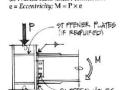
Architectural Structures: Form, Behavior, and Design

Arch 331 Dr. Anne Nichols Summer 2013

eighteen

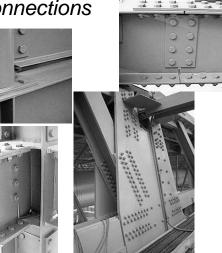

steel construction steel construction bolts, welds & light gages

Steel Bolts & Welding 1 Lecture 18 Architectural Structures ARCH 331 F2009abr

Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

(a) Framed beam (shear) connection.

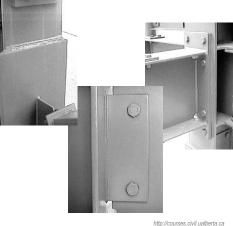

(b) Moment connection (rigid frame). M = Moment due to beam bending

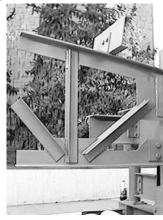
Steel Bolts & Welding 2 Lecture 21 Foundations Structures ARCH 331 F2008abn

Bolts

bolted steel connections

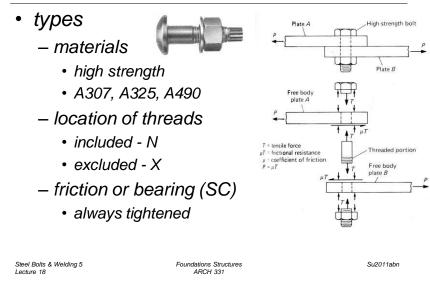
Steel Bolts & Welding 3 Lecture 21 Foundations Structures ARCH 331 (AISC - Steel Structures of the Everyday)


day) F2008abn


Welds

Steel Bolts & Welding 4

Lecture 21


welded steel connections

http://courses.civil.ualberta.ca Foundations Structures ARCH 331

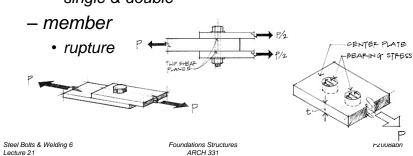
Bolts

Bolts

- rarely fail in bearing
- holes considered 1/8" larger
- $R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi_v R_n$ • shear & tension $\phi_{v} = 0.75$
 - single shear or tension

$$R_n = F_n 2A_b$$

 $R_n = F_n A_h$


Steel Bolts & Welding 7 Lecture 18

Foundations Structures ARCH 331

Su2011abr

Bolted Connection Design

- considerations
 - bearing stress
 - yielding
 - shear stress • single & double

shear

tensior

Bolts

					ilab	le 7- le S f Bo	She		os							Avai engt	labl			-	IS		
N	ominal Bolt	Diamet	er, d, in.	0		1/a	1	Va	1	7/4	T	1	Nominal Bolt	Diameter,	d, in.	1	/a	1	1/4	7/8		1	
	Nominal E	Bolt Area	, in.2		0.	307	0.	0.442 0.601			0.	785	Nominal Bolt Area, in.2			0.	307	0.442		0.601		0.785	
ASTM	Thread	F _{ity} /Ω (ksi)	¢Fav (ksi)	Load-	r ₆ /Ω	φ <i>f</i> ₀	r ₀ /Ω	¢fa	r,,/Ω	¢fa	r./Q	¢6	ASTM Desig.	F _{et} /Ω (ksi)	oFet (ksi)	r_{s}/Ω	0r,	r_{a}/Ω	ora	r_{μ}/Ω	¢r _a	$r_{\rm B}/\Omega$	or,
Desig.	Cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRF
Group	N	27.0	40.5	S D	8.29 16.6	12.4 24.9	11.9 23.9	17.9 35.8	16.2 32.5	24.3 48.7	21.2 42.4	31.8 63.6	Group A Group B 4307	45.0 56.5 22.5	67.5 84.8 33.8	13.8 17.3 6.90	20.7 26.0 10.4	19.9 25.0 9.94	29.8 37.4 14.9	27.1 34.0 13.5	40.6 51.0 20.3	35.3 44.4 17.7	53.0 66.6 26.5
A	X	34.0	51.0	D	10.4 20.9	15.7	15.0	22.5 45.1	20.4 40.9	30.7	26.7 53.4	40.0	Nominal Bolt		1		1/8	-	1/4	-	3/8		11/2
Group	N	34.0	51.0	S	10.4 20.9	15.7	15.0	22.5	20.4	30.7	28.7	40.0	Nominal Bolt Area, in. ² 0.994		-	23	1.48		1.77				
B	x	42.0	63.0	S D	12.9	19.3	18.6	27.8	25.2	37.9	33.0 65.9	49.5	ASTM Desig.	Fnt/Ω (ksi)	¢F _{at} (ksi)	r _e /Ω	ora	r _o /Ω	07#	r _e /Ω	¢r _n	r _e /Ω	or,
A307		13.5	20.3	S D	4.14		5.97 11.9	8.97	8.11		10.6	15.9		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
N	ominal Bolt	Diamet	er, d, in.	10	and a state of the local division of the loc	1/18	and strength	17.0	And in case of	3/0		1 31.9	Group A Group B	45.0 56.5	67.5 84.8	44.7 56.2	67.1 84.2	55.2 69.3	82.8 104	66.8 83.9	100	79.5 99.8	119 150
	Nominal B	lolt Area	, in.2		0.9	994	1.	23	1	48	1	.77	A307	22.5	33.8	22.4	33.5	27.6			50.1	39.8	59.6
ASTM	Thread Cond.	F _{ity} /Ω (ksi)	¢Fnv (ksi)	Load-	$r_{\rm sp}/\Omega$	φ <i>f</i> a	r _e /Ω	¢r _a	r_{μ}/Ω	¢1a	r _n /Ω	6 6		LRFD = 0.75									
Desig.	cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD											-
Group	N	27.0	40.5	S D	28.8 53.7	40.3 80.5	33.2 66.4	49.8 99.6	40.0 79.9	59.9 120	47.8 95.6	71.7 143											
A	x	34.0	51.0	SD	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5	60.2 120	90.3 181											
Group	N	34.0	51.0	SD	33.8 67.6	50.7	41.8 83.6	62.7 125	50.3 101	75.5	60.2 120	90.3		X	10					1	N		
B	x	42.0	63.0	S D	41.7 83.5	62.6 125	51.7 103	77.5 155	62.2 124	93.2 186	74.3 149	112 223	Load					10	a 11				
A307	-	13.5	20.3	S D	13.4 26.8	20.2 40.4	16.6 33.2	25.0 49.9	20.0 40.0	30.0 60.1	23.9 47.8	35.9 71.9					C bao	1					Load
ASD	LRFD	For end	loaded or	antections	greater t	han 38 in.	, see AISC	Specific	action Table	e J3.2 fo	otnote b.		Recei			NO	~		94550			and alle	V
$\Omega = 2.00$	$\phi = 0.75$	1												1	4								

Bolts

• bearing

$$\leq \frac{R_n}{\Omega}$$
 $R_u \leq \phi R_n$
 $\phi = 0.75$

- deformation is concern

$$R_n = 1.2L_c tF_u \le 2.4 dtF_u$$

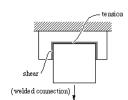
- deformation isn't concern

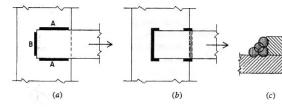
 $R_n = 1.5L_c t F_u \leq 3.0 dt F_u$

– long slotted holes

$$R_n = 1.0L_c t F_u \le 2.0 dt F_u$$

 L_c – clear length to edge or next hole (ex. 1¹/₄", 3")


Steel Bolts & Welding 9 Lecture 18 Foundations Structures ARCH 331


 R_a

Welded Connection Design

- considerations
 - shear stress
 - yielding

Steel Bolts & Welding 11 Lecture 21

Foundations Structures ARCH 331

F2008abn

Su2011abn


Bolts

Av	ailabl		ed o	ng S	trendge	Dis	at E		Hole	es				Ta lip-C Availat lass A	ritica ole Sh	ear S	onne trengt	ctio	s	Group B Bolts		
		12.00	Nominal Boit Diameter, d, in.										1 march	ni n	1					_		
Hole Type	Edge Distance	F., ksi	5/8		3/4		7/8		1			1			Gr	oup B Bo						
	Le, in.	1111	r_n/Ω	¢fa	r _p /Ω	¢r _e	r ₀ /Ω	¢r _n	$r_{\rm ff}/\Omega$	¢r _a				-	10.00			Diameter,		1.1.1	_	
	100	1.0	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			Loading		/8		14	1.1.1	/a		1	
STD	11/4	58 65	31.5 35.3	47.3 53.0	29.4 32.9	44.0 49.4	27.2 30.5	40.8	25.0 28.0	37.5		Hole Type		Minimum Group B Bolt Pretension, kips								
SSLT	2	58	43.5	65.3	52.2	78.3	53.3	79.9	51.1	76.7					4	35		49		64		
		65 58	48.8	73.1	58.5	87.8	59.7 23.9	89.6 35.9	57.3	85.9				r _n /Ω	¢fa	$r_{\rm fl}/\Omega$	0ľn	$r_{\rm ff}/\Omega$	¢I _R	r _p /Ω	¢.	
SSLP	11/4	65	31.7	47.5	29.3	43.9	26.8	40.2	23.2	31.0			6	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LR	
3367	2	58 65	43.5	65.3 73.1	52.2 58.5	78.3 87.8	50.0 56.1	75.0	46.8	70.1		STD/SSLT	S	5.42	8.14 16.3	7.91	11.9	11.1 22.1	16.6	14.5 28.9	21.	
		58	29.4	44.0	27.2	40.8	25.0	37.5	21.8	32.6			S	4.62	6.92	6.74	10.1	9.44	14.1	12.3	18	
ovs	11/4	65	32.9	49.4	30.5	45.7	28.0	42.0	24.4	36.6		OVS/SSLP	D	9.25	13.8	13.5	20.2	18.9	28.2	24,7	36.	
	2	58 65	43.5 48.8	65.3 73.1	52.2	78.3	51.1 57.3	76.7	47.9	71.8		LSL	S	3.80 7.60	5.70 11.4	5.54	8.31 16.6	7.76	23.3	10,1 20.3	15.	
	11/4	58	16.3	24.5 10.9 16.3 5.44 8.16					Diameter,		20.0	1 007										
LSLP	1.74	65 58	18.3	27.4	12.2	18.3	6.09 31.5	9.14 47.3	26.1	39.2				1	1/a		1/4	13/8 11/2				
	2	50 65	47.5	71.3	41.4	62.2	35.3	53.0	29.3	43.9				1	10			Bolt Prete				
	11/4	58 65	26.3 29.5	39.4 44.2	24.5 27.4	36.7	22.7	34.0	20.8 23.4	31.3 35.0		Hole Type	Loading	5	10		02	1	148			
LSLT		58	36.3	54.4	43.5	65.3	44.4	66.6	42.6	63.9				r _a /Ω	¢r.	r_{e}/Ω	ora	r_{e}/Ω	0/2	r _e /Ω	01	
	2	65	40.6	60.9	48.8	73.1	49.8	74.6	47.7	71.6				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRF	
STD, SSLT, SSLP, OVS.	424.00	58	43.5	65.3	52.2	78.3	60.9	91.4	69.6	104			S	18.1	27.1	23.1	34.6	27.3	41.0	33.4	50.2	
LSLP		65	48.8	73.1	58.5	87.8	68.3	102	78.0	117		STD/SSLT	D	36.2	54.2	46.1	69.2	54.7	82.0	66.9	100	
LSLT	Le 2 Le not	58 65	36.3 40.6	54.4	43.5	65.3 73.1	50.8 56.9	76.1	58.0 65.0	87.0		OVS/SSLP	S	15,4	23.1	19.6	29.4	23.3	34.9	28.5	42.	
		STD,	40.0	00.2			00.0	00.0	02.0	1			D	30.8	46.1	39.3 16.2	58.8	46.6	69.7	57.0 23.4	85.	
Edge di		SSLT, LSLT	15	/8	1	15/16	21	4	21	16		LSL	D	25.3	38.0	32.3	48.4	38.3	57.4	46.9	70.	
for full stree		OVS	11	1/16	2		25	£16	25	1/8		STD = standar	STD = standard hole S = single shear									
$L_{\theta} \ge L_{\theta}$		SSLP	111/16		2	2		/16	21	1/16		OVS = oversize		D = double shear								
1000		LSLP	21	/16	2	7/16	27	18	31	/4		SSLT = short-si										
STD = stan	dard hole t-slotted hole	-									sS	SSLP = short-sl					rce					
SSLP = shor	t-slotted hole										13	Hole Type	ASD	LRFD		o-oritical bol				iller has bee	an provi	
OVS = over	sized hole											STD and SSLT	Ω = 1.50	φ = 1.00		ave been a				s when file		

Welded Connection Design

- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat
- field welding
- shop welding

Steel Bolts & Welding 12 Lecture 21

FULT

SINGL FILLET WELDE

Foundations Structures ARCH 331 F2008abn

AP JOINT-

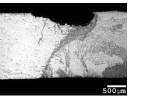
Welded Connection Design

• weld process

- melting of material
- melted filler electrode
- shielding gas / flux
- potential defects

• weld materials

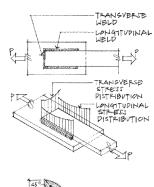
- E60XX
- E70XX F_{FXX} = 70 ksi


F2008abr

FAFE

---- CØNVBX ----- TØB

LEG SIZE


CONCAVE

THRAAT , 101 × WELD SIZE

Welded Connection Design

- shear failure assumed
- throat
 - -T = 0.707 x weld size
- area
 - -A = T x length of weld
- weld metal generally stronger than base metal (ex. $F_y = 50$ ksi)

REINFOR-OBMENT THERATE JOJ X WELD SIZE

```
Steel Bolts & Welding 14
Lecture 18
```

Foundations Structures ARCH 331 Su2011abn

Steel Bolts & Welding 13 Lecture 21 Foundations Structures ARCH 331

Welded Connection Design

- minimum
 - table
- maximum
 - material thickness (to 1/4")
 - 1/16" less
- min. length

– 4 x size min.

–≥1 ½"

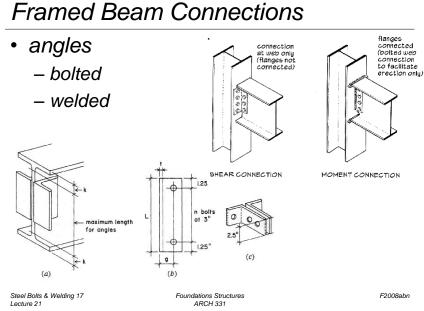
TABLE J2.4 Minimum Size of Fillet Welds							
Material Thickness of	Minimum Size of						
Thicker Part Joined, in. (mm)	Fillet Weld[a] in. (mm)						
To ¹ / ₄ (6) inclusive	$\frac{1_{6}}{3_{16}}$ (3)						
Over ¹ / ₄ (6) to ¹ / ₅ (13)	$\frac{3_{16}}{5_{4}}$ (5)						
Over ¹ / ₂ (13) to ³ / ₄ (19)	$\frac{1_{4}}{5_{46}}$ (6)						
Over ³ / ₄ (19)	$\frac{5_{16}}{6_{16}}$ (8)						

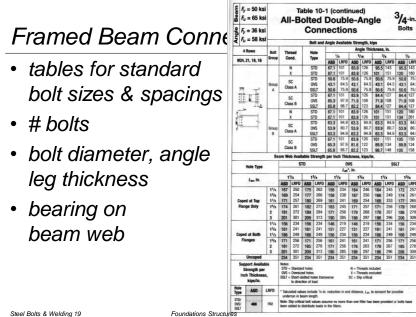
Welded Connection Design

shear

 $R_a \leq \frac{R_n}{\Omega} \qquad R_u \leq \phi R_n$ $\phi = 0.75$

 $R_n = 0.6F_{EXX} Tl = Sl$


area


– table for ϕS

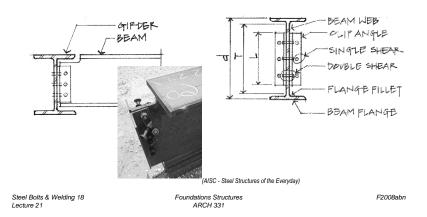
Weld Size	E60XX	E70XX
(in.)	(k/in.)	(k/in.)
3/16	2.39	4.18
1/4	4.77	5.57
5/16	5.97	6.96
3/8	7.16	8.35
7/16	5.57	9.74
1/2	8.35	11.14
5/8	11.93	13.92
3/4	14.32	16.70

Steel Bolts & Welding 15 Lecture 18 Foundations Structures ARCH 331 Su2011abn

Foundations Structures ARCH 331 Su2011abn

ARCH 331

AMERICAN INSTITUTE OF STEEL CONSTRUCTS


Framed Beam Connections

• terms

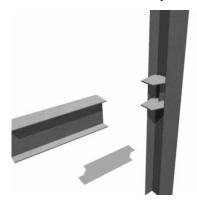
Steel Bolts & Welding 20

Lecture 21

- coping

Framed Beam Connections

welded example (shear)



(AISC - Steel Structures of the Everyday)

Foundations Structures ARCH 331

Framed Beam Connections

• welded moment example

(AISC - Steel Structures of the Everyday)

Steel Bolts & Welding 21 Lecture 21 Foundations Structures ARCH 331

Framed Beam Connections

• welded/bolted moment example

(AISC - Steel Structures of the Everyday)

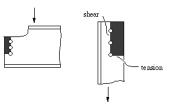
Steel Bolts & Welding 23 Lecture 21 Foundations Structures ARCH 331

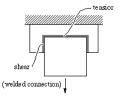
F2008abn

F2008abr

Framed Beam Connections

• welded/bolted moment example




(AISC - Steel Structures of the Everyday)

Steel Bolts & Welding 22 Lecture 21 Foundations Structures ARCH 331 F2008abn

Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

Steel Bolts & Welding 24 Lecture 21 Foundations Structures ARCH 331

Beam Connections $\phi = 0.75$ $R_{n} = 0.6F_{u}A_{nv} + U_{bs}F_{u}A_{nt} \le 0.6F_{v}A_{gv} + U_{bs}F_{u}A_{nt}$

- where U_{bs} is 1 for uniform tensile stress

Figure 2-1. Block Shear Rupture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

block shear rupture

Steel Bolts & Welding 25 Lecture 18

Foundations Structures ARCH 331

Foundations Structures

ARCH 331

Other Connections

The Royal Ontario Museum Toronto . Canada Daniel Libeskind (AISC - Steel Structures of the Everyday)

Steel Bolts & Welding 27 Lecture 21

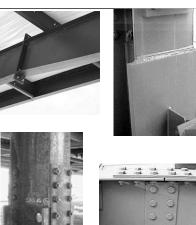
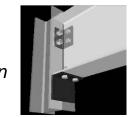
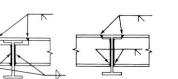


Figure 2-14. Tension Fracture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)


tension rupture


Su2011abr

F2008abn

Other Connections

- seated beam
- continuous
 - beam to column
 - beam to beam

Steel Bolts & Welding 26 Lecture 21

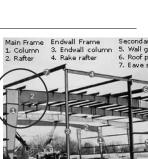
Foundations Structures ARCH 331

F2008abr

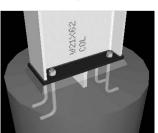
Other Connections

- rigid frame knees
- gussets & joints

(AISC - Steel Structures of the Everyday)



F2008abn


Other Connections

- base plates
 - anchor bolts
 - bearing on steel
 - bending of plate

http://courses.civil.ualberta.ca

Steel Bolts & Welding 29 Lecture 21

Foundations Structures ARCH 331