ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN **A**RCH 331

DR. ANNE NICHOLS SUMMER 2013

lecture

concrete construction: foundation design

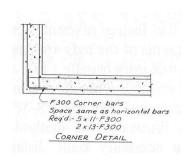
Lecture 23

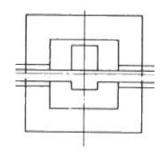
ARCH 331

F2009ahn

F2008abn

Bright Football Comple


Structural vs. Foundation Design

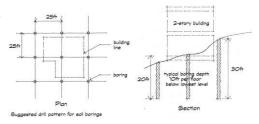

- structural design
 - choice of materials
 - choice of framing system
 - uniform materials and quality assurance
 - design largely independent of geology, climate, etc.

Foundation

· the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock

Foundations 2 Lecture 27

Foundations Structures


F2008abn

Structural vs. Foundation Design

- foundation design
 - cannot specify site materials
 - site is usually predetermined
 - framing/structure predetermined
 - site geology influences foundation choice

– no site the same

no design the same

Foundations 4 Lecture 27

Foundations Structures ARCH 331

F2008abr

Soil Properties & Mechanics

- · unit weight of soil
- · allowable soil pressure
- · factored net soil pressure
- shear resistance
- · backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior

Foundations 5 Lecture 27 Foundations Structures ARCH 331 F2008abn

Soil Properties & Mechanics

• strength, q_a

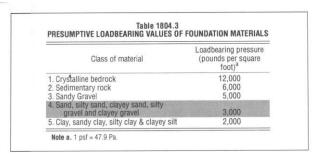


FIGURE 2.5

Presumptive surface bearing values of various soils, as given in the BOCA National Building Code/1996. (Reproduced by permission)

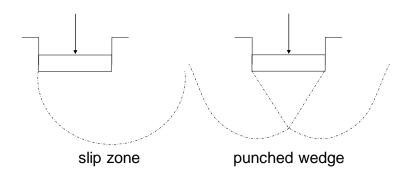
Soil Properties & Mechanics

- compressibility
 - settlements
- strength
 - stability
 - shallow foundations
 - · deep foundations
 - · slopes and walls
 - ultimate bearing capacity, q_u
 - allowable bearing capacity, $q_a =$

Square foundation
Stable comparted 61
Stable comparted 61
Stable comparted 61
Strent bulb

finehomebuilding.com

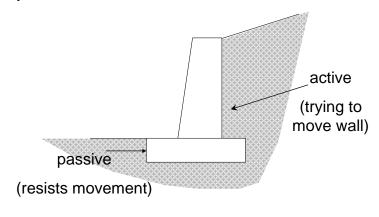
 $=\frac{q_u}{S.F.}$


Foundations Structures ARCH 331 F2008abn

Bearing Failure

shear

Foundations 6


Lecture 27

Foundations 8 Lecture 23 Foundations Structures ARCH 331 F2011abn

Lateral Earth Pressure

passive vs. active

Foundations 9 Lecture 27

Foundations Structures ARCH 331

F2008abn

F2008abn

Basic Foundation Requirements

- · safe against instability or collapse
- no excessive/damaging settlements
- consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics

Foundation Materials

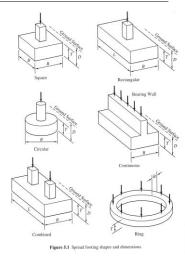
- concrete, plain or reinforced
 - shear
 - bearing capacity
 - bending
 - embedment length, development length
- other materials (piles)
 - steel
 - wood
 - composite

Foundations 10 Lecture 27

Foundations Structures ARCH 331

F2008abn

Generalized Design Steps


- calculate loads
- · characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- · calculate contact pressure and check stability
- estimate settlements
- design footing structure* (factored loads)

Foundations 12 Lecture 27

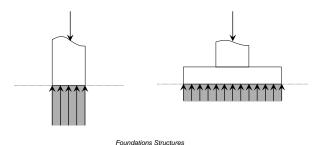
Foundations Structures ARCH 331

Types of Foundations

- spread footings
- wall footings
- eccentric footings
- combined footings
- unsymmetrical footings
- strap footings

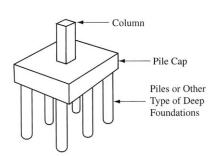
Foundations 13 Lecture 27

Foundations 15


Lecture 27

Foundations Structures ARCH 331 F2008abn

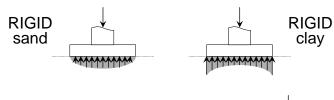
F2008abn


Shallow Footings

- spread footing
 - a square or rectangular footing supporting a single column
 - reduces stress from load to size the ground can withstand

ARCH 331

Types of Foundations

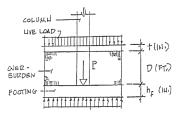


- mat foundations
- retaining walls
- · basement walls
- · pile foundations
- · drilled piers

Foundations 14 Lecture 27 Foundations Structures ARCH 331 F2008abn

Actual vs. Design Soil Pressure

- stress distribution is a function of
 - footing rigidity
 - soil behavior


 linear stress distribution assumed

Foundations 16 Lecture 27 Foundations Structures ARCH 331

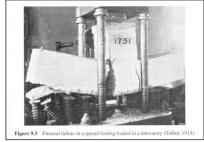
Proportioning Footings

- net allowable soil pressure, q_{net}
 - $-q_{net} = q_{allowable} h_f(\gamma_c \gamma_s)$
 - considers all extra weight (overburden) from replacing soil with concrete
 - can be more overburden
- design requirement with total unfactored load:

 $\frac{P}{A} \le q_{net}$

Foundations 17 Lecture 27

Foundations 19


Foundations Structures ARCH 331 F2008abn

Concrete Spread Footings

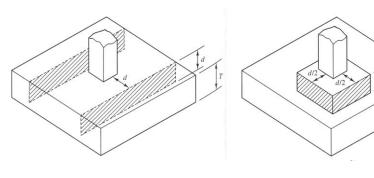
failure modes

shear

bending

F2008abn

Foundations Structures


Concrete Spread Footings

- plain or reinforced
- ACI specifications
- P_u = combination of factored D, L, W
- · ultimate strength
 - $-V_u \le \phi V_c$: $\phi = 0.75$ for shear
 - · plain concrete has shear strength
 - $-M_{\mu} \le \phi M_n$: $\phi = 0.9$ for flexure

Foundations 18 Lecture 27 Foundations Structures ARCH 331 F2008abn

Concrete Spread Footings

shear failure

one way shear

two way shear

Foundations 20 Lecture 27 Foundations Structures ARCH 331

Over and Under-reinforcement

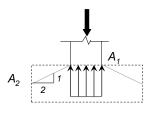
- reinforcement ratio for bending

 - use as a design estimate to find A_s,b,d
 - − $max \rho from \varepsilon_{steel} \ge 0.004$
 - minimum for slabs & footings of uniform thickness $\frac{A_s}{1.5} = 0.002$ grade 40/50 bars = 0.0018 grade $60 \, bars$

Foundations 21

Lecture 27

Foundations Structures


F2008abn

Column Connection

- · bearing of column on footing
 - $-P_{\mu} \leq \phi P_{p} = \phi (0.85 f_{c}' A_{1})$ $\phi = 0.65$ for bearing
 - confined: increase $x \mid^{A_2}$

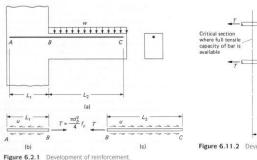
ARCH 331

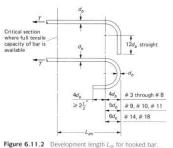
9 column bars and # 8 dowels

- dowel reinforcement
 - $-if P_{ij} > P_{b}$, need compression reinforcement
 - min of 4 #5 bars (or 15 metric)

Foundations 23

 # 8 bars each way $(spacing = 8" \pm)$ F2008abn Foundations Structures

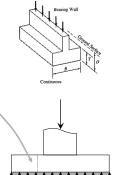

Foundations 24 Lecture 27


Foundations Structures

F2008abn

Reinforcement Length

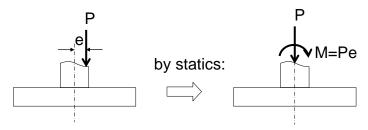
- need length, ℓ_d
 - bond
 - development of yield strength


Foundations 22 Lecture 27

Foundations Structures

F2008abn

Wall Footings


- continuous strip for load bearing walls
- plain or reinforced
- behavior
 - wide beam shear
 - bending of projection
- dimensions usually dictated by codes for residential walls
- light loads

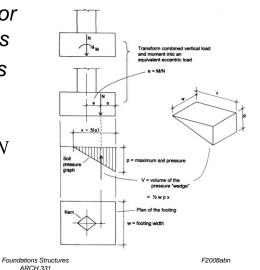
ARCH 331

Eccentrically Loaded Footings

footings subject to moments

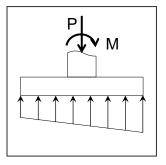
soil pressure resultant force <u>may not</u>
 <u>coincide</u> with the centroid of the footing

Foundations 25 Foundations Structures F2008abn
Lecture 27 ARCH 331


Kern Limit

Foundations 27

Lecture 27


- boundary of e for no tensile stress
- triangular stress block with p_{max}

$$volume = \frac{wpx}{2} = N$$
$$p_{\text{max}} = \frac{2N}{N}$$

Differential Soil Pressure

- to avoid large rotations,
 limit the differential soil
 pressure across footing
- for rigid footing,
 simplification of soil
 pressure is a linear
 distribution based on
 constant ratio of pressure to settlement

F2008abn

Foundations Structures

Guidelines

Foundations 26

Lecture 27

- want resultant of load from pressure inside the middle third of base (kern)
 - ensures stability with respect to overturning

$$SF = \frac{M_{resist}}{M_{overturning}} = \frac{R \cdot x}{M} \ge 1.5$$

- pressure under toe (maximum) $\leq q_a$
- shortcut using uniform soil pressure for design moments gives similar steel areas

Foundations 28 Foundations Structures F2008abn

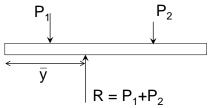
Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line

- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise

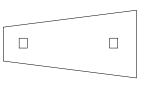
Foundations 29 Lecture 27 Foundations Structures ARCH 331 F2008abn

Proportioning


- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with <u>centroid</u> of footing area for uniformly distributed pressure

pressure assuming a rigid footing

Foundations 31

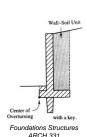

Lecture 27

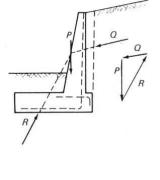
Foundations Structures ARCH 331 F2008abn

Combined Footing Types

- rectangular
- trapezoid

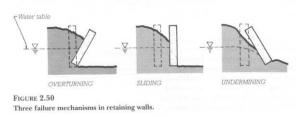
- strap or cantilever
 - · prevents overturning of exterior column


- raft/mat
 - more than two columns over an extended area



Foundations 30 Lecture 27 Foundations Structures ARCH 331 F2008abn

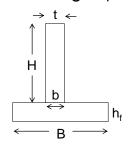
Retaining Walls


- purpose
 - retain soil or other material
- basic parts
 - wall & base
 - additional parts
 - · counterfort
 - buttress
 - key

Retaining Walls

- considerations
 - overturning
 - settlement
 - allowable bearing pressure
 - sliding
 - (adequate drainage)

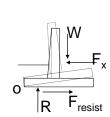
Foundations 33 Lecture 27


Foundations 35

Lecture 27

Foundations Structures ARCH 331 F2008abn

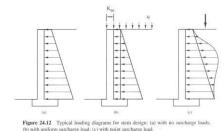
Retaining Wall Proportioning


- estimate size
 - footing size, B ≈ 2/5 2/3 wall height (H)
 - footing thickness ≈ 1/12 1/8 footing size (B)
 - − base of stem $\approx 1/10$ 1/12 wall height (H+h_f)
 - *top of stem* ≥ 12"

Foundations Structures ARCH 331 F2008abn

Retaining Walls

- procedure
 - proportion and check stability with working loads for bearing, <u>overturning</u> and <u>sliding</u>
 - design structure with factored loads

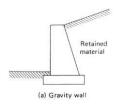

$$SF = \frac{M_{resist}}{M_{overturning}} \ge 1.5 - 2$$

$$SF = \frac{F_{horizontal-resist}}{F_{sliding}} \ge 1.25 - 2$$

Foundations 34 Lecture 27 Foundations Structures ARCH 331 F2008abn

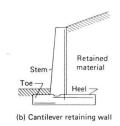
Retaining Walls Forces

- design like cantilever beam
 - V_., & M_., for reinforced concrete
 - $-V_u \le \phi V_c$: $\phi = 0.75$ for shear
 - $-M_u \le \phi M_n$: $\phi = 0.9$ for flexure



Foundations Structures

ARCH 331


Retaining Wall Types

- "gravity" wall
 - usually unreinforced
 - economical & simple

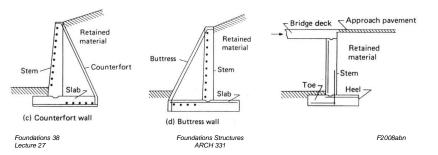
cantilever retaining wall

- common

Foundations 37 Lecture 27 Foundations Structures ARCH 331 F2008abn

Deep Foundations

- usage
 - when spread footings, mats won't work
 - when they are required to transfer the structural loads to good bearing material
 - to resist uplift or overturning
 - to compact soil
 - to control settlements of spread or mat foundations


Retaining Wall Types

• counterfort wall very tall walls

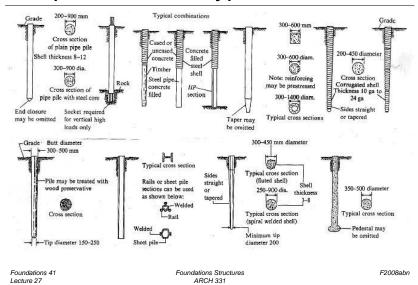
buttress wall

very tall walls (> 20 - 25 ft)

- bridge abutment
- basement frame wall (large basement areas)

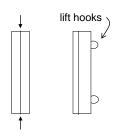
Deep Foundation Types

- piles usually driven, 6"-8" ϕ , 5' +
- pierscaissonsdrilled shafts


drilled, excavated, concreted (with or without steel)

bored piles

 $2.5' - 10'/12' \phi$


pressure injected piles

Deep Foundation Types

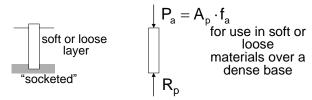
Piles Classified By Material

- timber
 - use for temporary construction
 - to densify loose sands
 - embankments
 - fenders, dolphins (marine)
- concrete
 - precast: ordinary reinforcement or prestressed
 - designed for axial capacity and bending with handling

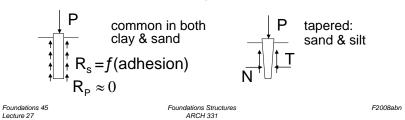
Deep Foundations

- classification
 - by material
 - by shape
 - by function (structural, compaction...)
- pile placement methods
 - driving with pile hammer (noise & vibration)
 - driving with vibration (quieter)
 - jacking
 - drilling hole & filling with pile or concrete

Foundations 42 Foundations Structures F2008abn Lecture 27 ARCH 331


Piles Classified By Material

- steel
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side


Foundations 43 Foundations Structures F2008abn Foundations 44 Foundations Structures F2008abn
Lecture 27 ARCH 331

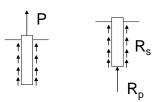
Piles Classified By Function

end bearing pile (point bearing)

- friction piles (floating)

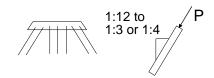
Piles Classified By Function

- fender piles, dolphins, pile clusters


large # of piles in a small area

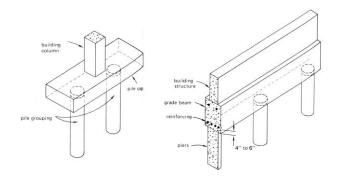
- compaction piles
 - · used to densify loose sands
- drilled piers
 - · eliminate need for pile caps
 - designed for bearing capacity (not slender)

Piles Classified By Function


- combination friction and end bearing

batter piles

angled, cost more, resist large horizontal loads


Foundations 46 Lecture 27

Foundations Structures ARCH 331

F2008abn

Pile Caps and Grade Beams

- like multiple column footing
- more shear areas to consider

Foundations 48

F2008abn

Foundations Structures ARCH 331