ARCHITECTURAL STRUCTURES:


FORM. BEHAVIOR. AND DESIGN

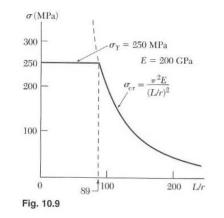
seventeen

ARCH 331 **DR.** ANNE NICHOLS SUMMER 2013

lecture

Cor-Ten Steel Sculpture By Richard Serra Museum of Modern Art Fort Worth TX

F2009abn


steel construction: columns & tension members

Steel Columns & Tension 1 Lecture 17

Architectural Structures ARCH 331

Design Methods (revisited)

- know
 - loads or lengths
- select
 - section or load
 - adequate for strength and no buckling

Structural Steel

- standard rolled shapes (W, C, L, T)
- tubing
- pipe

built-up

Steel Columns & Tension 2 Lecture 20

Foundations Structures ARCH 331

F2008abn

Allowable Stress Design (ASD)

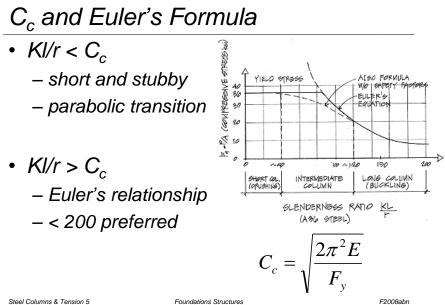
• AICS 9th ed

$$F_a = \frac{f_{critical}}{F.S.} = \frac{12\pi^2 E}{23(Kl/r)^2}$$

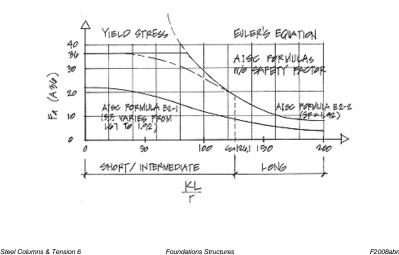
- Kl slenderness ratio
 - for kl/r $\geq C_c$ = 126.1 with F_y = 36 ksi = 107.0 with $\vec{F_v} = 50$ ksi

Steel Columns & Tension 3 Lecture 20

Foundations Structures ARCH 331


F2008abn

Steel Columns & Tension 4 Lecture 20


Foundations Structures ARCH 331

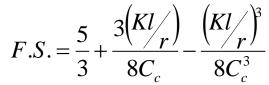
r

F2008abn

C_c and Euler's Formula

ARCH 331

Lecture 20


• /

ARCH 331

Short / Intermediate

$$F_{a} = \left[1 - \frac{\left(\frac{Kl}{r}\right)^{2}}{2C_{c}^{2}}\right] \frac{F_{y}}{F.S.}$$

- where

Steel Columns & Tension 7 Lecture 20 Foundations Structures ARCH 331

F2008abn

Unified Design• limit states for failure $P_a \leq P_n / \Omega$ $\phi_c = 0.90$ $P_n = F_{cr}A_g$ $P_u \leq \phi_c P_n$ 1. yielding $\frac{KL}{r} \leq 4.71 \sqrt{\frac{E}{F_y}}$ or $F_e \geq 0.44F_y$ 2. buckling $\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}$ or $F_e < 0.44F_y$ F_e - elastic buckling stress (Euler)

Steel Columns & Tension 8 Lecture 17

Lecture 20

Foundations Structures ARCH 331 Su2011abn

Unified Design

•
$$P_n = F_{cr}A_g$$

- for $\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{F_y}}$ $F_{cr} = \left\lfloor 0.658^{\frac{F_y}{F_e}} \right\rfloor F_y$
- for $\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}$ $F_{cr} = 0.877F$
- where $F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$

Foundations Structures

ARCH 331

Procedure for Design

- 1. guess a size (pick a section)
- 2. calculate KL/r

Steel Columns & Tension 9

Lecture 17

- biggest of KL/r with respect to x axes and y axis
- 3. find $F_a \underline{\text{or}} F_{cr}$ from appropriate equations
 - or find a chart

4. compute $P_{allowable} = F_a A$ (or $P_n / \Omega = F_{cr} A$) <u>or</u> $P_n = F_{cr} A_g$ • or find $f_{actual} = P/A$

Procedure for Analysis

- 1. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 2. find $F_a \underline{or} F_{cr}$ from appropriate equation
 - tables are available
- 3. compute $P_{allowable} = F_a \cdot A \text{ or } P_n = F_{cr}A_g$ • or find $f_{actual} = P/A$
- 4. is $P \leq P_{allowable}$ ($P_a \leq P_n/\Omega$)? or is $P_u \leq \phi P_n$?
 - yes: ok
 - no: insufficient capacity and no good

Steel Columns & Tension 10 Lecture 17 Foundations Structures ARCH 331 F2011abn

Procedure for Design (cont'd)

- 5. is $P \leq P_{allowable}$? or is $P_u \leq \phi P_n$?
 - yes: ok
 - no: pick a bigger section and **go back to step 2**.
- 6. check design efficiency

• percentage of stress =
$$\frac{P_r}{P_c} \cdot 100\%$$

- if between 90-100%: good
- if < 90%: pick a smaller section and go back to step 2.

Steel Columns & Tension 12 Lecture 17 Su2011abn

Su2011abn

Column Charts, F_a (pg. 361-364)

Table 10.1 Allowable stress for compression members ($F_v = 36$ ksi and $F_v = 250$ MPa).

$\frac{KL}{r}$	F _a (ksi)	F_a (MPa)	$\frac{KL}{r}$	F_a (ksi)	F _a (MPa)	$\frac{KL}{r}$	F _a (ksi)	F _a (MPa)
1	21.56	148.7	41	19.11	131.8	81	15.24	105.1
2	21.52	148.4	42	19.03	131.2	82	15.13	104.3
3	21.48	148.1	43	18.95	130.7	83	15.02	103.6
4	21.44	147.8	44	18.86	130.0	84	14.90	102.7
5	21.39	147.5	45	18.78	129.5	85	14.79	102.0
6	21.35	147.2	46	18.70	128.9	86	14.67	101.1
7	21.30	146.9	47	18.61	128.3	87	14.56	100.4
8	21.25	146.5	48	18.53	127.8	88	14.44	99.6
9	21.21	146.2	49	18.44	127.1	89	14.32	98.7
10	21.16	145.9	50	18.35	126.5	90	14.20	97.9
11	21.10	145.5	51	18.26	125.9	91	14.09	97.2
12	21.05	145.1	52	18.17	125.3	92	13.97	96.3
13	21.00	144.8	53	18.08	124.7	93	13.84	95.4
14	20.95	144.5	54	17.99	124.0	94	13.72	94.6
15	20.89	144.0	55	17.90	123.4	95	13.60	93.8
16	20.83	143.6	56	17.81	122.8	96	13.48	92.9
17	20.78	143.3	57	17.71	122.1	97	13.35	92.0
18	20.72	142.9	58	17.62	121.5	98	13.23	91.2
olumns 20	& Tension 11	1	F	oundations S ARCH 3				

Column Charts

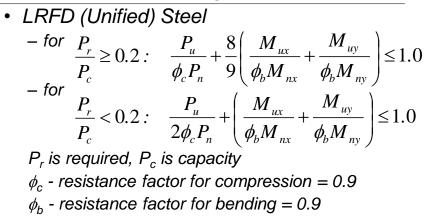
F _y =	50 ksi	A	Ava	able ailab Co	ole S mpr	Stre	ngth	in	6		•
Sh	ape			11		W	2 ×				Le
Wt/ft Design		96		87		79		72		65	
		P_n/Ω_c	\$_cP_n	P_n/Ω_c	\$cPn	P_n/Ω_c	¢ _c P _n	P_n/Ω_c	\$cPn	P_n/Ω_c	φ _c P _n
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	844	1270	766	1150	694	1040	633	951	571	859
of gyration <i>r_y</i>	6 7 8 9 10	811 800 787 772 756	1220 1200 1180 1160 1140	735 725 713 699 685	1110 1090 1070 1050 1030	667 657 646 634 620	1000 987 971 952 932	607 598 588 577 565	913 899 884 867 849	548 540 531 520 509	824 811 798 782 765
-	11	739	1110	669	1010	606	910	551	828	497	747

Column Charts, ϕF_{cr}

Available Critical Stress, $\phi_c F_{cr}$, for Compression Members, ksi ($F_y = 50$ ksi and $\phi_c = 0.90$)

KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$
1	45.0	41	39.8	81	27.9	121	15.4	161	8.72
2	45.0	42	39.6	82	27.5	122	15.2	162	8.61
3	45.0	43	39.3	83	27.2	123	14.9	163	8.50
4	44.9	44	39.1	84	26.9	124	14.7	164	8.40
5	44.9	45	38.8	85	26.5	125	14.5	165	8.30
6	44.9	46	38.5	86	26.2	126	14.2	166	8.20
7	44.8	47	38.3	87	25.9	127	14.0	167	8.10
8	44.8	48	38.0	88	25.5	128	13.8	168	8.00
9	44.7	49	37.8	89	25.2	129	13.6	169	7.91
10	44.7	50	37.5	90	24.9	130	13.4	170	7.82
11	44.6	51	37.2	91	24.6	131	13.2	171	7.73
12	44.5	52	36.9	92	24.2	132	13.0	172	7.64
13	44.4	53	36.6	93	23.9	133	12.8	173	7.55
14	44.4	54	36.4	94	23.6	134	12.6	174	7.46
15	44.3	55	36.1	95	23.3	135	12.4	175	7.38
16	44.2	56	35.8	96	22.9	136	12.2	176	7.29
17	44.1	57	35.5	97	22.6	137	12.0	177	7.21
18	43.9	58	35.2	98	22.3	138	11.9	178	7.13
19	43.8	59	34.9	99	22.0	139	11.7	179	7.05
20	43.7	60	34.6	100	21.7	140	11.5	180	6.97
21	43.6	61	34.3	101	21.3	141	11.4	181	6.90
22	43.4	62	34.0	102	21.0	142	11.2	182	6.82
23	43.3	63	33.7	103	20.7	143	11.0	183	6.75
24	43.1	64	33.4	104	20.4	144	10.9	184	6.67
25	43 N	65	33.0	105	20.1	145	10.7	185	6 60
el Columns ture 17	I Columns & Tension 14 Foundations Structures ure 17 ARCH 331							F201	

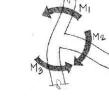
Beam-Column Design


• moment magnification (P-Δ)

$$M_{u} = B_{1}M_{max-factored} B_{1} = \frac{C_{m}}{1 - (P_{u}/P_{e1})}$$

 $C_{m} - \text{modification factor for end conditions}$ = 0.6 - 0.4(M₁/M₂) or 0.85 restrained, 1.00 unrestrained $P_{e1} - \text{Euler buckling strength} \quad P_{e1} = \frac{\pi^{2} EA}{(Kl/r)^{2}}$

Steel Columns & Tension 15 Lecture 17 Foundations Structures ARCH 331 Su2011abn

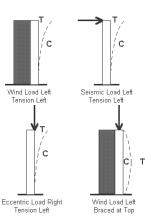

Beam-Column Design

Steel Columns & Tension 16 Lecture 17 Foundations Structures ARCH 331

Rigid Frame Design (revisited)

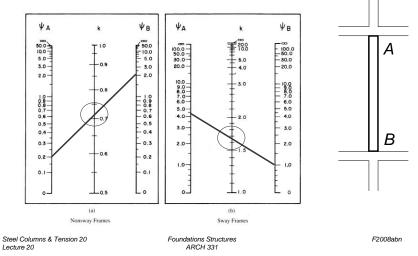
- columns in frames
 - ends can be "flexible"
 - stiffness affected by beams and column = El/L

Su2011abn


- $G = \Psi = \frac{\sum \frac{EI}{l_c}}{\sum \frac{EI}{l_h}}$ for the joint
 - I_c is the column length of each column
 - I_b is the beam length of each beam
 - measured center to center

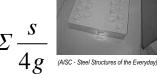
F2008abn

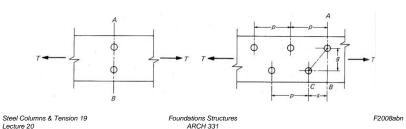
Design Steps Knowing Loads (revisited)


- 1. assume limiting stress
 - buckling, axial stress, combined stress
- 2. solve for r, A or S
- 3. pick trial section
- 4. analyze stresses
- 5. section ok?
- 6. stop when section is ok

Steel Columns & Tension 18 Lecture 20 Foundations Structures ARCH 331 F2008abr

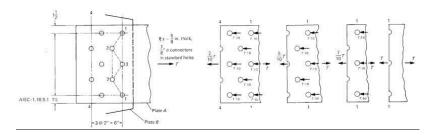
Rigid Frame Design (revisited)


• column effective length, k


Tension Members

- steel members can have holes
- reduced area

$$A_n = A_g - A_{of all holes} + tZ$$



increased stress

Effective Net Area

- likely path to "rip" across
- bolts divide transferred force too
- shear lag $A_e \leq A_n U$

Steel Columns & Tension 20 Lecture 20

Foundations Structures ARCH 331

F2008abn

Tension Members

 $P_a \leq \frac{P_n}{\Omega} \quad P_u \leq \phi_t P_n$ limit states for failure 1. yielding $\phi_t = 0.90$ $P_n = F_y A_g$ 2. rupture* $\phi_t = 0.75$ $P_n = F_u A_e$ A_g - gross area EARING OF THE HE BOLT HOLES A_e - effective net area (holes 1/8" + d) F_{ii} = the tensile strength of the steel (ultimate) Foundations Structures Su2011abn

ARCH 331

Steel Columns & Tension 22 Lecture 17