Architectural Structures: Form, Behavior, and Design

ARCH 331 DR. ANNE NICHOLS SUMMER 2013

lecture

forces and moments

Forces & Moments 1 Lecture 3 Architectural Structures ARCH 331 F2009abn

Structural Math

- physics takes observable phenomena and relates the measurement with rules: <u>mathematical relationships</u>
- need
 - reference frame
 - measure of length, mass, time, direction, velocity, acceleration, work, heat, electricity, light
 - calculations & geometry

Structural Planning 33 Lecture 3

Structural Math

- quantify environmental loads
 how big is it?
- · evaluate geometry and angles
 - where is it?
 - what is the scale?
 - what is the size in a particular direction?
- quantify what happens in the structure
 - how big are the internal forces?
 - how big should the beam be?

Structural	Planning 32
Lecture 3	

Foundations Structures ARCH 331 F2008abn

Physics for Structures

- measures
 - US customary & SI

Units	US	SI
Length	in, ft, mi	mm, cm, m
Volume	gallon	liter
Mass	lb mass	g, kg
Force	lb force	N, kN
Temperature	F	С

Structural Planning 34 Lecture 3

Physics for Structures

- scalars any quantity
- vectors quantities with direction
 - like displacements
 - summation results in the "straight line path" from start to end
 - normal vector is perpendicular to something

Structural Planning 35 Lecture 3

Foundations Structures ARCH 331

Ζ

On-line Practice

eCampus / Study Aids

i dke i	est: Math Practice
Description	Math practice for structures (for self-grading).
Instructions	Calculated the required quantities, being careful to use an appropriate number of significant digits.
Multiple Attempts	This Test allows multiple attempts.
Force Completion	This Test can be saved and resumed later.
Question Comple	tion Status:
Question Comple	Save All Answers Save and Subr
© Question Comple QUESTION 1	Save All Answers Save and Subr

Structural Planning 37 Lecture 3

Architectural Structures ARCH 331

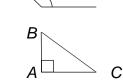
F2008abn

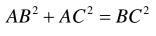
Х

F2008abn

Language

- symbols for operations: +, -, /, x
- symbols for relationships: (), =, <, >
- algorithms - cancellation 2×3 6 6 3 - factors 1 х - signs 6 3 - ratios and proportions $10^3 = 1000$ - power of a number - conversions, ex. 1X = 10 Y 10Y1X- operations on both sides of equality =1-or1X10Y


Structural Planning 36 Lecture 3


Foundations Structures ARCH 331

F2008abn

Geometry

- angles
 - right $=90^{\circ}$
 - acute < 90°
 - > 90° – obtuse
 - $= 180^{\circ}$ $-\pi$
- triangles
 - area
 - hypotenuse
 - total of angles = 180°

Structural Planning 38 Lecture 3

Foundations Structures ARCH 331

 $b \times h$

2

=

Geometry

- lines and relation to angles
 parallel lines can't intersect
 - perpendicular lines cross at 90°
 - intersection of two lines is a point
 - opposite angles are equal when two lines cross

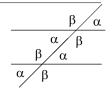
F2008abn

Structural Planning 39 Lecture 3 Foundations Structures ARCH 331

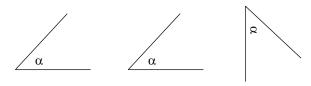
Geometry

 sides of two angles are parallel and intersect opposite way, the angles are <u>supplementary</u> - the sum is 180°

 two angles that sum to 90° are said to be complimentary


 $\beta + \gamma = 90^{\circ}$

Structural Planning 41 Lecture 3


Foundations Structures ARCH 331 F2008abn

Geometry

 intersection of a line with parallel lines results in identical angles

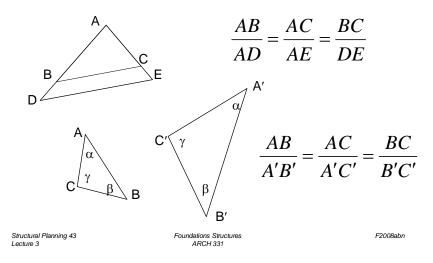
 two lines intersect in the same way, the angles are identical

Structural Planning 40 Lecture 3

Foundations Structures ARCH 331 F2008abn

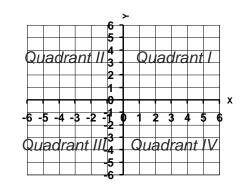
Geometry

 sides of two angles bisect a right angle (90°), the angles are <u>complimentary</u>

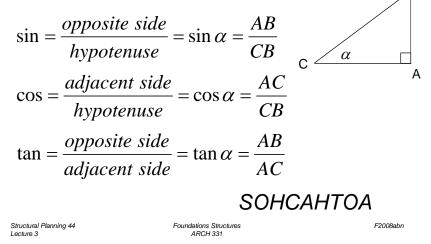

 $\alpha + \gamma = 90^{\circ}$

- right angle bisects a straight line, remaining angles are <u>complimentary</u> α

Forces & Moments 12 Lecture 3 Foundations Structures ARCH 331 F2009abn

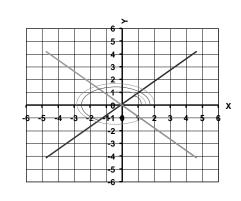

Geometry

- similar triangles have proportional sides


Trigonometry

- cartesian coordinate system
 - origin at 0,0
 - coordinates
 in (x,y) pairs
 - x & y have signs

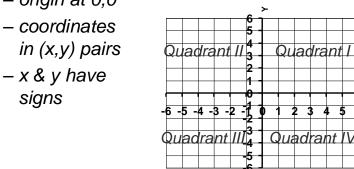
Trigonometry


for right triangles

Trigonometry

- for angles starting at positive x
 - sin *is y side*
 - cos is x side

sin<0 for 180-360° cos<0 for 90-270° tan<0 for 90-180° tan<0 for 270-360°


Structural Planning 45 Lecture 3 Foundations Structures ARCH 331 F2008abn

Structural Planning 46 Lecture 3 Foundations Structures ARCH 331 F2008abn

В

Trigonometry

cartesian coordinate system
 origin at 0,0

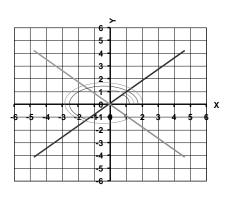
Structural Planning 45 Lecture 3 Foundations Structures ARCH 331

Trigonometry

• for all triangles - sides A, B & C are opposite angles α , β & γ - LAW of SINES $\frac{\sin \alpha}{A} = \frac{\sin \beta}{B} = \frac{\sin \gamma}{C}$ - LAW of COSINES

$$A^2 = B^2 + C^2 - 2BC\cos\alpha$$

Structural Planning 47 Lecture 3 F2008abr


х

F2008abn

Trigonometry

- for angles starting at positive x
 - sin *is y side*
 - cos is x side

sin<0 for 180-360° cos<0 for 90-270° tan<0 for 90-180° tan<0 for 270-360°


```
Structural Planning 46
Lecture 3
```

Foundations Structures ARCH 331

```
F2008abn
```

Algebra

- equations (something = something)
- constants
 - real numbers or shown with a, b, c...
- unknown terms, variables
 - names like R, F, x, y
- linear equations
 - unknown terms have no exponents
- simultaneous equations
 - variable set satisfies all equations

Structural Planning 48 Lecture 3 Foundations Structures ARCH 331

Algebra

- solving one equation
 - only works with one variable

2x - 1 = 0- ex: 2x-1+1=0+1add to both sides

- $\frac{2x}{2} = \frac{1}{2}$ divide both sides
- get x by itself on a side

Structural Planning 49 Lecture 3

Foundations Structures ARCH 331

2x = 1

 $x = \frac{1}{2}$

Algebra

- solving two equation
 - only works with two variables
 - ex:

2x + 3y = 8

- 12x 3y = 6look for term similarity
- can we add or subtract to eliminate one term?
- add

2x + 3y + 12x - 3y = 8 + 614x = 14 $\frac{14x}{11} = \frac{14}{11} = x = 1$ • get x by itself on a side

Structural Planning 51 Lecture 3

F2008abn

Algebra

 solving one equations - only works with one variable 2x-1=4x+5- ex: subtract from both sides 2x-1-2x = 4x+5-2x subtract from both sides -1-5=2x+5-5 $\frac{-6}{-3 \cdot 2} = \frac{2x}{-3 \cdot 2}$ divide both sides 2 2 0 • get x by itself on a side x = -3Structural Planning 50 Foundations Structures F2008abn Lecture 3 ARCH 331

Forces

- statics
 - physics of forces and reactions on bodies and systems

Tension (+)

- equilibrium (bodies at rest)
- forces

Point Equilibrium 2

Lecture 4

- something that exerts on an object:

Original size

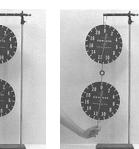
ARCH 331

motion

Compresssion (-)

tension

compression


Foundations Structures

F2008abn

Original size

Force

- "action of one body on another that affects the state of motion or rest of the body"
- Newton's 3rd law:
 - for every force of action there is an equal and opposite reaction along the same line

http://www.physics.umd.edu

F2008abn

Point Equilibrium 3 Lecture 4

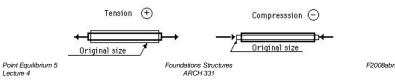
Foundations Structures

Forces on Rigid Bodies

for statics, the bodies are ideally rigid

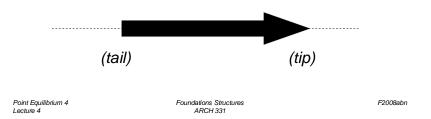
ARCH 331

 can translate and rotate



rotate

translate


- internal forces are

 - in bodies
 - between bodies (connections)
- external forces act on bodies

Force Characteristics

- applied at a point
- magnitude
 - Imperial units: lb, k (kips)
 - SI units: N (newtons), kN
- direction

Transmissibility

- the force stays on the same line of action
- truck can't tell the difference

only valid for EXTERNAL forces

```
Point Equilibrium 6
Lecture 4
```

Foundations Structures ARCH 331

F2008abr

Force System Types

• collinear

Collinear-All forces acting along the same straight line. Figure 2.17(a) Particle or rigid body.

Force System Types

• coplanar

Coplanar-All forces acting in the same plane Forces in a buttress system

Figure 2.17(b) Rigid bodies.

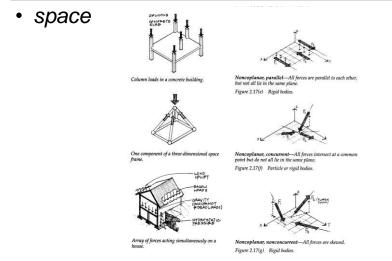
Figure 2.17(c) Rigid bodies.

Coplanar, parallel-All forces are parallel and act in the same

A beam supported by a series of columns.

Loads applied to a roof truss

Conlanar, concurrent-All forces intersect at a common point and lie in the same plane. Figure 2.17(d) Particle or rigid body.


Foundations Structures ARCH 331

F2008abn

Point Equilibrium 7 Lecture 4

Foundations Structures ARCH 331

Force System Types

Adding Vectors

• graphically

Point Equilibrium 8

Lecture 4

- parallelogram law
 - diagonal
 - · long for 3 or more vectors
- tip-to-tail
 - more convenient with lots of vectors

Point Equilibrium 10 Lecture 4

Foundations Structures ARCH 331

F2008abn

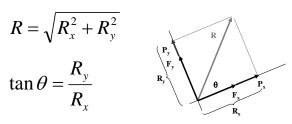
8

F2008abn

Force Components

- · convenient to resolve into 2 vectors
- at right angles
- in a "nice" coordinate system
- θ is between F_x and F from F_x

$$F_{x} = F \cos \theta$$
$$F_{y} = F \sin \theta$$
$$F = \sqrt{F_{x}^{2} + F_{y}^{2}}$$
$$\tan \theta = \frac{F_{y}}{F_{y}}$$


Point Equilibrium 11

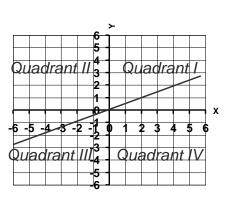
Lecture 4

Foundations Structures ARCH 331

Component Addition

- find all x components
- find all y components
- find sum of x components, R_x (resultant)
- find sum of y components, R_y

Point Equilibrium 13 Lecture 4

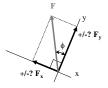

Foundations Structures ARCH 331 F2008abn

F2008abn

Trigonometry

- F_x is negative - 90° to 270°
- F_y is negative - 180° to 360°
- tan is positive
 - quads I & III
- tan is negative
 quads II & IV

12



Point Equilibrium
Lecture 4

Foundations Structures ARCH 331 F2008abn

Alternative Trig for Components

- doesn't relate angle to axis direction
- ϕ is "small" angle between F and <u>EITHER F_x or F_y</u>
- no sign out of calculator!
- have to choose RIGHT trig function, resulting direction (sign) and component axis

Point Equilibrium 14 Lecture 4 Foundations Structures ARCH 331

Friction

- resistance to movement
- contact surfaces determine μ
- proportion of normal force (\perp)
 - opposite to slide direction
 - static > kinetic

$$F = \mu N$$

- (P. > F.

Equilibrium

Fig. 8.1

Motion

F2008abn

Foundations Structures ARCH 331

Cables Structures

- use high-strength steel
- need
 - towers
 - anchors
- don't want movement

http:// nisee.berkeley.edu/godden

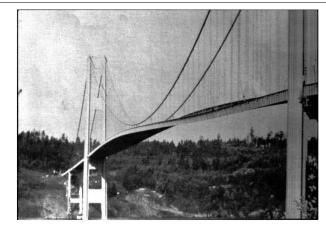
F2008abn

• simple

• uses

Cables

- suspension bridges
- roof structures
- transmission lines
- guy wires, etc.
- have same tension all along
- can't stand compression



http:// nisee.berkeley.edu/godden

```
Foundations Structures
     ARCH 331
```

F2008abn

Cable Structures

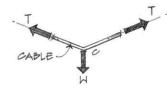
Point Equilibrium 26 Lecture 4

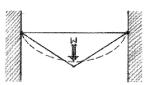
Foundations Structures ARCH 331

F2008abn

Point Equilibrium 25

Lecture 4


Foundations Structures ARCH 331


10

Point Equilibrium 24 Lecture 4

Cable Loads

- straight line between forces
- with one force
 - concurrent
 - symmetric

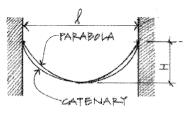
(a) Simple concentrated load—triangle.

(b) Several concentrated loads-polygon.

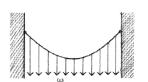
Point Equilibrium 27 Lecture 4 Foundations Structures ARCH 331 F2008abn

Cable-Stayed Structures

- diagonal cables support horizontal spans
- typically symmetrical
- Patcenter, Rogers 1986


Point Equilibrium 30 Lecture 4

Foundations Structures ARCH 331

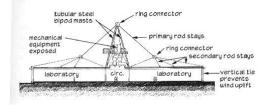

www.columbia.edu F2008abn

Cable Loads

 shape directly related to the distributed load

(e) Comparison of a parabolic and a catenary curve.

(c) Uniform loads (horizontally)—parabola.


(d) Uniform loads (along the cable length)—catenary.

Point Equilibrium 28 Lecture 4 Foundations Structures ARCH 331

```
F2008abn
```

Patcenter, Rogers 1986

- column free space
- roof suspended
- solid steel ties
- steel frame supports masts

Point Equilibrium 31 Lecture 4

Foundations Structures ARCH 331

Patcenter, Rogers 1986

• dashes – cables pulling

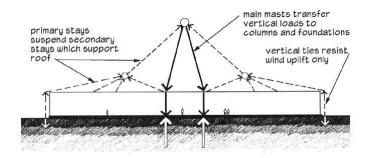
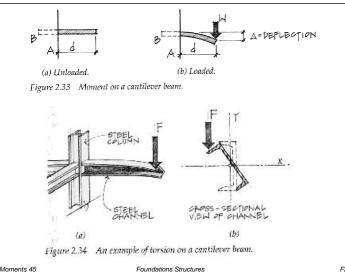



Figure 3.5: Patcenter, load path diagram.

Point Equilibrium 32 Lecture 4 Foundations Structures ARCH 331

F2008abn

Moments

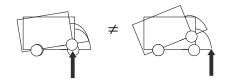


Forces & Moments 45 Lecture 3

Foundations Structures ARCH 331 F2009abn

Moments

 forces have the tendency to make a body rotate about an axis



- same translation but different rotation

Forces & Moments 44 Lecture 3 Foundations Structures ARCH 331 F2009abn

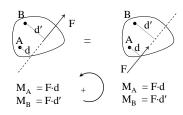
Moments

• a force acting at a different point causes a different moment:

Rigid Body Equilibrium 4 Lecture 6 Foundations Structures ARCH 331

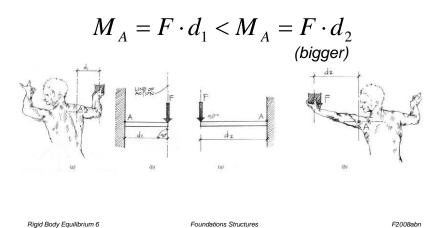
Moments

- defined by magnitude and direction
- units: N·m, k·ft
- direction:
 - + ccw (right hand rule)
 - CW
- value found from F and ⊥ distance
 - $M = F \cdot d$
- d also called "lever" or "moment" arm


Forces & Moments 4	7
Lecture 3	

Foundations Structures ARCH 331

F2011abn

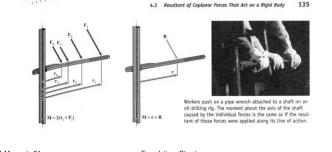

Moments

- additive with sign convention
- can still move the force
 <u>along the line of action</u>

Moments

• with same F:

ARCH 331


Moments

Lecture 6

- Varignon's Theorem
 - resolve a force into components at a point and finding perpendicular distances
 - calculate sum of moments
 - equivalent to original moment
- makes life easier!
 - geometry
 - when component runs through point, d=0

Moments of a Force

- moments of a force
 - introduced in Physics as
 - "Torque Acting on a Particle"
 - and used to satisfy rotational equilibrium

Forces & Moments 51 Lecture 3

Foundations Structures ARCH 331

F2009abn

Physics and Moments of a Force

• my Physics book:

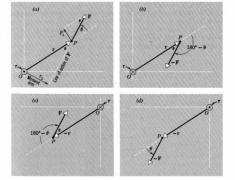


FIGURE 11-2 The plane shown is that defined by \mathbf{r} and \mathbf{F} in Fig. 11-1. (a) The magnitude of τ is given by Fr_{\perp} (Eq. 11-2b) or by rF_{\perp} (Eq. 11-2c). (b) Reversing **F** reverses the direction of τ . (c) Reversing \mathbf{r} reverses the direction of \mathbf{r} . (d) Reversing \mathbf{F} and \mathbf{r} leaves the direction of $\mathbf{\tau}$ unchanged. The directions of $\mathbf{\tau}$ are represented by \bigcirc (perpendicularly out of the figure, the symbol representing the tip of an arrow) and by ((perpendicularly into the figure, the symbol representing the tail of an arrow)

Forces & Moments 52 Lecture 3

Foundations Structures ARCH 331

F2009abn

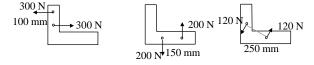
Moment Couples

2 forces

Lecture 6

- same size
- opposite direction
- distance d apart
- CW OF CCW

$$M = F \cdot a$$

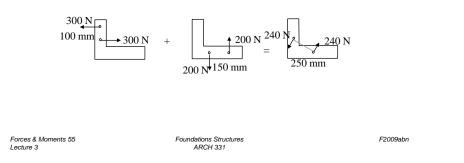

- not dependant on point of application

$$M = F \cdot d_1 - F \cdot d_2$$

F2008abn

Moment Couples

- equivalent couples
 - same magnitude and direction
 - F & d may be different

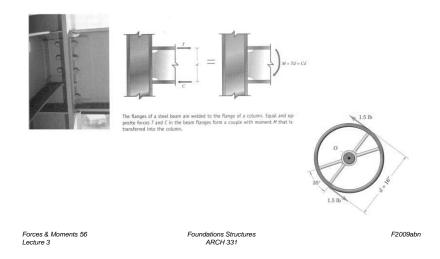

Forces & Moments 54 Lecture 3

Foundations Structures ARCH 331

F2009abn

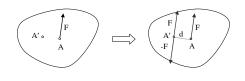
Moment Couples

- added just like moments caused by one force
- can <u>replace</u> two couples with a single couple



Equivalent Force Systems

- two forces at a point is equivalent to the resultant at a point
- resultant is equivalent to two components at a point
- resultant of equal & opposite forces at a point is zero
- put equal & opposite forces at a point (sum to 0)
- transmission of a force along action line


Moment Couples

• moment couples in structures

Force-Moment Systems

 single force causing a moment can be replaced by the same force at a different point by providing the moment that force caused

• moments are shown as arched arrows

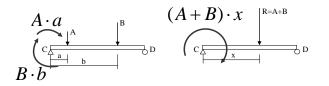
Rigid Body Equilibrium 16 Lecture 6 Foundations Structures ARCH 331 F2008abn

F2009abn

Force-Moment Systems

• a force-moment pair can be replaced by a force at another point causing the original moment

$$\begin{array}{c} \begin{array}{c} & & \\ A' \circ & \\ & A \end{array} \end{array} \xrightarrow{F} \begin{array}{c} \\ A' & \\ -F \end{array} \xrightarrow{F} \begin{array}{c} \\ A \end{array} \end{array} \xrightarrow{F} \begin{array}{c} \\ A' & \\ A \end{array} \end{array} \xrightarrow{F} \begin{array}{c} \\ A' & \\ A \end{array} \end{array} \xrightarrow{F} \begin{array}{c} \\ A \end{array} \xrightarrow{F} \begin{array}{c} \\ \end{array} \xrightarrow{F} \begin{array}{c} \\ A \end{array} \xrightarrow{F} \begin{array}{c} \\ \\ \end{array} \xrightarrow{F} \begin{array}{c} \\ \\ \end{array} \xrightarrow{F} \begin{array}{c} \\ \end{array} \xrightarrow{F} \begin{array}{c} \\ \end{array} \xrightarrow{F} \begin{array}{c} \\ \end{array} \xrightarrow{F} \begin{array}{c} \\ \end{array} \xrightarrow{F} \begin{array}{F} \\ \end{array} \xrightarrow{F} \begin{array}{c} \\ \end{array} \xrightarrow{F} \begin{array}{F} \\ \end{array} \xrightarrow{F} \begin{array}{F} \\ \end{array} \xrightarrow{F} \begin{array}{F} \end{array} \xrightarrow{F} \begin{array}{F} \\ \end{array} \xrightarrow{F} \begin{array}{F} \end{array} \xrightarrow{F} \begin{array}{F} \\ \end{array} \xrightarrow{F} \begin{array}{F} \end{array} \xrightarrow{F} \begin{array}{F} \end{array} \xrightarrow{F} \begin{array}{F} \end{array} \xrightarrow{F} \begin{array}{F} \end{array} \xrightarrow{F} \end{array} \xrightarrow{F} \begin{array}{F} \end{array} \xrightarrow{F} \begin{array}{F} \end{array} \xrightarrow{F} \end{array} \xrightarrow{F} \begin{array}{F} \end{array} \xrightarrow{F} \begin{array}{F} \end{array} \xrightarrow{F} \begin{array}{F} \end{array} \xrightarrow{F} \begin{array}{F} \end{array} \xrightarrow{F} \end{array} \xrightarrow{F} \begin{array}{F} \end{array} \xrightarrow{F} \end{array} \xrightarrow{F} \begin{array}{F} \end{array} \xrightarrow{F} \begin{array}{F} \end{array} \xrightarrow{F} \end{array}$$


Rigid Body Equilibrium 17 Lecture 6

Foundations Structures ARCH 331

F2008abn

Parallel Force Systems

- forces are in the same direction
- can find resultant force
- need to find <u>location</u> for equivalent moments

Foundations Structures ARCH 331