**ARCHITECTURAL STRUCTURES:** 

FORM, BEHAVIOR, AND DESIGN

ARCH 331 DR. Anne Nichols Summer 2013





# mechanics of materials

Mechanics of Materials 1 Lecture 5 Architectural Structures ARCH 331 Mechanics of Materials

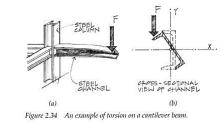
• MECHANICS



• MATERIALS



Mechanics of Materials 2 Lecture 5


Foundations Structures ARCH 331 F2008abr

#### Mechanics of Materials

- external loads and their effect on deformable bodies
- use it to answer question if structure meets requirements of
  - stability and equilibrium
  - strength and stiffness
- other principle building requirements
  - economy, functionality and aesthetics

### Knowledge Required

- material properties
- member cross sections
- ability of a material to resist breaking
- structural elements that resist excessive
  - deflection
  - deformation



F2008abn

www.carttalk.com

F2009abn

Mechanics of Materials 4 Lecture 5 Foundations Structures ARCH 331

#### Problem Solving

1. STATICS:

equilibrium of external forces, internal forces, <u>stresses</u>



2. GEOMETRY:

cross section properties, deformations and conditions of geometric fit, <u>strains</u>

3. MATERIAL PROPERTIES:

<u>stress-strain relationship</u> for each material obtained from testing

| Mechanics of Materials 5 |
|--------------------------|
| Lecture 5                |

Foundations Structures ARCH 331

#### Design

- materials have a critical stress value where they could break or yield
  - ultimate stress
  - yield stress

acceptance vs. failure

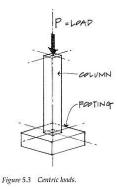
- compressive stress
- fatigue strength
- (creep & temperature)

#### Stress

- stress is a term for the <u>intensity</u> of a force, like a pressure
- internal or applied
- force per unit area

$$stress = f = \frac{P}{A}$$




Mechanics of Materials 6 Lecture 5 Foundations Structures ARCH 331 F2008abn

## Design (cont)

• we'd like

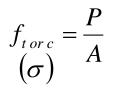
 $f_{actual} << F_{allowable}$ 

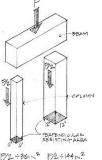
- stress distribution may vary: <u>average</u>
- uniform distribution exists IF the member is loaded axially (concentric)



Mechanics of Materials 7 Lecture 5 F2008abn

Mechanics of Materials 8 Lecture 5 Foundations Structures ARCH 331


#### Scale Effect


- model scale
  - material weights by volume, small section areas
- structural scale
  - much more material weight, bigger section areas
- scale for strength is not proportional:  $\frac{\gamma L^3}{2} = \gamma L$



#### Normal Stress (direct)

- <u>normal</u> stress is normal to the cross section
  - stressed area is perpendicular to the load





GHBATER LESS STRESS STRESS

Mechanics of Materials 9 Lecture 5

Foundations Structures ARCH 331

F2008abr

#### Mechanics of Materials 10 Lecture 5

Foundations Structures ARCH 331 F2008abn

#### Shear Stress

• stress parallel to a surface

$$f_{v} = \frac{P}{A} = \frac{P}{td}$$
$$(\tau_{ave})$$

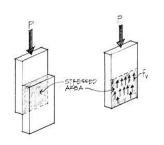



Figure 5.10 Shear stress between two glued blocks.

#### **Bearing Stress**

 stress on a surface by <u>contact</u> in compression

$$\begin{aligned} f_p &= \frac{P}{A} = \frac{P}{td} \\ \sigma \end{aligned}$$

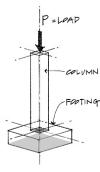
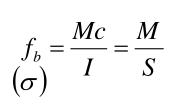



Figure 5.3 Centric londs.


Mechanics of Materials 11 Lecture 5 Foundations Structures ARCH 331 F2008abn

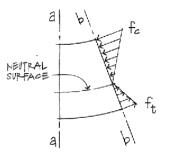
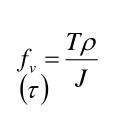
Mechanics of Materials 12 Lecture 5 Foundations Structures ARCH 331

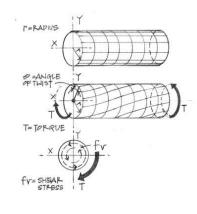
Figure 5.7 Two columns with the same load, different stress.

#### **Bending Stress**

normal stress caused by bending





Figure 8.8 Bending stresses on section b-b.

Mechanics of Materials 13 Lecture 5 Foundations Structures ARCH 331 F2008abn

#### **Torsional Stress**

shear stress caused by twisting



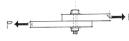


Mechanics of Materials 14 Lecture 5 Foundations Structures ARCH 331 F2008abn

#### Structures and Shear

- what structural elements see shear?
  - beams -
  - bolts connections
  - splices
  - slabs
  - footings
  - walls
    - wind
    - seismic loads

Mechanics of Materials 15 Lecture 5 Foundations Structures ARCH 331 F2008abn


#### **Bolts**

 connected members in tension cause shear stress

Foundations Structures

ARCH 331

P



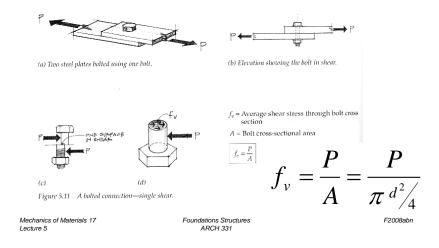
(a) Two steel plates bolted using one bolt.

Mechanics of Materials 16

Lecture 5

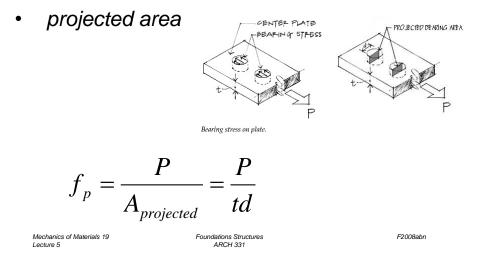
- (b) Elevation showing the bolt in
- connected members in compression cause bearing stress

PEARING STRESS


Bearing stress on plate.

F2008abn

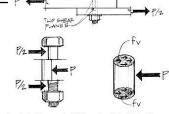
4

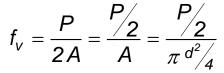

#### Single Shear

• seen when 2 members are connected



#### **Bolt Bearing Stress**


compression & contact




#### Double Shear

- seen when 3 members are connected
- <u>two</u> areas







Free-body diagram of middle section of the bolt in shear. Figure 5.12 A bolted connection in double shear.

Mechanics of Materials 18 Lecture 5

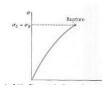
Foundations Structures ARCH 331 F2008abn

#### Strain

Lecture 5

ARCH 331

5


#### Shearing Strain applied shear deformations with shear reaction shear reaction (required for shear equilibrium parallelogram to prevent rotation) applied shea • change in angles (a) • stress: τ $\gamma = \frac{\delta_s}{L} = \tan \phi \cong \phi$ • strain: - unitless (radians)

Mechanics of Materials 21 Lecture 5

Foundations Structures ARCH 331

#### Load and Deformation

- for stress, need P & A
- for strain, need  $\delta$  & L
  - -how?
  - TEST with load and measure
  - plot P/A vs. ε





Mechanics of Materials 23 Lecture 5



F2008abn

F2008abn

- Mechanics of Materials 24 Lecture 5
- Foundations Structures ARCH 331

F2008abn

Figure 5.20 Stress-strain diagram for various materials.

F2008abr

Mechanics of Materials 22 Lecture 5

Foundations Structures ARCH 331

 $\gamma = \frac{\rho\phi}{L}$ 

Material Behavior

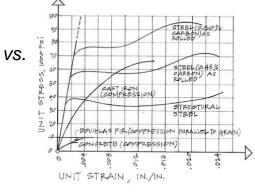
Shearing Strain

deformations

with torsion

• change in angle of line

– unitless (radians)


 $\tau$ 

• twist

• stress:

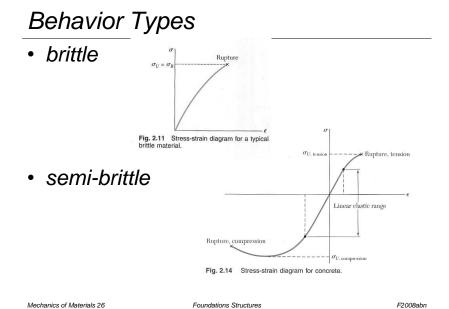
• strain:

- every material has its own response
  - 10,000 psi
  - -L = 10 in
  - Douglas Fir vs. steel?



#### **Behavior Types**

- ductile "necking"
- true stress




engineering stress

#### - (simplified)







ARCH 331

Mechanics of Materials 25 Lecture 5

Foundations Structures ARCH 331

F2008abr



## Stress to Strain

- important to us in f- $\varepsilon$  diagrams:
  - straight section
  - LINEAR-ELASTIC
  - recovers shape (no permanent deformation)

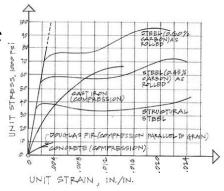



Figure 5.20 Stress-strain diagram for various materials.

Mechanics of Materials 27 Lecture 5

Foundations Structures ARCH 331

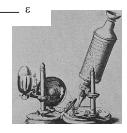
F2008abr

#### Hooke's Law

- straight line has constant slope
- Hooke's Law

$$f = E \cdot \epsilon$$

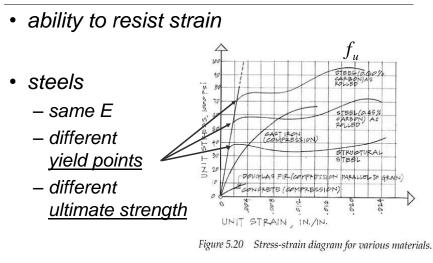
• E


Lecture 5

Lecture 5

- Modulus of elasticity
- Young's modulus
- units just like stress



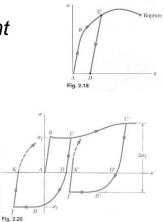

Foundations Structures ARCH 331



F2008abn

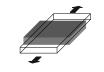
7

#### Stiffness

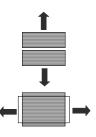



Mechanics of Materials 29 Lecture 5

Foundations Structures ARCH 331


#### Elastic, Plastic, Fatigue

- elastic springs back
- plastic has permanent deformation
- fatigue caused by reversed loading cycles




#### Isotropy & Anisotropy

- ISOTROPIC
  - materials with E same at any direction of loading
  - ex. steel
- ANISOTROPIC
  - materials with different E at any direction of loading
  - ex. wood is orthotropic







Mechanics of Materials 30 Lecture 5

```
Foundations Structures
ARCH 331
```

F2008abr

#### Plastic Behavior

• ductile

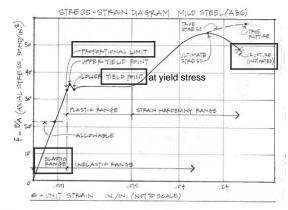



Figure 5.22 Stress-strain diagram for mild steel (A36) with key points highlighted.

Mechanics of Materials 32 Lecture 5

Foundations Structures ARCH 331

F2008abr

Mechanics of Materials 31 Lecture 5

F2008abr

#### Lateral Strain

 or "what happens to the cross section with axial stress"

> $\mathcal{E}_x = \frac{f_x}{F}$  $f_{v} = f_{z} = 0$

strain in lateral direction

- negative

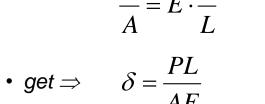
- equal for isometric materials

Mechanics of Materials 33 Lecture 5

Foundations Structures ARCH 331

 $\mathcal{E}_{v} = \mathcal{E}_{z}$ 

F2008abr


#### Calculating Strain

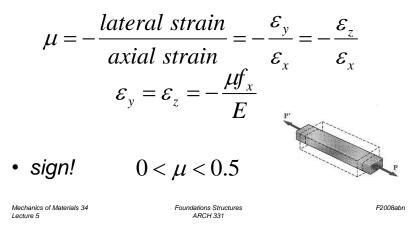
from Hooke's law

 $f = E \cdot \varepsilon$ 

substitute

$$\frac{P}{A} = E \cdot \frac{\delta}{L}$$




Mechanics of Materials 35 Lecture 5

Foundations Structures ARCH 331

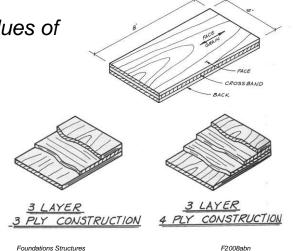
F2008abr

#### Poisson's Ratio

 constant relationship between longitudinal strain and lateral strain

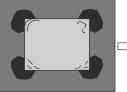


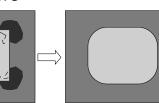
ARCH 331

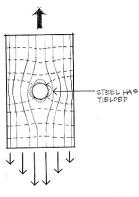

#### Orthotropic Materials

- non-isometric
- directional values of E and  $\mu$
- ex:

Mechanics of Materials 36


Lecture 5


- plywood
- laminates
- polymer composites



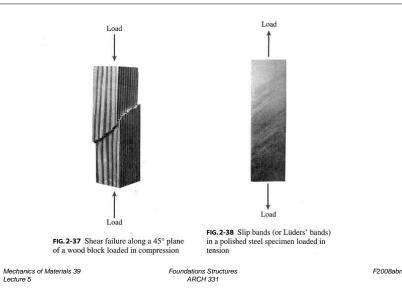

#### Stress Concentrations

- why we use  $f_{ave}$
- increase in stress at changes in geometry
  - sharp notches
  - holes
  - corners








#### Figure 5.35 Stress trajectories around a hole.

F2008abn

Mechanics of Materials 37 Lecture 5

Foundations Structures ARCH 331

#### Maximum Stresses



#### Deformation Relationships

physical movement

Maximum Stresses

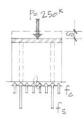
if we need to know

happen:

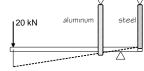
Mechanics of Materials 38

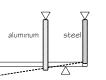
Lecture 5

where max f and  $f_v \approx$ 


 $\theta = 0^{\circ} \rightarrow \cos \theta = 1$   $f_{\max} =$ 

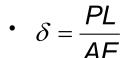
 $\theta = 45^{\circ} \rightarrow \cos \theta = \sin \theta = \sqrt{0.5}$ 


Foundations Structures


ARCH 331

- axially (same or zero)
- rotations from axial changes




J max

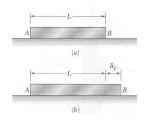




 $o \stackrel{y}{\bigsqcup_{x}} \xrightarrow{\sigma_x}$ 

 $f_{v-\max} = \frac{P}{2A}$ 






Mechanics of Materials 40 Lecture 5

Foundations Structures ARCH 331

#### Deformations from Temperature

- atomic chemistry reacts to changes in energy
- solid materials
  - · can contract with decrease in temperature
  - can expand with increase in temperature
- linear change can be measured per degree



F2008abr

Mechanics of Materials 41 Lecture 5 Foundations Structures

### Coefficients of Thermal Expansion

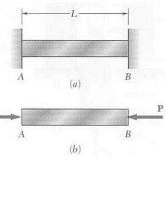
| Material                               | Coefficients ( $\alpha$ ) [in      | ./in./°F]    |
|----------------------------------------|------------------------------------|--------------|
| Wood                                   | 3.0 x 10 <sup>-6</sup>             |              |
| Glass                                  | 4.4 x 10 <sup>-6</sup>             | BEARING WALL |
| Concrete                               | 5.5 x 10 <sup>-6</sup>             | JOINT        |
| Cast Iron                              | 5.9 x 10 <sup>-6</sup>             | tel to       |
| Steel                                  | 6.5 x 10 <sup>-6</sup>             |              |
| Wrought Iron                           | 6.7 x 10 <sup>-6</sup>             |              |
| Copper                                 | 9.3 x 10 <sup>-6</sup>             | 4            |
| Bronze                                 | 10.1 x 10 <sup>-6</sup>            |              |
| Brass                                  | 10.4 x 10 <sup>-6</sup>            |              |
| Aluminum                               | 12.8 x 10 <sup>-6</sup>            |              |
| Mechanics of Materials 43<br>Lecture 5 | Foundations Structures<br>ARCH 331 | F2008abn     |

#### Thermal Deformation

- $\alpha$  the rate of strain per degree
- UNITS : /°F , /°C
- length change:  $\delta_T = \alpha(\Delta T)L$
- thermal strain:

$$\varepsilon_T = \alpha(\Delta T)$$

#### - <u>no stress</u> when movement allowed


Mechanics of Materials 42 Lecture 5 Foundations Structures ARCH 331 F2008abn

#### Stresses and Thermal Strains

- *if thermal movement is restrained* <u>stresses</u> are induced
- 1. bar pushes on supports
- 2. support pushes back
- 3. reaction causes internal stress  $P = \delta$

$$f = \frac{P}{A} = \frac{\delta}{L}E$$

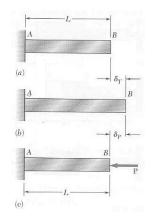
Mechanics of Materials 44 Lecture 5 Foundations Structures ARCH 331



F2008abr

## Superposition Method

- can remove a support to make it look determinant
- replace the support with a reaction
- enforce the geometry constraint


Design of Members

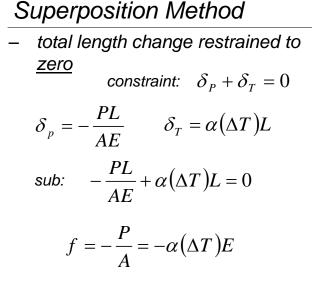
beyond allowable stress...

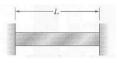
materials aren't uniform 100% of the

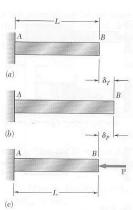
 ultimate strength or capacity to failure may be different and some strengths hard to






Mechanics of Materials 45 Lecture 5


time


test for

Foundations Structures ARCH 331

F2008abn



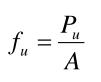




# Factor of Safety

Mechanics of Materials 46

Lecture 5


• accommodate uncertainty with a safety factor: allowable load =  $\frac{\text{ultimate load}}{F.S}$ 

Foundations Structures

ARCH 331

• with linear relation between load and stress:  $F.S = \frac{ultimate \ load}{allowable \ load} = \frac{ultimate \ stress}{allowable \ stress}$ 

RISK & UNCERTAINTY



Mechanics of Materials 47 Lecture 5

Foundations Structures ARCH 331 F2008abn

Mechanics of Materials 48 Lecture 5

Foundations Structures ARCH 331

#### Load and Resistance Factor Design

• loads on structures are



- can be more influential on failure
- happen more or less often
- UNCERTAINTY

- not constant

$$R_{u} = \gamma_{D}R_{D} + \gamma_{L}R_{L} \le \phi R_{n}$$

- $\phi$  resistance factor
- $\gamma$  load factor for (D)ead & (L)ive load

Mechanics of Materials 49 Lecture 5 Foundations Structures ARCH 331