Architectural Structures:

Form, Behavior, and Design

ARCH 3

Dr. Anne Nichols
Summer 2013
lecture
tWO

forces and moments

Forces \& Moments 1

Lecture 3

F2009abn

Structural Math

- physics takes observable phenomena and relates the measurement with rules: mathematical relationships
- need
- reference frame
- measure of length, mass, time, direction, velocity, acceleration, work, heat, electricity, light
- calculations \& geometry

Structural Math

- quantify environmental loads
- how big is it?
- evaluate geometry and angles
- where is it?
- what is the scale?
- what is the size in a particular direction?
- quantify what happens in the structure
- how big are the internal forces?
- how big should the beam be?

Physics for Structures

- measures
- US customary \& SI

Units	US	SI
Length	in, ft, mi	$\mathrm{mm}, \mathrm{cm}, \mathrm{m}$
Volume	gallon	liter
Mass	lb mass	g, kg
Force	lb force	N, kN
Temperature	F	C

Physics for Structures

- scalars - any quantity
- vectors - quantities with direction
- like displacements
- summation results in the "straight line path" from start to end

- normal vector is perpendicular to something

On-line Practice

- eCampus / Study Aids

Language

- symbols for operations: +,-, /, x
- symbols for relationships: (), =, <, >
- algorithms
- cancellation
- factors
- signs
- ratios and proportions
$\frac{2}{5} \times \frac{5}{6}=\frac{2}{6}=\frac{2}{2 \times 3}=\frac{1}{3}$
- power of a number $\frac{x}{6}=\frac{1}{3}$
- conversions, ex. $1 X=10 Y$
- operations on $\underline{\text { both sides }}$ of equality $\frac{10 Y}{1 X}$ or $\frac{1 X}{10 Y}=1$
$10^{3}=1000$

Structural Planning 36
Lecture 3
Foundations Structures
F2008abn

Geometry

- angles
- right $=90^{\circ}$
- acute <90

- obtuse >90응
$-\pi=180^{\circ}$

- triangles
- area $=\frac{b \times h}{2}$

- hypotenuse
- total of angles $=180^{\circ}$

$$
A B^{2}+A C^{2}=B C^{2}
$$

Geometry

- lines and relation to angles
- parallel lines can't intersect
- perpendicular lines cross at 90°
- intersection of two lines is a point

- opposite angles are equal when two lines cross

$$
\frac{\beta / \alpha}{\alpha / \beta}
$$

Geometry

- sides of two angles are parallel and intersect opposite way, the angles are supplementary - the sum is 180°

- two angles that sum to 90° are said to be complimentary

$$
\beta+\gamma=90^{\circ}
$$

Geometry

- intersection of a line with parallel lines results in identical angles

- two lines intersect in the same way, the angles are identical

Structural Planning 40
Lecture 3

Foundations Structures
ARCH 331

Geometry

- sides of two angles bisect a right angle $\left(90^{\circ}\right)$, the angles are complimentary

$$
\alpha+\gamma=90^{\circ}
$$

- right angle bisects a straight line, remaining angles
are complimentary

Geometry

- similar triangles have proportional sides

$C^{\prime}<\int_{B^{\prime}}^{\gamma} \frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}$
Structural Planning 43
Lecture 3
Foundations Structures
$A R C H 331$
F2008abn

Trigonometry

- cartesian coordinate system
- origin at 0,0
- coordinates in (x, y) pairs
$-x$ \& y have signs

Trigonometry

- for right triangles

$$
\begin{aligned}
& \sin =\frac{\text { opposite side }}{\text { hypotenuse }}=\sin \alpha=\frac{A B}{C B} \\
& \cos =\frac{\text { adjacent side }}{\text { hypotenuse }}=\cos \alpha=\frac{A C}{C B} \\
& \tan =\frac{\text { opposite side }}{\text { adjacent side }}=\tan \alpha=\frac{A B}{A C}
\end{aligned}
$$

SOHCAHTOA

Structural Planning 44
Lecture 3

Foundations Structures
ARCH 331

Trigonometry

- for angles starting at positive x
- sin is y side
- \cos is x side
sin<0 for 180-360 ${ }^{\circ}$ cos <0 for $90-270^{\circ}$ tan<0 for 90-180 tan<0 for 270-360

Trigonometry

- cartesian coordinate system
- origin at 0,0
- coordinates in (x, y) pairs
$-x$ \& y have signs

Structural Planning 45
Foundations Structures
F2008abn

Trigonometry

- for angles starting at positive x
- sin is y side
$-\cos$ is x side
sin<0 for 180-360 ${ }^{\circ}$ cos<0 for 90-270 tan<0 for 90-180 ${ }^{\circ}$ tan<0 for 270-360

Algebra

- equations (something = something)
- constants
- real numbers or shown with a, b, c...
- unknown terms, variables
- names like R, F, x, y
- linear equations
- unknown terms have no exponents
- simultaneous equations
- variable set satisfies all equations

Algebra

- solving one equation
- only works with one variable
-ex:
- add to both sides

$$
\begin{gathered}
2 x-1=0 \\
2 x-1+1=0+1 \\
2 x=1
\end{gathered}
$$

- divide both sides

$$
\frac{2 x}{2}=\frac{1}{2}
$$

- get x by itself on a side $x=1 / 2$

Algebra

- solving two equation
- only works with two variables
-ex:
$2 x+3 y=8$
- look for term similarity

$$
12 x-\overline{3 y}=6
$$

- can we add or subtract to eliminate one term?
- add

$$
2 x+3 y+12 x-3 y=8+6
$$

$$
14 x=14
$$

- get x by itself on a side $\frac{14 x}{14}=\frac{14}{14}=x=1$

Algebra

- solving one equations
- only works with one variable
- ex:

$$
2 x-1=4 x+5
$$

- subtract from both sides

$$
2 x-1-2 x=4 x+5-2 x
$$

- subtract from both sides

$$
\begin{aligned}
& -1-5=2 x+5-5 \\
& \frac{-6}{2}=\frac{-3 \cdot 2}{2}=\frac{2 x}{2}
\end{aligned}
$$

- divide both sides
- get x by itself on a side

$$
x=-3
$$

Forces

- statics
- physics of forces and reactions on bodies and systems
- equilibrium (bodies at rest)
- forces
- something that exerts on an object:
- motion
- tension
- compression

Compresssion Θ

Force

- "action of one body on another that affects the state of motion or rest of the body"
- Newton's 3rd law:
- for every force of action there is an equal and opposite reaction along the same line

ARCH 331

Force Characteristics

- applied at a point
- magnitude
- Imperial units: lb, k (kips)
- SI units: N (newtons), kN
- direction

Forces on Rigid Bodies

- for statics, the bodies are ideally rigid
- can translate and rotate
- internal forces are

- in bodies
- between bodies (connections)
- external forces act on bodies

Force System Types

- collinear

Collinear-All forces acting along the same straight line. Figure 2.17(a) Particle or rigid body.

Force System Types

- coplanar

Point Equilibrium 8 Lecture 4

Foundations Structures
F2008abn

Force System Types

- space

- tip-to-tail
- more convenient with lots of vectors

Force Components

- convenient to resolve into 2 vectors
- at right angles
- in a "nice" coordinate system
- θ is between F_{x} and F from F_{x}

$$
\begin{aligned}
& F_{x}=F \cos \theta \\
& F_{y}=F \sin \theta \\
& F=\sqrt{F_{x}^{2}+F_{y}^{2}} \\
& \tan \theta=\frac{F_{y}}{\substack{\text { Pont } \\
\text { Renumbibum } \\
\text { Recur }}}
\end{aligned}
$$

Trigonometry

- F_{x} is negative
- 90 to 270
- F_{y} is negative - 180 to 360
- tan is positive
- quads I \& III
- tan is negative
- quads II \& IV

Point Equilibrium 12
Lecture 4 Point Equil
Lecture 4

Foundations Structures
ARCH 331
F2008abn

Component Addition

- find all x components
- find all y components
- find sum of x components, R_{x} (resultant)
- find sum of y components, R_{y}

$$
\begin{aligned}
& R=\sqrt{R_{x}^{2}+R_{y}^{2}} \\
& \tan \theta=\frac{R_{y}}{R_{x}}
\end{aligned}
$$

Alternative Trig for Components

- doesn't relate angle to axis direction
- ϕ is "small" angle between F and EITHER F_{x} or F_{y}
- no sign out of calculator!
- have to choose RIGHT trig function, resulting direction (sign) and component axis

教

Friction

- resistance to movement
- contact surfaces determine μ
- proportion of normal force (\perp)
- opposite to slide direction
- static > kinetic

$$
F=\mu N
$$

F2008abn

Point Equilibrium 23
Lecture 4

Foundations Structures
$A R C H 331$
ARCH 331

Cables

- simple
- uses
- suspension bridges
- roof structures
- transmission lines
- guy wires, etc.

- have same tension all along
- can't stand compression

Point Equilibrium 24
Lecture 4

Foundations Structures
ARCH 331

F2008abn

Cables Structures

- use high-strength steel
- need
- towers
- anchors
- don't want movement

Cable Loads

- straight line between forces
- with one force
- concurrent

- symmetric

Point Equilibrium 27 Lecture 4

Foundations Structures F2008abn

Cable-Stayed Structures

- diagonal cables support horizontal spans
- typically symmetrical
- Patcenter, Rogers 1986

Cable Loads

- shape directly related to the distributed load

(e) Comparison of a parabolic and a catenary curve.

(c) Uniform loads (horizontally)-parabola

(d) Uniform loads (along the cable length)catenary.

Point Equilibrium 28
Point Equilibib
Lecture 4

F2008abn

Patcenter, Rogers 1986

- column free space
- roof suspended
- solid steel ties
- steel frame supports masts

Patcenter, Rogers 1986

- dashes - cables pulling

Figure 3.5: Patcenter, load path diagram.

Moments

(a) Unloaded.

Figure 2.33 Moment on a cantilever beam

(b) Loaded.

figure 2.34 An example of torsion on a canslezer bean.

Moments

- forces have the tendency to make a body rotate about an axis

- same translation but different rotation

Moments

- a force acting at a different point causes a different moment:

Moments

- defined by magnitude and direction
- units: N•m, k•ft
- direction:
+ cCW (right hand rule)
- cw
- value found from F and \perp distance

$$
M=F \cdot d
$$

- d also called "lever" or "moment" arm

Forces \& Moments 47
Lecture 3

Moments

- additive with sign convention
- can still move the force
along the line of action

Moments

- with same F:

$$
M_{A}=F \cdot d_{1}<M_{A}=F \cdot d_{2}
$$

(bigger)

Moments

- Varignon's Theorem
- resolve a force into components at a point and finding perpendicular distances
- calculate sum of moments
- equivalent to original moment
- makes life easier!
- geometry
- when component runs through point, $d=0$

Moments of a Force

- moments of a force
- introduced in Physics as "Torque Acting on a Particle"
- and used to satisfy rotational equilibrium

Forces \& Moments 51
Lecture 3
Lecture 3

Physics and Moments of a Force

- my Physics book:

FIGURE 11-2 The plane shown is that defined by r and F in Fig. .11-1. (a) The magnitude of T il

 an arrow) and by \otimes (perpendiculatry into the figure, the symbol representing the tail of an arm Forces \& Moments 52
Lecture 3

Foundations Structures
ARCH 331

Moment Couples

- equivalent couples
- same magnitude and direction
- F \& d may be different

Moment Couples

- added just like moments caused by one force
- can replace two couples with a single couple

Equivalent Force Systems

- two forces at a point is equivalent to the resultant at a point
- resultant is equivalent to two components at a point
- resultant of equal \& opposite forces at a point is zero
- put equal \& opposite forces at a point (sum to 0)
- transmission of a force along action line

Moment Couples

- moment couples in structures

Force-Moment Systems

- single force causing a moment can be replaced by the same force at a different point by providing the moment that force caused

- moments are shown as arched arrows

Force-Moment Systems

- a force-moment pair can be replaced by a force at another point causing the original moment

Parallel Force Systems

- forces are in the same direction
- can find resultant force
- need to find location for equivalent moments

