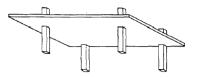
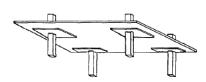
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN

ARCH 331 DR. ANNE NICHOLS SUMMER 2013

lecture

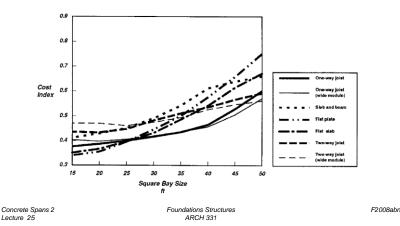


concrete construction. http://nisee.berkeley.edu/godden flat spanning systems, columns & frames


F2009abn

Reinforced Concrete Design

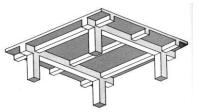
- flat plate
 - 5"-10" thick
 - simple formwork
 - lower story heights



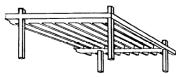
- flat slab
 - same as plate
 - $-2\frac{1}{4}$ "-8" drop panels

Reinforced Concrete Design

- economical & common
- resist lateral loads

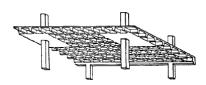


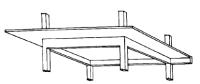
Reinforced Concrete Design


- beam supported
 - slab depth ~ L/20
 - -8"-60" deep

- 3"-5" slab
- 8"-20" stems
- 5"-7" webs

The Architect's Studio Companion




Concrete Spans 4 Lecture 25

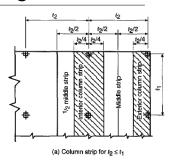
Foundations Structures ARCH 331

Reinforced Concrete Design

- two-way joist
 - "waffle slab"
 - 3"-5" slab
 - 8"-24" stems
 - 6"-8" webs
- beam supported slab
 - 5"-10" slabs
 - taller story heights

Concrete Spans 5 Lecture 25 Foundations Structures ARCH 331 F2008abn

Reinforced Concrete Design


- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - $-w_u$ from combos
- Sincomy distributed code (20 S s) Prismate Member

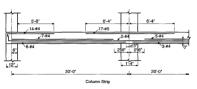

 Two or More Spans

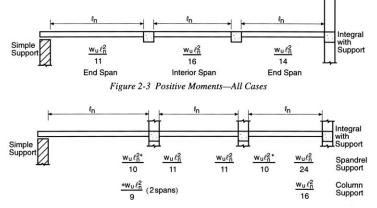
 Figure 2-2 Conditions for Analysis by Coefficients (ACI 8.3.3)
- uniform loads with L/D ≤ 3
- $-\ell_n$ is clear span (+M) or average of adjacent clear spans (-M)

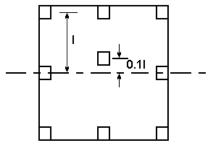
Reinforced Concrete Design

- simplified frame analysis
 - strips, like continuous beams
- moments require flexural reinforcement
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous

Concrete Spans 6 Lecture 25 Foundations Structures ARCH 331 F2008abn

Reinforced Concrete Design




Figure 2-4 Negative Moments—Beams and Slabs

Concrete Spans 7 Lecture 25 Foundations Structures ARCH 331 F2008abn

Concrete Spans 8 Lecture 25 Foundations Structures ARCH 331

Reinforced Concrete Design

- two-way slabs Direct Design Method
 - 3 or more spans each way
 - uniform loads with $L/D \le 3$
 - rectangular panels with *long/short span* ≤ 2
 - successive spans can't differ > longer/3
 - column offset no more than 10% span

Concrete Spans 9 Lecture 25

Foundations Structures ARCH 331

Foundations Structures

ARCH 331

F2008abn

F2008abn

(1) Beams and slab satisfy stiffness criteria: $\alpha_1 \ell_2 / \ell_1 \ge 1.0$ and $\beta_1 \ge 2.5$.

Span

ratio

શ્2/લ

1.0

2.0

Slab Moments

Total Moment

Middle Strip

Column Strip

Middle Strip

Middle Strip

Column Strip

Column Strip Beam

(2) Interpolate between values shown for different & 1/1 ratios.

Reinforced Concrete Design

End Spar

Table 4-6 Two-Way Beam-Supported Slab

Exterior

Negative

0.16 M_O

 $0.12 \, M_{\odot}$

0.02 M_O

0.02 M_O

0.10 M_O

0.04 M_O

0.06 M_o

0.01 Mo

0.09 M_O

0.02 Ma

End Span

0.57 M_o

 $0.43 \, M_{\odot}$

0.08 Ma

0.06 M_O

0.37 M_O

0.06 M_O

0.14 M_O

0.22 M_O

0.04 Mo

0.31 M_O

First Interio

Negative

0.70 M_O

 $0.54 M_{\odot}$

0.09 M_o

0.07 M_O

0.45 M_o

0.08 Ma

0.17 M_O

0.27 M_o

0.05 Mc

Interior

Negative

0.65 M_O

 $0.50 M_{\odot}$

0.09 M_O

0.06 M_O

0.42 M_O

0.07 M_O

0.16 M_O

0.25 M_o

0.04 M_O

0.36 M_O

0.27 M_c

0.05 Ma

0.03 M_C

0.22 M_o

0.04 M

0.09 M_O

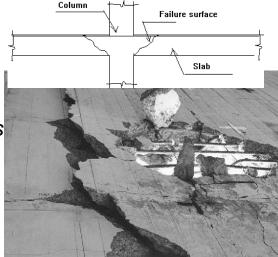
0.14 Ma

0.02 M_o

(3) All negative moments are at face of support.

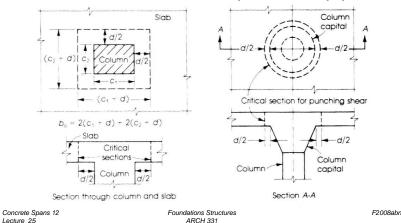
(4) Concentrated loads applied directly to beams must be accounted for separately

Concrete Spans 10 Foundations Structures Lecture 25

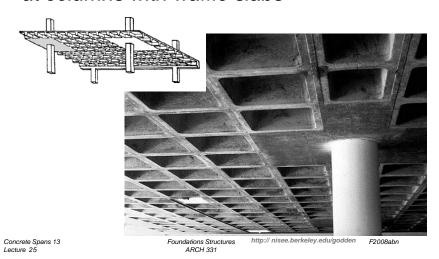

F2008abn

Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads



Concrete Spans 11 Lecture 25

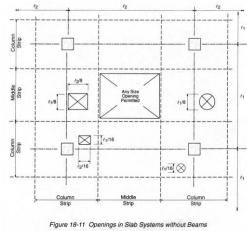

Shear in Concrete

- critical section at d/2 from
 - column face, column capital or drop panel

Shear in Concrete

· at columns with waffle slabs

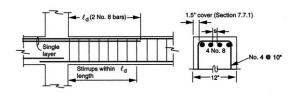
General Beam Design


- f'_c & f_v needed
- usually size just b & h
 - even inches typical (forms)
 - similar joist to beam depth
 - b:h of 1:1.5-1:2.5
 - $-b_w \& b_f$ for T
 - to fit reinforcement + stirrups
- · slab design, t
 - deflection control & shear

F2008abn

Openings in Slabs

- · careful placement of holes
- shear strength reduced
- bending & deflection can increase

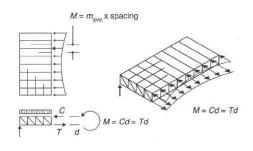

Concrete Spans 14 Lecture 25

Foundations Structures ARCH 331

F2008abn

General Beam Design (cont'd)

- · custom design:
 - longitudinal steel
 - shear reinforcement
 - detailing

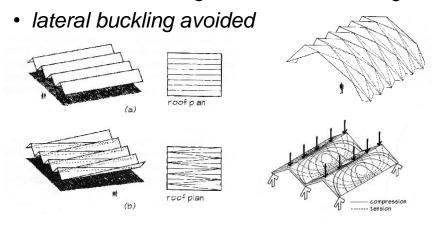

Concrete Spans 15 Foundations Structures ARCH 331 Lecture 25

Concrete Spans 16 Lecture 25

Foundations Structures ARCH 331

Space "Frame" Behavior

- handle uniformly distributed loads well
- bending moment
 - tension & compression "couple" with depth
 - member sizes can vary, but difficult

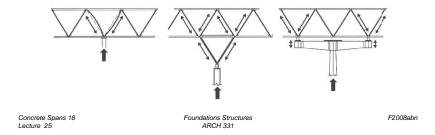

Concrete Spans 17 Lecture 25

Foundations Structures ARCH 331

F2008abn

Folded Plates

increased bending stiffness with folding


Concrete Spans 19 Lecture 25

Foundations Structures ARCH 331

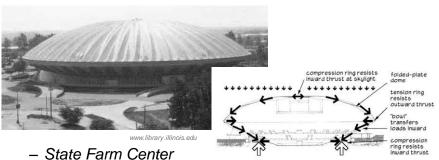
F2008abn

Space "Frame" Behavior

- shear at columns
- support conditions still important
 - point supports not optimal
- fabrication/construction can dominate design

Folded Plates

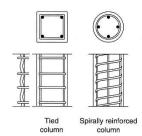
common for roofs


 edges need stiffening

Concrete Spans 20 Lecture 25

Foundations Structures ARCH 331

Folded Plates



- (Assembly Hall), University of Illinois
- Harrison & Abramovitz 1963
- Edge-supported dome spanning 400 feet wound with 614 miles of one-fifth inch steel wire

Concrete Spans 21 Architectural Structures F2008abn Lecture 25 ARCH 331

Columns Reinforcement

- columns require
 - ties or spiral reinforcement to "confine" concrete (#3 bars minimum)

minimum amount of longitudinal steel(#5 bars minimum: 4 with ties, 5 with spiral)

Concrete in Compression

- crushing
- · vertical cracking
 - tension
- diagonal cracking
 - shear
- f_c'

http://www.bam.de

Concrete Columns 2 Lecture 26 Foundations Structures ARCH 331 F2008abn

Slenderness

- effective length in monolithic with respect to stiffness of joint: $\Psi \& k$
- · not slender when

All hook (lyp.)

8 bars

Column s 18 in.

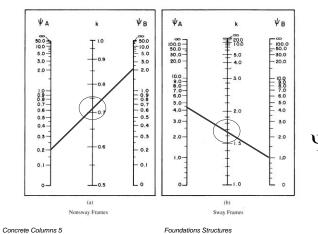
Pressembled Field Exection
Column S 20 in., 22 in., and 24 in. columns

12 bars

Field Exection
All 12 bar arrangements

Pressembled Field Exection
Glagos

All 16 bar arrangements


Figure 5-7 Column Tie Details

Concrete Columns 4 Lecture 26 Foundations Structures ARCH 331 F2008abn

Concrete Columns 3 Lecture 26 Foundations Structures ARCH 331

Effective Length (revisited)

relative rotation

$$\Psi = \frac{\sum EI/l_c}{\sum EI/l_b}$$

F2008abn

Column Design

• $\phi_c = 0.65$ for ties, $\phi_c = 0.75$ for spirals

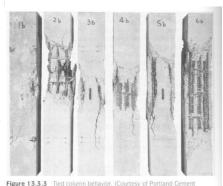
ARCH 331

• P_0 – no bending

$$P_o = 0.85 f_c' (A_g - A_{st}) + f_y A_{st}$$

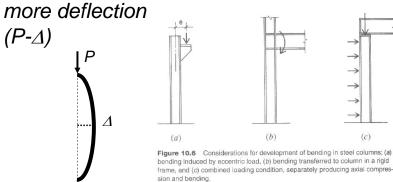
• $P_u \leq \phi_c P_n$

Lecture 26


- $ties: P_n = 0.8P_0$
- $spiral: P_n = 0.85P_0$
- nominal axial capacity:
 - presumes steel yields
 - concrete at ultimate stress

F2008abr

Column Behavior


Concrete Columns 6 Lecture 26

Foundations Structures

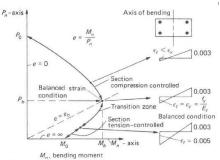
F2008abn

Columns with Bending

- eccentric loads can cause moments
- moments can change shape and induce

Concrete Columns 8

Foundations Structures


F2008abn

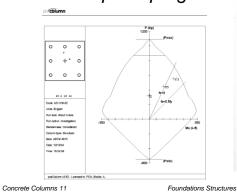
Concrete Columns 7 Lecture 26

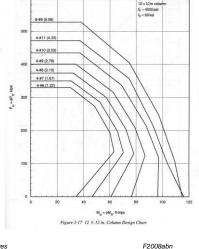
Foundations Structures ARCH 331

Columns with Bending

- for ultimate strength behavior, ultimate strains can't be exceeded
 - concrete 0.003
 - steel $\frac{f_y}{E_s}$
- P reduces with M

Figure 13.6.1 Typical strength interaction diagram for axial compression and bending moment about one axis. Transition zone is where $\epsilon_{ij} \leq \epsilon_f \leq 0.005$.


Concrete Columns 9 Lecture 26 Foundations Structures ARCH 331


ARCH 331

F2008abn

Design Methods

- · calculation intensive
 - handbook charts
 - computer programs

Columns with Bending

- need to consider combined stresses
- linear strain
- steel stress at or below f_V
- plot <u>interaction</u> diagram

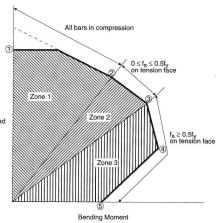


Figure 5-3 Transition Stages on Interaction Diagram

Concrete Columns 10 Lecture 26 Foundations Structures ARCH 331 F2009abn

Design Considerations

- bending at both ends
 - P- ∆ maximum
- biaxial bending
- walls
 - unit wide columns
 - "deep" beam shear
- detailing
 - shorter development lengths
 - dowels to footings

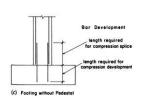


Figure 12-1 Biaxial Interaction Surface

Concrete Columns 12

Foundations Structures ARCH 331