouting between wythes. If the beam has sufficient depth, ties may be required between the wythes. The grout exerts a hydrostatic pressure that must be resisted during construction. The MSJC requires wall ties between wythes as follows:

Wire size W1.7 $(3.8 \mathrm{~mm})$, one tie per $2^{2} / 3 \mathrm{ft}^{2}\left(0.25 \mathrm{~m}^{2}\right)$
Wire size W2.8 $(4.8 \mathrm{~mm})$, one tie per $41 / 2 \mathrm{ft}^{2}\left(0.42 \mathrm{~m}^{2}\right)$
Maximum spacing of 36 in . ( 914 mm ) horizontally and 24 in . 610 mm ) vertically
Rectangular or Z ties may be used.
In beams that form deep soffits (large beam widths) it may be advisable to tie the soffit brickwork to the grout. Although the grout does bond to the brick, the metal ties
should provide additional capacity and safety. Such ties are placed in the mortar joint and extend into the grout.

## DEFLECTION

Deflection of RBM beams is considered a serviceability issue. Excessive deflection might cause damage to interior finishes, functional problems with doors or windows, and cracking of masonry supported by the beam. The MSJC Code requires that the deflection of RBM beams that support unreinforced or empirically-designed masonry should not exceed the lesser of $0.3 \mathrm{in} .(7.6 \mathrm{~mm})$ or span length divided by 600 . Deflection of RBM beams may be computed based on uncracked or cracked section properties. Use of uncracked sections results in underestimating the deflection. Deflection based on cracked sections only are over-estimated and are more difficult to calculate. Use of uncracked section is recommended.

Creep is a time-dependent property of brick masonry that will cause the deflection of RBM beams to increase over time. An accurate formula for the estimation of long-term deflections of RBM beams due to creep, that is applicable for all cases and easy to use, does not currently exist. A rule-of-thumb is that the long-term deflection of RBM beams due to creep will be approximately 50 percent greater than their instantaneous deflection. This means that a beam that deflects 1.0 in . $(25 \mathrm{~mm})$ when it is fully loaded will creep over time such that its final deflection will be approximately 1.5 in . ( 38 mm ).

## DESIGN CURVES

Maximum efficiency and safety dictate the need for a rational design of all RBM beams according to the applicable building code. However, it is often helpful for the designer to have design aids that can be used to quickly develop a preliminary beam design. The design curves in Figs. 5-9 are provided for that purpose. The size and configuration of masonry and quantity of reinforcement can be quickly determined from these curves based on the span of the beam and the uniform gravity load supported by the beam, including the beam's self-weight. The curves are based on the following assumptions:

1. Compressive strength of masonry is not less than $2000 \mathrm{psi}(14 \mathrm{MPa})$. For most brick masonry, this value will be exceeded. This value was chosen so that beam capacity was not limited by the masonry's compressive strength.
2. Elastic modulus of masonry is not less than 1600 ksi ( 11030 MPa ).
3. The beam is simply supported and subject to uniform gravity loads only.
4. No compression or shear reinforcement is provided.
5. Deflection is calculated on uncracked section properties. The deflection limit of span length divided by 600 does not govern for span lengths less than 14 ft . 4.3 m ). The effective depth, d , reflected in the design curves is based on the beam height, H , minus a value for masonry cover. The cover value is based on a reasonable
approximation of brick, mortar and grout cover on the underside of reinforcement for the beams shown. The actual effective depth should always be checked for each particular RBM beam configuration.

## DESIGN EXAMPLE

To illustrate the use of the Design Curves, consider the following example. A RBM beam is to span over a garage door with a clear span of $9 \mathrm{ft}(2.7 \mathrm{~m})$. The beam supports its own weight and the weight of the brick masonry wall above the beam, so that the uniform load on the beam is $250 \mathrm{lbs} / \mathrm{ft}(372 \mathrm{~kg} / \mathrm{m})$ of span. The RBM beam and the wall above the beam are nominal 6 in. $(150 \mathrm{~mm})$ wide and constructed with hollow brick. Determine the beam depth and reinforcement required for these conditions. From Figs. 5(b) and 5(e), one concludes that a $4 \mathrm{in} .(100 \mathrm{~mm})$ or $8 \mathrm{in} .(200 \mathrm{~mm})$ high by 6 in. ( 150 mm ) wide RBM beam is not adequate for the given span and loading. Therefore, the applicable Design Curve is Fig. 6(b), which is for a full unit depth, RBM beam. For the given conditions, a minimum depth of 12 in. ( 300 mm ) and one No. 4 bar are required. At this point, any deflection criteria should be considered and may require a greater beam depth.

## SUMMARY

RBM beams are an attractive and efficient means of spanning openings. Attention to detailing of reinforcement and proper design are the key aspects addressed in this Technical Notes. The most common RBM beam configurations are shown with consideration of the in-ter-connection of beam and wall elements. Design curves provided in this Technical Notes can be used to develop preliminary beam designs for many different applications and loading conditions.

The information and suggestions contained in this Technical Notes are based on the available data and the experience of the engineering staff of the Brick Industry Association. The information contained herein must be used in conjunction with good technical judgment and a basic understanding of the properties of brick masonry. Final decisions on the use of the information contained in this Technical Notes are not within the purview of the Brick Industry Association and must rest with the project architect, engineer and owner.

## REFERENCES

1. Building Code Requirements for Masonry Struc tures (ACI 530/ASCE 5/TMS 402-95), American Society of Civil Engineers, Reston, VA, 1996.
2. Masonry Designers' Guide, John Matthys, ed., The Masonry Society, Boulder, CO, 1993.
3. Uniform Building Code, 1997 Edition, International Conference of Building Officials, Whittier, CA, 1997.


FIG. 5


Design Curves for Soldier Course Beams
FIG. 6



a) $\mathrm{H}=8 \mathrm{in} .(203 \mathrm{~mm})$

c) $H=16 \mathrm{in} .(406 \mathrm{~mm})$

b) $\mathrm{H}=12 \mathrm{in} .(305 \mathrm{~mm})$
d) $\mathrm{H}=24 \mathrm{in} \cdot(610 \mathrm{~mm})$


## Excerpts from NCMA TEK Manual for Concrete Masonry Design and Construction

Section Properties (14-1B 2007)


Table for Horizontal Cross Sections (net)

Units	Grouted Spacing	Mortar Bedding	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{in}^{2} / \mathrm{ft} \\ & \left(10^{3} \mathrm{~mm}^{2} / \mathrm{m}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{x}} \\ & \text { in }^{4} / \mathrm{ft} \\ & \left(10^{6} \mathrm{~mm}^{4} / \mathrm{m}\right) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{x}} \\ & \mathrm{in}^{3} / \mathrm{ft} \\ & \left(10^{6} \mathrm{~mm}^{3} / \mathrm{m}\right) \end{aligned}$	$\begin{aligned} & \mathrm{r} \\ & \text { in } \\ & (\mathrm{mm}) \end{aligned}$
4 Inch Single Wythe Walls, $3 / 4 \mathrm{in}$. Face Shells (standard)						
Hollow	No grout	Faceshell	18.0 (38.1)	38.0 (51.9)	21.0 (1.13)	1.45 (36.9)
Hollow	No grout	Full	21.6 (45.7)	39.4 (53.8)	21.7 (1.17)	1.35 (34.3)
100 \% s	id/grouted	Full	43.5 (92.1)	47.4 (64.7)	26.3 (1.41)	1.04 (26.5)
6 Inch Single Wythe Walls, 1 in. Face Shells (standard)						
Hollow	No grout	Faceshell	24.0 (50.8)	130.3 (178)	46.3 (2.49)	2.33 (59.2)
Hollow	None	Full	32.2 (68.1)	139.3 (190)	49.5 (2.66)	2.08 (52.9)
100\% Solid/grouted		Full	67.5 (143)	176.9 (242)	63.3 (3.40)	1.62 (41.1)
Hollow	16" o. c.	Faceshell	46.6 (98.6)	158.1 (216)	55.1 (2.96)	1.79 (45.5)
Hollow	24" о. с.	Faceshell	39.1 (82.7)	151.8 (207)	52.2 (2.81)	1.87 (47.4)
Hollow	32" o. c.	Faceshell	35.3 (74.7)	148.7 (203)	50.7 (2.73)	1.91 (48.5)
Hollow	40" o. c.	Faceshell	33.0 (69.9)	146.8 (200)	49.9 (2.68)	1.94 (49.3)
Hollow	48" о. с.	Faceshell	31.5 (66.7)	145.5 (199)	49.3 (2.65)	1.96 (49.8)
Hollow	$72^{\prime \prime}$ о. c.	Faceshell	29.0 (61.45)	143.5 (196)	51.0 (2.74)	2.00 (50.8)
Hollow	96" о. с.	Faceshell	27.8 (58.8)	142.4 (194)	50.6 (2.72)	2.02 (51.3)
Hollow	122" о. c.	Faceshell	27.0 (57.1)	141.8 (194)	50.4 (2.71)	2.03 (51.5)
8 Inch Single Wythe Walls, $11 / 4 \mathrm{in}$. Face Shells (standard)						
Hollow	No grout	Faceshell	30.0 (63.5)	308.7 (422)	81.0 (4.35)	3.21 (81.5)
Hollow	No grout	Full	41.5 (87.9)	334.0 (456)	87.6 (4.71)	2.84 (72.0)
100\% solid/grouted		Full	91.5 (194)	440.2 (601)	116.3 (6.25)	2.19 (55.7)
Hollow	16" o. c.	Faceshell	62.0 (131)	387.1 (529)	99.3 (5.34)	2.43 (61.6)
Hollow	24" o. c.	Faceshell	51.3 (109)	369.4 (504)	93.2 (5.01)	2.53 (64.3)
Hollow	32" o. c.	Faceshell	46.0 (97.3)	360.5 (492)	90.1 (4.85)	2.59 (65.8)
Hollow	40" o. c.	Faceshell	42.8 (90.6)	355.2 (485)	88.3 (4.75)	2.63 (66.9)
Hollow	48" о. с.	Faceshell	40.7 (86.0)	351.7 (480)	87.1 (4.68)	2.66 (67.6)
Hollow	$72^{\prime \prime}$ o. c.	Faceshell	37.1 (78.5)	345.8 (472)	85.0 (4.57)	2.71 (69.0)
Hollow	92" o. c.	Faceshell	35.3 (74.7)	342.8 (468)	89.9 (4.83)	2.74 (69.6)
Hollow	120 o. c.	Faceshell	34.3 (72.6)	341.0 (466)	89.5 (4.81)	2.76 (70.1)


Units	Grouted Cores	Mortar Bedding	$\begin{aligned} & \mathrm{A} \\ & \mathrm{in}^{2} / \mathrm{ft} \\ & \left(10^{3} \mathrm{~mm}^{2} / \mathrm{m}\right) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{x}} \\ & \mathrm{in}^{4} / \mathrm{ft} \\ & \left(10^{6} \mathrm{~mm}^{4} / \mathrm{m}\right) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{x}} \\ & \mathrm{in}^{3} / \mathrm{ft} \\ & \left(10^{6} \mathrm{~mm}^{3} / \mathrm{m}\right) \end{aligned}$	$\begin{aligned} & \mathrm{r} \\ & \text { in } \\ & (\mathrm{mm}) \end{aligned}$
10 Inch Single Wythe Walls, $11 / 4 \mathrm{in}$. Face Shells (standard)						
Hollow	No grout	Faceshell	30.0 (63.5)	530.0 (724)	110.1 (5.92)	4.20 (107)
Hollow	No grout	Full	48.0 (102)	606.3 (828)	126.0 (6.77)	3.55 (90.2)
100\% solid/grouted		Full	115.5 (244)	891.7 (1218)	185.3 (9.96)	2.78 (70.6)
Hollow	16" o. c.	Faceshell	74.8 (158)	744.7 (1017)	154.7 (8.32)	3.04 (77.2)
Hollow	24" o. c.	Faceshell	59.8 (127)	698.6 (954)	145.2 (7.81)	3.16 (80.3)
Hollow	32" o. c.	Faceshell	52.4 (111)	675.5 (923)	140.4 (7.55)	3.24 (82.3)
Hollow	40" o. c.	Faceshell	47.9 (101)	661.6 (904)	137.5 (7.39)	3.29 (83.6)
Hollow	48" o. c.	Faceshell	44.9 (95.0)	652.4 (891)	135.6 (7.29)	3.33 (84.6)
Hollow	$72^{\prime \prime}$ о. c.	Faceshell	39.9 (84.5)	637.0 (870)	132.4 (7.12)	3.39 (86.1)
Hollow	96" о. с.	Faceshell	37.5 (79.4)	629.3 (859)	130.8 (7.03)	3.43 (87.1)
Hollow	120 o. c.	Faceshell	36.0 (76.2)	624.7 (853)	129.8 (6.98)	3.45 (87.6)
12 Inch Single Wythe Walls. $11 / 4 \mathrm{in}$. Face Shells (standard)						
Hollow	No grout	Faceshell	30.0 (63.5)	811.2 (1108)	139.6 (7.50)	5.20 (132)
Hollow	No grout	Full	53.1 (112)	971.5 (1327)	167.1 (8.98)	4.28 (109)
100\% solid/grouted		Full	139.5 (295)	1571.0 (2145)	270.3 (14.5)	3.36 (85.3)
Hollow	16" o. c.	Faceshell	87.3 (185)	1262.3 (1724)	217.2(11.7)	3.64 (92.5)
Hollow	24" o. c.	Faceshell	68.2 (144)	1165.4 (1591)	200.5 (10.7)	3.79 (96.3)
Hollow	$32^{\prime \prime}$ o. c.	Faceshell	58.7 (124)	1116.9 (1525)	192.2 (10.3)	3.88 (98.6)
Hollow	40" o. c.	Faceshell	52.9 (112)	1087.8 (1486)	187.2 (10.1)	3.95 (100)
Hollow	48" о. с.	Faceshell	49.1 (104)	1068.4 (1459)	183.8 (9.88)	3.99 (101)
Hollow	$72^{\prime \prime}$ о. c.	Faceshell	42.7 (90.4)	1036.1 (1415)	178.3 (9.59)	4.07 (103)
Hollow	96" о. с.	Faceshell	39.6 (83.8)	1020.0 (1393)	175.5 (9.44)	4.12 (105)
Hollow	120 o. c.	Faceshell	37.6 (79.6)	1010.3 (1380)	173.8 (9.34)	4.15 (105)
14 Inch Single Wythe Walls. $11 / 4 \mathrm{in}$. Face Shells (standard)						
Hollow	No grout	Faceshell	30.0 (63.5)	1152.5 (1574)	169.2 (9.09)	6.20 (157)
Hollow	No grout	Full	58.2 (123)	1442.9 (1970)	211.8 (11.4)	4.98 (126)
100\% solid/grouted		Full	163.5 (346)	2529.4 (3454)	371.3 (20.0)	3.93 (99.8)
Hollow	$16^{\prime \prime}$ o. c.	Faceshell	99.9 (211)	1970.0 (2690)	289.2(15.5)	4.25 (108)
Hollow	24" o. c.	Faceshell	76.6 (162)	1794.3 (2450)	263.4 (14.2)	4.41 (112)
Hollow	$32^{\prime \prime}$ o. c.	Faceshell	64.9 (137)	1706.4 (2330)	250.5 (13.5)	4.51 (115)
Hollow	40" o. c.	Faceshell	58.0 (123)	1653.7 (2258)	242.8 (13.0)	4.59 (117)
Hollow	48" о. с.	Faceshell	53.3 (113)	1618.6 (2210)	237.6 (12.8)	4.64 (118)
Hollow	$72^{\prime \prime}$ о. с.	Faceshell	45.5 (96.3)	1560.0 (2130)	229.0 (12.3)	4.74 (120)
Hollow	96" o. c.	Faceshell	41.6 (88.1)	1530.7 (2090)	224.7 (12.1)	4.79 (122)
Hollow	120 o. c.	Faceshell	39.3 (83.2)	1513.2 (2067)	221.1 (11.9)	4.83 (123)
16 Inch Single Wythe Walls. $11 / 4$ in. Face Shells (standard)						
Hollow	No grout	Faceshell	30.0 (63.5)	1553.7 (2122)	198.9 (10.2)	7.20 (183)
Hollow	No grout	Full	63.2 (134)	2030.6 (2773)	259.9 (13.9)	5.67 (144)
100\% solid/grouted		Full	187.5 (397)	3814.7 (5209)	488.3 (26.3)	4.51 (115)
Hollow	16" o. c.	Faceshell	112.4 (238)	2896.2 (3955)	370.7(19.9)	4.84 (123)
Hollow	24" o. c.	Faceshell	85.0 (180)	2607.7 (3561)	333.8 (17.9)	5.02 (127)
Hollow	$32^{\prime \prime}$ o. c.	Faceshell	71.2 (151)	2463.4 (3364)	315.3 (17.0)	5.14 (131)
Hollow	40" o. c.	Faceshell	63.0 (133)	2376.9 (3246)	304.2 (16.4)	5.22 (133)
Hollow	48" о. с.	Faceshell	57.5 (122)	2319.1 (3167)	296.9 (16.0)	5.28 (134)
Hollow	$72^{\prime \prime}$ o. c.	Faceshell	48.3 (102)	2223.0 (3036)	284.5 (15.3)	5.39 (137)
Hollow	96" o. c.	Faceshell	43.7 (92.5)	2174.9 (3970)	278.4 (15.0)	5.45 (138)
Hollow	120 o. c.	Faceshell	41.0 (86.8)	2146.0 (2931)	274.7 (14.8)	5.49 (139)

Allowable Stresses for Unreinforced Concrete Masonry (14-7C 2012)

## Compression

Axial $\qquad$ $. \mathrm{F}_{\mathrm{a}}=1 / 4 \mathrm{f}^{\prime}{ }_{\mathrm{m}}\left[1-(\mathrm{h} / 140 \mathrm{r})^{2}\right]$, where $\mathrm{h} / \mathrm{r} \geq 99$
........................................ $\mathrm{F}_{\mathrm{a}}=1 / 4 \mathrm{f}{ }_{\mathrm{m}}(70 \mathrm{r} / \mathrm{h})^{2}$, where $\mathrm{h} / \mathrm{r}>99$
Flexural........................... $\mathrm{F}_{\mathrm{b}}=1 / 3 \mathrm{f} \mathrm{m}_{\mathrm{m}}$

## Shear

where $f_{v}=\frac{V Q}{I_{n} b}$

$$
1.5 \sqrt{f_{m}^{\prime}} \leq 120 \mathrm{psi}
$$

Table 1—Allowable Flexural Tensile Stresses, psi (kPa) (ref. 1a)

Direction of flexural tensile stress and masonry type	Mortar types			
	Portland cement/ lime or mortar cement		Masonry cement or air-entrained portland cement/lime	
	M or S	N	M or S	N
Normal to bed joints:   Solid units Hollow units ${ }^{A}$ Ungrouted Fully grouted	$\begin{aligned} & 53(366) \\ & 33(228) \\ & 86(593) \\ & \hline \end{aligned}$	$\begin{aligned} & 40(276) \\ & 25(172) \\ & 84(579) \end{aligned}$	$\begin{aligned} & 32(221) \\ & 20(138) \\ & 81(559) \\ & \hline \end{aligned}$	$\begin{gathered} 20(138) \\ \\ 12(83) \\ 77(531) \\ \hline \end{gathered}$
Parallel to bed joints in running bond: Solid units Hollow units Ungrouted \& partially grouted Fully grouted	$\begin{aligned} & 106(731) \\ & 66(455) \\ & 106(731) \\ & \hline \end{aligned}$	$\begin{aligned} & 80(552) \\ & 50(345) \\ & 80(552) \\ & \hline \end{aligned}$	$\begin{aligned} & 64(441) \\ & 40(276) \\ & 64(441) \\ & \hline \end{aligned}$	$\begin{aligned} & 40(276) \\ & 25(172) \\ & 40(276) \end{aligned}$
Parallel to bed joints in masonry not laid in running bond:   Continuous grout section parallel to bed joints   Other	$\begin{gathered} 133 \text { (917) } \\ 0(0) \\ \hline \end{gathered}$	$\begin{gathered} 133(917) \\ 0(0) \\ \hline \end{gathered}$	$\begin{gathered} 133(917) \\ 0(0) \\ \hline \end{gathered}$	$\begin{gathered} 133 \text { (917) } \\ 0(0) \end{gathered}$

A For partially grouted masonry, allowable stresses are determined on the basis of linear interpolation between fully grouted hollow units and ungrouted hollow units based on amount (percentage) of grouting.

Allowable Stresses for Reinforced Concrete Masonry (14-7C 2012)

## Compression

Axial ............................ $P_{a}=\left[0.25 f_{m}^{\prime} A_{n}+0.65 A_{s t} F_{s}\right]\left[1-\left(\frac{h}{140 r}\right)^{2}\right]$, where $\mathrm{h} / \mathrm{r} \geq 99$
$\ldots \ldots . . . . . . . . . . . . . . . . . . . . . P_{a}=\left[0.25 f_{m}^{\prime} A_{n}+0.65 A_{s t} F_{s}\right]\left(\frac{70 r}{h}\right)^{2}$, where $\mathrm{h} / \mathrm{r}>99$
Flexural $\qquad$ $\mathrm{F}_{\mathrm{b}}=0.45 \mathrm{f}^{\prime} \mathrm{m}$

## Shear

$$
\begin{aligned}
& \text { where } f_{v}=\frac{V}{A_{n v}} \text { and } F_{v}=F_{v m}+F_{v s} \\
& M / V d \leq 0.25 \ldots \ldots \ldots \ldots \ldots . . \ldots \mathrm{F}_{\mathrm{v}}=3 \sqrt{f_{m}^{\prime}} \\
& M / V d \geq 1.0 \ldots \ldots \ldots \ldots \ldots . . \ldots \mathrm{F}_{\mathrm{v}}=2 \sqrt{f_{m}^{\prime}}
\end{aligned}
$$

M/Vdfalls between.........may be linearly interpolated
and

$$
\begin{aligned}
& F_{v m}=\frac{1}{2}\left[\left(4.0-1.75\left(\frac{M}{V d}\right)\right) \sqrt{f_{m}^{\prime}}\right]+0.25 \frac{P}{A_{n}} \\
& F_{v s}=0.5\left(\frac{A_{v} F_{s} d}{A_{n} s}\right)
\end{aligned}
$$

## Steel Reinforcement

Tension
Grade 40...................... $\mathrm{F}_{\mathrm{s}}=20,000 \mathrm{psi}(137.9 \mathrm{MPa})$
Grade $60 \ldots \ldots \ldots \ldots \ldots . . . . . . . . . . F_{s}=32,000 \mathrm{psi}(220.7 \mathrm{MPa})$
Joint reinforcement..... $\mathrm{F}_{\mathrm{s}}=30,000 \mathrm{psi}(206.9 \mathrm{MPa})$

## NOTATIONS

$A_{\mathrm{n}}$ net cross-sectional area of masonry, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$A_{\mathrm{nv}}$ net shear area, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$A_{\mathrm{v}}$ cross-sectional area of shear reinforcement, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$b \quad$ width of section, in. (mm)
$d$ distance from extreme compression fiber to centroid of tension reinforcement, in. (mm)
$F_{\mathrm{a}} \quad$ allowable compressive stress due to axial load only, psi (MPa)
$F_{\mathrm{b}} \quad$ allowable compressive stress due to flexure only, psi (MPa)
$F_{\mathrm{s}} \quad$ allowable tensile or compressive stress in reinforcement, psi (MPa)
$F_{\mathrm{v}}$ allowable shear stress in masonry, psi (MPa)
$F_{\mathrm{vm}}$ allowable shear resisted by the masonry, psi (MPa)
$F_{\mathrm{vx}}$ allowable shear resisted by the shear reinforcement, $\mathrm{psi}(\mathrm{MPa})$
$f_{m}^{\prime} \quad$ specified compressive strength of masonry, psi (MPa)
$f_{\mathrm{s}} \quad$ calculated shear stress in the masonry, $\mathrm{psi}(\mathrm{MPa})$
$h$ effective height of column, wall, or pilaster, in. (mm)
$I_{n} \quad$ moment of inertia of net cross-sectional area of a member, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$M$ maximum moment occurring simultaneously with design shear force, $V$, at section under consideration, in.-lb (N.m)
$P \quad$ axial compression load, lb (N)
$P_{\mathrm{a}}$ allowable axial compressive force in a reinforced member, $\mathrm{lb}(\mathrm{N})$
$Q$ first moment of inertia about the neutral axis of an area between the extreme fiber and the plane at which the shear stress is being calculated, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$
$r$ radius of gyration, in. (mm)
$s \quad$ spacing of shear reinforcement, in. (mm)
$V \quad$ design shear force, $\mathrm{lb}(\mathrm{N})$


[^0]:    *Note: Materials in the Class Note Set not specifically mentioned above are provided as references or aids

[^1]:    *American Society of Mechanical Engineers (ASME) Orientation and Guide for Use of SI (Metric) Units, 9th edition, 1982, p 11. By increasing the digit to the left for a final 5 followed by zeros only if the digit becomes even, we are dividing the rounding process evenly between increasing the digit to the left and leaving the digit to the left unchanged.

[^2]:    FIGURE $1613.3 .1(1)$
    RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCE
    FOR THE CONTERMINOUS UNITED STATES OF O. 0 -SECOND SPECTRAL RESPONSE ACCELERATION

[^3]:    ${ }^{1}$ The same $E$ from Sections 1.4 and 12.4 is used for both Sections 2.3.2 and 2.4.1. Refer to the Chapter 11 Commentary for the Seismic Provisions.

[^4]:    1. $D$
    2. $D+L$
    3. $D+\left(L_{r}\right.$ or $S$ or $\left.R\right)$
[^5]:    ${ }^{2}$ The same $E$ from Sections 1.4 and 12.4 is used for both Sections 2.3.2 and 2.4.1. Refer to the Chapter 11 Commentary for the Seismic Provisions.

[^6]:    Figure 4.54 Various shearwall arrangements-some stable, others unstable.

