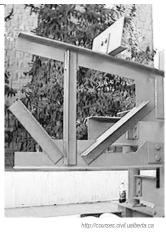
Architectural Structures: Form, Behavior, and Design

ARCH 331 DR. ANNE NICHOLS SUMMER 2012


steel construction trusses, decks & plateg

Steel Trusses 1 Lecture 19 Architectrual Structures ARCH 331 Paris 2002/09. Eiffel Tower

Truss Connections

- gusset plates
- bolts
- welds

Steel Trusses 3 Lecture 19 (AISC - Steel Structures of the Everyday) Foundations Structures ARCH 331

F2009abn

S

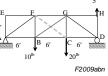
F2009abr

Iron & Steel Trusses

- cast iron
 - 18th century
 - chain links
- wrought-iron
- rivets

Steel Trusses 2 Lecture 19

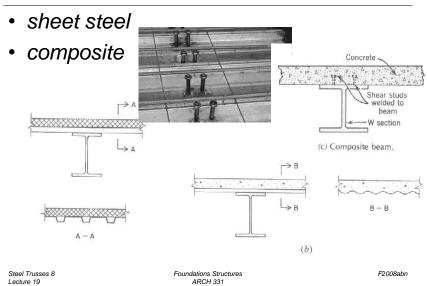
http:// nisee.berkeley.edu/godden Foundations Structures ARCH 331

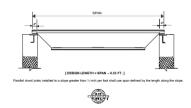

F2009abr

Trusses

- require lateral bracing
- consider buckling
- indeterminate trusses
 - extra members
 - diagonal tension counters
 - solvable with statics
 - cables can't hold compression
 - displacement methods
 - elastic elongation

- too few members, unstable Steel Trusses 4 Lecture 19 ARCH 331




Manufactured Trusses **Open Web Joists** SJI: www.steeljoist.com • open web joists Vulcraft: www.vulcraft.com • parallel chord - K Series (Standard) • 8-30" deep, spans 8-50 ft - LH Series (Long span) top chord-• 18-48" deep, spans 25-96 ft FL - DLH (Deep Long Spans) • 52-72" deep, spans 89-144 ft bottom chord - SLH (Long spans with high strength steel) (c) SECTION THRU JOISTS SHOWING FLANGE TYPES • pitched top chord • 80-120" deep, spans 111-240 ft Foundations Structures Steel Trusses 6 Steel Trusses 5 Foundations Structures F2008abn Lecture 19 ARCH 331 Lecture 19 ARCH 331

Load Tables - w

	Ba								EEL JO wn In Po				(plf)			
Joist Designation	10K1	12K1	12K3	12K5	14K1	14K3	14K4	14K6	16K2	16K3	16K4	16K5	16K6	16K7	16K	
Depth (in.)	10	12	12	12	14	14	14	14	16	16	16	16	16	16	16	
Approx. Wt (lbs./ft.)	5.0	5.0	5.7	7.1	5.2	6.0	6.7	7.7	5.5	6.3	7.0	7.5	8.1	8.6	10.0	
Span (ft.)																
10	825 550						lo	ad	for l	ive	loa	d de	efle	ctio	n	
11	825 542							lin	mit i	(1/2)	n n	in	DEI			
12	825 455	825 550	825 550	825 550					nit (
13	718 363	825 510	825 510	825 510			total in BLACK									
14	618 289	750 425	825 463	825 463	825 550	825 550	550	550								
15	537 234	651 344	814 428	825 434	766 475	825 507	825 507	825 507								
16	469 192	570 282	714 351	825 396	672 390	825 467	825 467	825 467	825 550	825 550	825 550	825 550	825 550	825 550	825 550	
17	415 159	504 234	630 291	825 366	592 324	742 404	825 443	825 443	768 488	825 526	825 526	825 526	825 526	825 526	825 526	
18	369 134	448 197	561 245	760 317	528 272	661 339	795 397	825 408	684 409	762 456	825 490	825 490	825 490	825 490	825 490	
19	331 113	402 167	502 207	681 269	472 230	592 287	712 336	825 383	612 347	682 386	820 452	825 455	825 455	825 455	825 455	
20	298 97	361 142	453 177	613 230	426 197	534 246	642 287	787 347	552 297	615 330	739 386	825 426	825 426	825 426	825 426	
21		327 123	409 153	555 198	385 170	483 212	582 248	712 299	499 255	556 285	670 333	754 373	822 405	825 406	825 406	
		298	373 132	505 172	351 147	439 184	529 215	648 259	454 222	505 247	609 289	687 323	747	825 385	825 385	
22		106					483	592	415	462	556	627	682	760	825	

Decks

F2008abn

Light-gage Steel

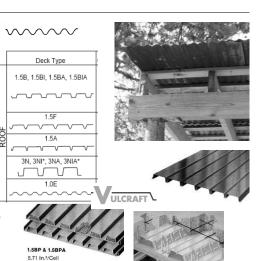
- · sheet metal
 - shaped
 - studs, panels, window frames
 - gage
 - based on weight of 41.82 lb/ft² / inch of thickness
 - 24, 22, 18, 16, i.e.
 - 0.0239, 0.0329, 0.0474, 0.0598 in
 - 0.6, 0.85, 1.0, 1.3, 1.6 mm

Steel Trusses 9 Lecture 19 Foundations Structures ARCH 331 F2008abn

Steel Decks

- common fire proofing
 - cementitious spray
 - composite concrete
- non-composite
 - concrete is fill
- lateral bracing
- diaphragm action

Rigid vertical plane (stiff plane truss or rigid frame) Rigid vertical plane (stiff plane or shear wall in-plane truss or rigid frame)


Foundations Structures

ARCH 331

Steel Decks

- "Texas" style
 corrugated
- common
 - 1 3 spans
 - can be insulated
 - composite
 - with concrete

Steel Trusses 10 Lecture 19 Foundations Structures ARCH 331 F2008abn

Load Tables - w

 live load deflection limit L/240

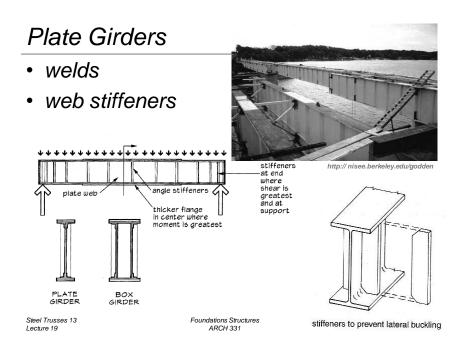
1.5 B, BI, BA, BIA Maximum Sheet Length 42:0 – ICBO Approved (No.3415) Factory Mutual Approved

....6'-0"6'-6"7'-5"

als No. 0C8A7 AM & 0G1A4 AM*

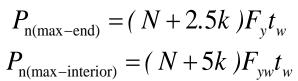
Deck type & gauge — Max. deck span 1.5B22, 1.5Bl22......6'-0"

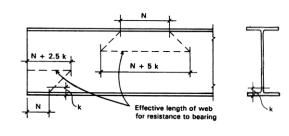
1.5B20, 1.5BI20. 1.5B18, 1.5BI18.


VERTICAL LOADS FOR TYPE 1.5B

		Max.														
No. of	Deck	SDI Const.		Span (ftin.) C. to C. of Support												
Spans	Туре	Span	5'-0	5'-6	6'-0	6'-6	7'-0	7'-6	8'-0	8'-6	9'-0	9'-6	10'-0			
	B 24	4'-8	66	52	42	36	30	27	24	21	20					
1	B 22	5'-7	91	71	57	47	40	34	30	27	24	22	20			
	B 21	6'-0	104	81	64	53	44	38	33	29	26	24	22			
	B 20	6'-5	115	89	71	58	48	41	36	31	28	25	23			
	B 19	7'-1	139	107	85	69	57	48	41	36	32	29	26			
	B 18	7'-8	162	124	98	79	65	55	47	41	36	32	29			
	B 16	8'-8	206	157	123	99	81	68	58	50	44	39	34			
	B 24	5'-10	126	104	87	74	64	55	47	41	36	32	29			
	B 22	6'-11	102	85	71	61	52	46	40	35	32	28	26			
	B 21	7'-4	118	97	82	70	60	52	46	41	36	33	29			
2	B 20	7'-9	132	109	91	78	67	59	51	46	41	36	33			
	B 19	8'-5	154	127	107	91	79	69	60	53	48	43	39			
[B 18	9'-1	174	144	121	103	89	78	68	60	54	48	44			
	B 16	10'-3	219	181	152	130	112	97	86	76	68	61	55			
	B 24	5'-10	130	100	79	65	54	45	39	34	31	27	25			
3	B 22	6'-11	128	106	89	76	65	57	50	44	39	34	31			
	B 21	7'-4	147	122	102	87	75	65	56	49	42	38	34			
	B 20	7'-9	165	136	114	97	84	72	61	53	46	41	36			
	B 19	8'-5	193	159	134	114	98	84	71	61	53	47	41			
	B 18	9'-1	218	180	151	129	111	96	81	69	60	52	46			
	B 16	10'-3	274	226	190	162	140	119	100	85	73	64	56			

Notes: 1. Load tables are calculated using sectional properties based on the steel design thickness shown in the

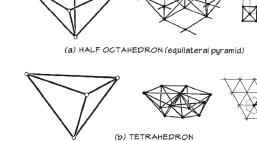

- Load tables are calculated using sectional properties based on the steel design thickness show Steel Deck Institute (SDI) Design Manual.
- Loads shown in the shaded areas are governed by the live load deflection not in excess of 1/240 of the span.
 A dead load of 10 PSF has been included.


3 ** Acoustical Deck is not covered under Factory Mutual

Web Bearing

• max loads

Steel Trusses 14 Lecture 19

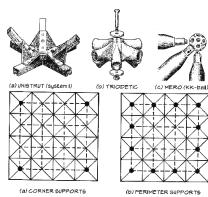

Steel Trusses 16

Lecture 19

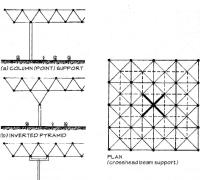
Foundations Structures ARCH 331

Space Trusses

- 3D with 2 force bodies and pins
 - pyramid
 - tetrahedron
- "frames" have fixed joints
- · layers
- 40's


Foundations Structures

ARCH 331


F2008abn

Space Trusses

• connections



Foundations Structures ARCH 331 F2008abn

Steel Trusses 15 Lecture 19

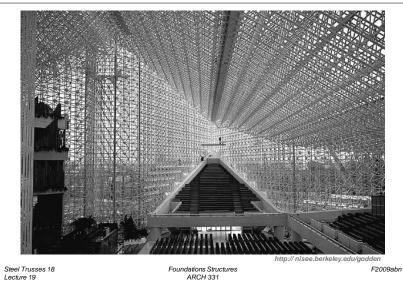
Space Trusses

Steel Trusses 17 Lecture 19

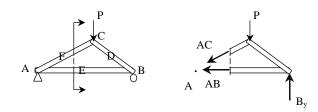
ARCH 331

Tensegrities

- 3D frame
- discontinuous struts
- continuous cables



Steel Trusses 19 Lecture 19

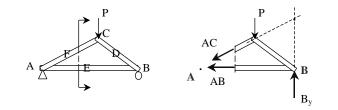

COLL-DE OF AR

Space Trusses

Method of Sections

- relies on internal forces being in equilibrium on a section
- cut to expose <u>3 or less</u> members
- coplanar forces $\rightarrow \Sigma M = 0$ too

Steel Trusses 20 Lecture 19


Foundations Structures ARCH 331

F2008abn

5

Method of Sections

- joints on or off the section are good to sum moments
- quick for few members
- not always obvious where to cut or sum


```
Steel Trusses 21
Lecture 19
```

Foundations Structures ARCH 331 F2008abn