Architectural Structures: Form, Behavior, and Design

ARCH 331 DR. ANNE NICHOLS SUMMER 2013

http:// nisee.berkeley.edu/godden

F2009abr

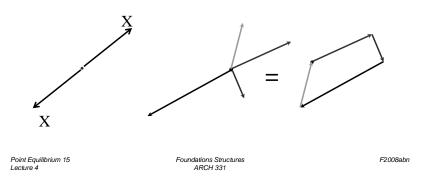
point equilibrium and planar trusses

Point Equilibrium 1 Lecture 4 Architectural Structures ARCH 331

Equilibrium on a Point

• analytically

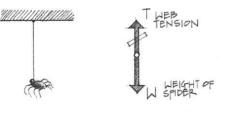
$$R_{x} = \sum F_{x} = 0$$


$$R_{y} = \sum F_{y} = 0$$
Anisotropy of the second se

http://www.physics.umd.edu

• Newton convinces us it will stay at rest

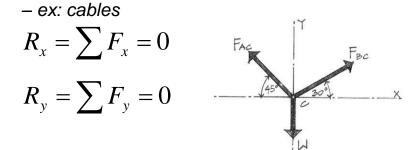
Equilibrium


- balanced
- steady
- resultant of forces on a particle is 0

Equilibrium on a Point

• collinear force system

- ex: cables $\sum F_{in-line} = 0$


 $\left(R_x = \sum F_x = 0 \qquad R_y = \sum F_y = 0 \right)$

Point Equilibrium 16 Lecture 4 F2008abn

Foundations Structures ARCH 331 F2008abn

Equilibrium on a Point

concurrent force system

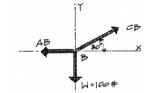
Point Fauilibrium 18 Lecture 4

Foundations Structures ARCH 331

Free Body Diagram

- determine point
- FREE it from:
 - ground
 - supports & connections
- draw all external forces acting ON the body
 - reactions (supporting forces)
 - applied forces
 - gravity

Sign suspended from a strut and cable. TENSION IN SIGN WEIGH = m·g FBD of concurrent point B.


BUILDING UY CABLE

STRINTAL

SIGN

Free Body Diagram

- FBD (sketch)
- tool to see all forces on a body or a point including
 - external forces
 - weights
 - force reactions
 - internal forces

Point Equilibrium	19
Lecture 4	

Foundations Structures ARCH 331

F2008abn

Free Body Diagram

- sketch FBD with relevant geometry
- resolve each force into components
 - known & unknown angles name them
 - known & unknown forces name them
- are any forces related to other forces?
- for the unknowns
- write only as many equilibrium equations as needed
- solve up to 2 equations

Point Equilibrium 20 Lecture 4

ARCH 331

F2008abn

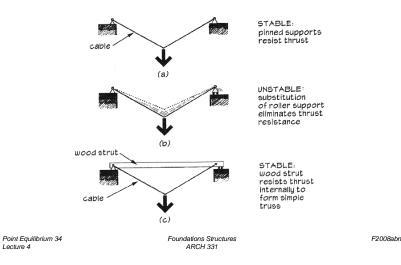
F2008abn

Point Equilibrium 21 Lecture 4

Foundations Structures ARCH 331

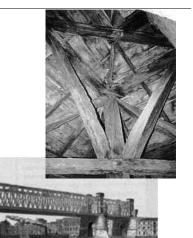
Free Body Diagram

- solve equations
 - most times 1 unknown easily solved
 - plug into other equation(s)
- common to have unknowns of ٠
 - force magnitudes
 - force angles


Point Equilibrium 22 Lecture 4

Lecture 4

Foundations Structures ARCH 331

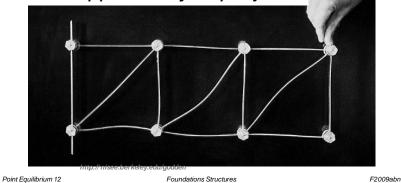

Truss Structures

- analogous to cables and struts

Truss Structures

- ancient (?) wood
 - Romans 500 B.C.
- Renaissance revival
- 1800's analysis •
- efficient

Point Equilibrium 33 Lecture 4

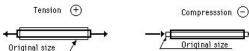

F2008abn

Foundations Structures ARCH 331

F2008abn

Truss Structures

- comprised of straight members
- geometry with triangles is stable
- loads applied only at pin joints



ARCH 331

Lecture 4

Truss Structures

- 2 force members
 - forces in line, equal and opposite
 - compression
 - tension

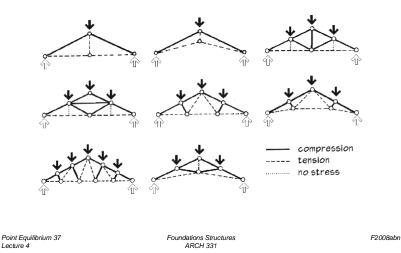
- 3 members connected by 3 joints
- 2 more members need 1 more joint b = 2n - 3

F2008abn

Point Equilibrium 36 Lecture 4

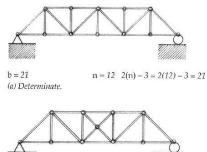
b = 16

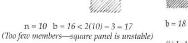
(c) Unstable.

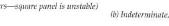

Point Equilibrium 38

Lecture 4

Foundations Structures ARCH 331


Truss Structures

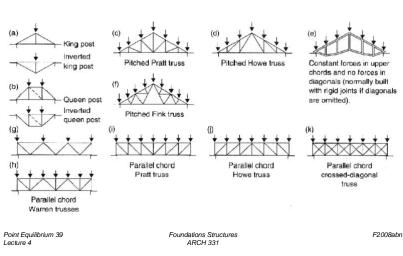

compression and tension



Truss Structures

- statically determinate
- indeterminate
- unstable

Foundations Structures

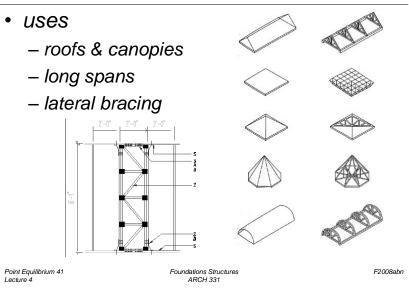

ARCH 331

(Too many members)

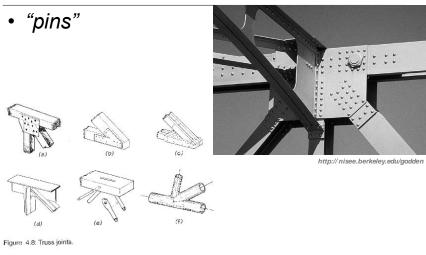
n = 10 b = 18 > 2(10) - 3 = 17

F2008abn

common designs


Trusses

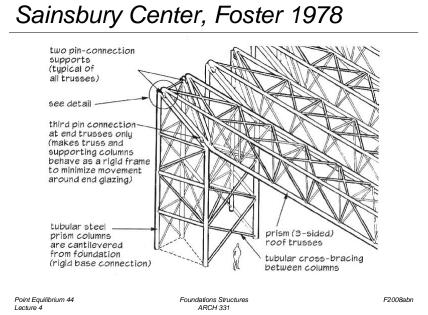
Trusses


• common designs

Trusses

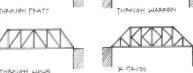
Truss Connections

Point Equilibrium 42


Lecture 4

Foundations Structures ARCH 331 F2008abn

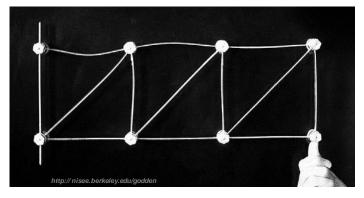
Sainsbury Center, Foster 1978



Point Equilibrium 43 Lecture 4 Foundations Structures ARCH 331 F2008abn

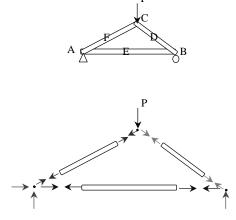
Truss Analysis

- Method of Joints
- Graphical Methods
- Method of Sections



- all rely on equilibrium
 - of bodies
 - internal equilibrium

Truss Analysis


• visualize compression and tension from deformed shape

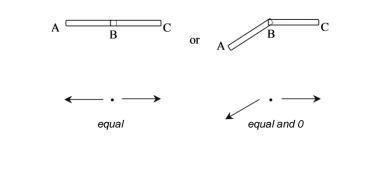
Point Equilibrium 45 Lecture 4 Foundations Structures ARCH 331 F2008abn

Method of Joints

- isolate each joint
- enforce equilibrium in F_x and F_y
- can find all forces
- long
- easy to mess up

Point Equilibrium 46 Lecture 4 Foundations Structures ARCH 331

PARKER TRUSS

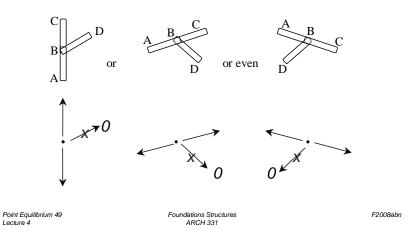

F2008abn

BALTIMORE TRUSS

Point Equilibrium 47 Lecture 4 Foundations Structures ARCH 331 F2008abn

Joint Cases

• two bodies connected

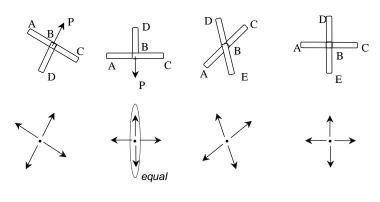


Foundations Structures

ARCH 331

Joint Cases

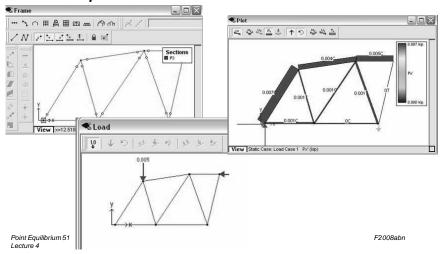
• three bodies with two in line



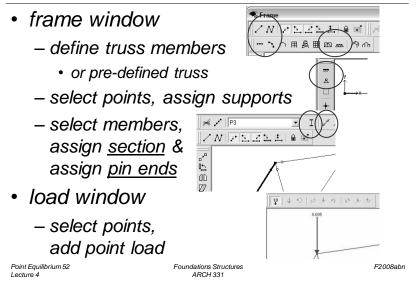
Joint Cases

Point Equilibrium 48

Lecture 4



Point Equilibrium 50 Lecture 4 Foundations Structures ARCH 331 F2008abn

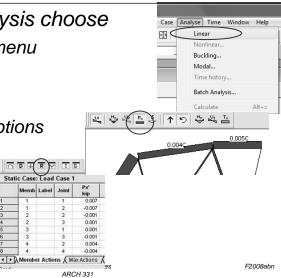

F2008abn

Tools – Multiframe

• in computer lab

Tools – Multiframe

Tools – Multiframe


- to run analysis choose
 - Analyze menu
 - Linear
- plot

Point Equilibrium 53

Lecture 4

- choose options
- results

 choose options

