
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN

ARCH 331

DR. ANNE NICHOLS

SUMMER 2013

lecture NINETEEN

http://nisee.berkeley.edu/godde

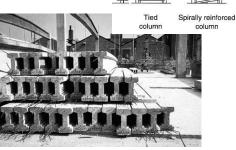
concrete construction: materials & beams

Concrete Beams 1

Architectural Structures ARCH 331 F2009abn

Concrete Construction

- cast-in-place
- tilt-up
- prestressing
- post-tensioning



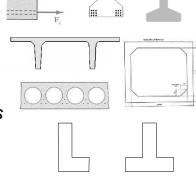
Concrete Beams 3

Lecture 22

ARCH 331

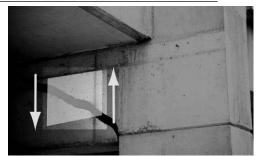
http:// nisee.berkeley.edu/godden F2008abn

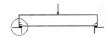
Concrete Beam Design


- composite of concrete and steel
- American Concrete Institute (ACI)
 - design for maximum stresses
 - limit state design
 - · service loads x load factors
 - · concrete holds no tension
 - · failure criteria is yield of reinforcement
 - failure capacity x reduction factor
 - factored loads < reduced capacity
 - concrete strength = f'_{c}

Concrete Beams 2 Lecture 22 Foundations Structures ARCH 331 F2008abn

Concrete Beams

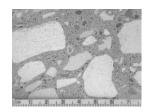

- types
 - reinforced
 - precast
 - prestressed
- shapes
 - rectangular, I
 - T, double T's, bulb T's
 - box
 - spandrel


Concrete Beams 4 Lecture 22 Foundations Structures ARCH 331

Concrete Beams

- shear
 - vertical
 - horizontal
 - combination:
 - tensile stresses at 45°
- bearing
 - crushing

http://urban.arch.virginia.edu



Concrete Beams 5 Lecture 22 Foundations Structures ARCH 331 F2008abn

Concrete

- low strength to weight ratio
- relatively inexpensive
 - Portland cement
 - types I V
 - aggregate
 - · course & fine
 - water
 - admixtures
 - air entraining
 - · superplasticizers

Concrete Beams 6 Lecture 22 Foundations Structures ARCH 331

F2008abn

Concrete

- hydration
 - chemical reaction
 - workability
 - water to cement ratio
 - mix design
- fire resistant
- cover for steel
- creep & shrinkage

F2008abn

Concrete

• placement (not pouring!)

vibrating

screeding

floating

- troweling
- curing

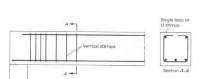
Concrete Beams 8

Lecture 22

finishing

Foundations Structures ARCH 331

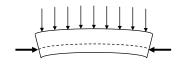
Concrete Beams 7 Lecture 22


Reinforcement

- deformed steel bars (rebar)
 - Grade 40, $F_v = 40$ ksi
 - Grade 60, $F_y = 60 \text{ ksi}$ most common
 - Grade 75, $F_y = 75 \text{ ksi}$
 - US customary in # of 1/8" ϕ (nominal)

longitudinally placed

- bottom
- top for compression reinforcement


Concrete Beams 9 Lecture 22

Foundations Structures

F2008abn

Reinforcement

- prestressing strand
- post-tensioning
- stirrups
- detailing
 - development length
 - anchorage
 - splices

Concrete Beams 10 Lecture 22

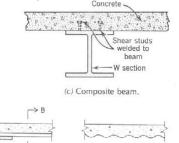
Foundations Structures ARCH 331

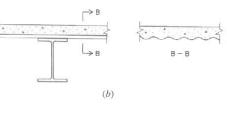
http:// nisee.berkeley.edu/godden F2008abn

Composite Beams

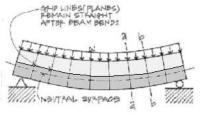
- concrete
 - in compression
- steel

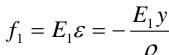
Concrete Beams 11


Lecture 22

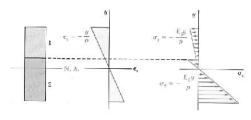

- in tension
- shear studs

Foundations Structures ARCH 331





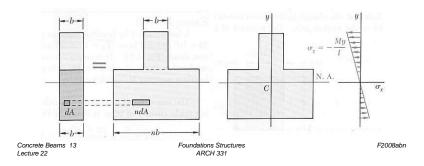
F2008abn Lecture 22


Behavior of Composite Members

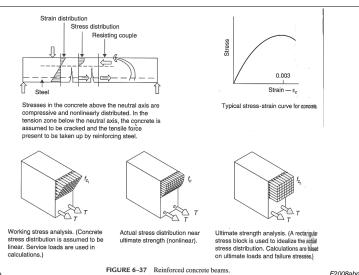
- plane sections remain plane
- stress distribution changes

Foundations Structures ARCH 331

 $f_2 = E_2 \varepsilon = -\frac{E_2 y}{}$


F2008abr

Transformation of Material


• n is the ratio of E's

$$n = \frac{E_2}{E_1}$$

 effectively widens a material to get same stress distribution

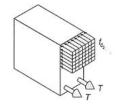
Reinforced Concrete - stress/strain

ARCH 331

Stresses in Composite Section

- with a section transformed to one material, new I
 - stresses in that material are determined as usual
 - stresses in the other material need to be adjusted by n

$$n = \frac{E_2}{E_1} = \frac{E_{steel}}{E_{concrete}}$$

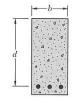

$$f_c = -\frac{My}{I_{\textit{transformed}}}$$

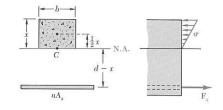
$$f_s = -\frac{Myn}{I_{transformed}}$$

Concrete Beams 14 Lecture 22 Foundations Structures ARCH 331 F2008abn

Reinforced Concrete Analysis

- for stress calculations
 - steel is transformed to concrete
 - concrete is in compression above n.a. and represented by an equivalent <u>stress block</u>
 - concrete takes <u>no tension</u>
 - steel takes tension
 - force <u>ductile</u> failure




Concrete Beams 16

Foundations Structures ARCH 331

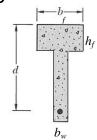
Location of n.a.

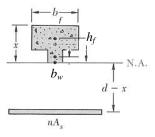
- ignore concrete below n.a.
- transform steel
- same area moments, solve for x

$$bx \cdot \frac{x}{2} - nA_s(d - x) = 0$$

Concrete Beams 17 Lecture 22 Foundations Structures ARCH 331 F2008abn

ACI Load Combinations*

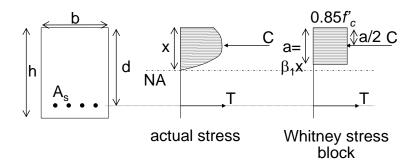

- 1.4D
- $1.2D + 1.6L + 0.5(L_r \text{ or S or R})$
- $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (1.0L \text{ or } 0.5W)$
- $1.2D + 1.0W + 1.0L + 0.5(L_r \text{ or S or R})$
- 1.2D + 1.0E + 1.0L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E


*can also use old ACI factors

F2011abn

T sections

 n.a. equation is different if n.a. below flange



$$b_{f}h_{f}\left(x-\frac{h_{f}}{2}\right)+\left(x-h_{f}\right)b_{w}\frac{\left(x-h_{f}\right)}{2}-nA_{s}(d-x)=0$$

Concrete Beams 18 Lecture 22 Foundations Structures ARCH 331 F2008abn

Reinforced Concrete Design

· stress distribution in bending

Wang & Salmon, Chapter 3

Concrete Beams 20 Lecture 22 Foundations Structures ARCH 331

Force Equations

• $C = 0.85 \, f_c$ ba

•
$$T = A_s f_v$$

where

- f´_c = concrete compressive strength

– a = height of stress block

 $-\beta_1$ = factor based on f_c

-x = location to the n.a.

-b = width of stress block

 $- f_v = steel yield strength$

 $-A_s$ = area of steel reinforcement

Concrete Beams 21 Lecture 22 Foundations Structure

F2008abn

 $0.85f_{c}^{\prime}$

Over and Under-reinforcement

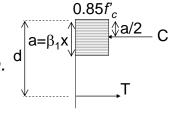
- over-reinforced
 - steel won't yield
- · under-reinforced
 - steel will yield
- reinforcement ratio

- bd - use as a design estimate to find A_s ,b,d

– max ρ is found with $\varepsilon_{\text{steel}} \ge 0.004$ (not ρ_{bal})

http://people.bath.ac.uk/abstji/concrete_video/virtual_lab.htm

Foundations Structures F2008abn


Equilibrium

• T = C

• $M_n = T(d-a/2)$

-d = depth to the steel n.a.

• with A_s $-a = \frac{A_s f_y}{0.85 f'h}$

$$-M_{\rm H} \le \phi M_{\rm p}$$
 $\phi = 0.9$ for flexure

$$-\phi M_n = \phi T(d-a/2) = \phi A_s f_v (d-a/2)$$

Concrete Beams 22 Lecture 22 Foundations Structures ARCH 331 F2008abr

A_s for a Given Section

- several methods
 - guess a and iterate

1. guess a (less than n.a.)

$$A_s = \frac{0.85 f_c'ba}{f_y}$$

3. solve for a from $M_u = \phi A_s f_v (d-a/2)$

$$a = 2 \left(d - \frac{M_u}{\phi A_s f_y} \right)$$

4. repeat from 2. until a from 3. matches a in 2.

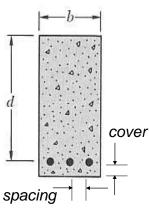
Concrete Beams 24 Lecture 22 Foundations Structures ARCH 331

A_s for a Given Section (cont)

- · chart method
 - Wang & Salmon Fig. 3.8.1 R_n vs. ρ
 - 1. calculate $R_n = \frac{M_n}{bd^2}$
 - 2. find curve for f_c and f_v to get ρ
 - 3. calculate A_s and a
- simplify by setting h = 1.1d

Concrete Beams 25 Lecture 22 Foundations Structures ARCH 331 F2008abr

Shells



Reinforcement

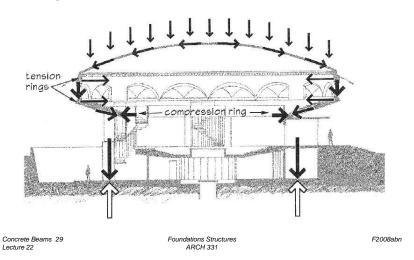
- · min for crack control
- required $A_s = \frac{3\sqrt{f_c'}}{f_v}(bd)$
- not less than $A_s = \frac{200}{f_v} (bd)$
- A_{s-max} : $a = \beta_1 (0.375d)$
- typical cover
 1.5 in, 3 in with soil
- bar spacing

Concrete Beams 26 Foundations Structures
Lecture 22 ARCH 331

F2008abn

Annunciation Greek Orthodox Church

• Wright, 1956

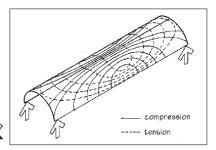

Concrete Beams 28 Lecture 22

Foundations Structures http://www.bluffton.edu/~sullivanm/ ARCH 331

Annunciation Greek Orthodox Church

• Wright, 1956

Lecture 22



Cylindrical Shells

- · can resist tension
- shape adds "depth"

not vaults

barrel shells

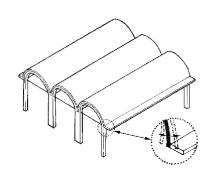
Concrete Beams 30 Lecture 22

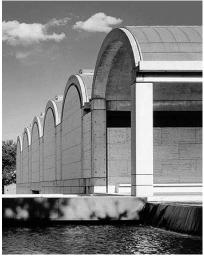
FREE FORM

Foundations Structures

ARCH 331

F2008abn

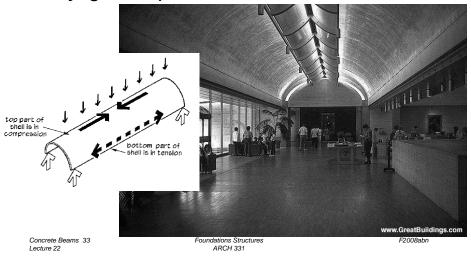

Kimball Museum, Kahn 1972



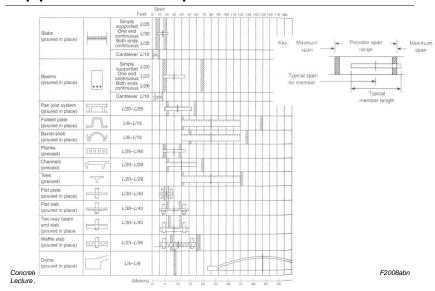
ARCH 331

Kimball Museum, Kahn 1972

• outer shell edges


Concrete Beams 32 Lecture 22

Foundations Structures ARCH 331


F2008abn

Kimball Museum, Kahn 1972

skylights at peak

Approximate Depths

