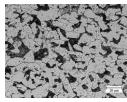
ARCHITECTURAL STRUCTURES:

FORM. BEHAVIOR. AND DESIGN

ARCH 331 DR. ANNE NICHOLS SUMMER 2013

steel construction:


materials & beams

Steel Beams 1 Lecture 15

Architectural Structures ARCH 331

Steel Materials

- smelt iron ore
- add alloying elements
- heat treatments
- iron, carbon
- microstructure

F2009abn

AISC

A36 steel. JOM 1998

Steel Beams 3 Lecture 18

Foundations Structures ARCH 331

F2008abn

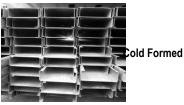
Steel Beam Design

- American Institute of Steel Construction
 - Manual of Steel Construction
 - ASD & LRFD
 - combined in 13th ed.

Steel Beams 2 Lecture 15

Foundations Structures ARCH 331

F2011abn


Steel Materials

- cast into billets
- hot rolled
- cold formed
- residual stress
- corrosion-resistant "weathering" steels
- stainless

Steel Beams 4

Lecture 18

Foundations Structures ARCH 331

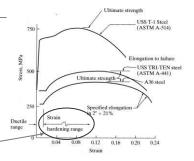
F2008abn

AISC

Steel Materials

- steel grades
 - ASTM A36 carbon
 - plates, angles
 - $F_v = 36 \text{ ksi } \& F_u = 58 \text{ ksi}$
 - ASTM A572 high strength low-alloy
 - some beams
 - $F_v = 60 \text{ ksi } \& F_u = 75 \text{ ksi}$
 - ASTM A992 for building framing
 - most beams
 - $F_v = 50 \text{ ksi} \& F_u = 65 \text{ ksi}$

```
Steel Beams 5
Lecture 18
```


Foundations Structures ARCH 331

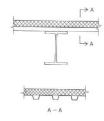
F2008abn

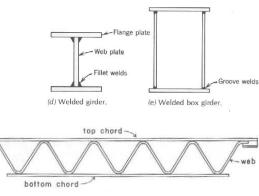
Steel Properties

- high strength to weight ratio
- elastic limit yield (F_{y})
- inelastic plastic
- ultimate strength (F_{μ})
- ductile
- strength sensitive to temperature
- can corrode
- fatique

Lecture 18

Winnepeg DOT F2008abn


Steel Beams 6


Foundations Structures ARCH 331

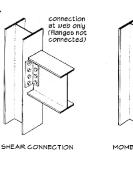
strain hardening

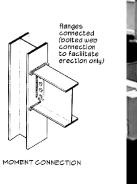
Structural Steel

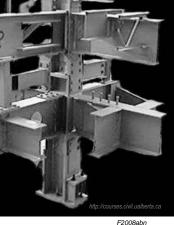
- standard rolled shapes (W, C, L, T)
- open web joists
- plate girders
- decking

Steel Beams 7 Lecture 18

Foundations Structures ARCH 331

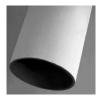

F2008abr


Steel Construction


- welding
- bolts

Steel Beams 8

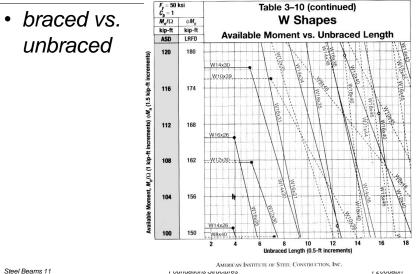
Lecture 18



Foundations Structures ARCH 331

Steel Construction

- fire proofing
 - cementicious spray
 - encasement in gypsum
 - intumescent expands with heat
 - sprinkler system



Foundations Structures

ARCH 331

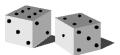
Steel Beams 9 Lecture 18

Unified Steel Design

ARCH 331

F2008abr

Unified Steel Design


- ASD $R_a \leq \frac{R_n}{\Omega}$
 - bending (braced) $\Omega = 1.67$
 - bending (unbraced^{*}) $\Omega = 1.67$
 - shear $\Omega = 1.67$
 - shear (bolts & welds) $\Omega = 2.00$
 - shear (welds) $\Omega = 2.00$

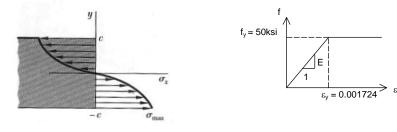
* flanges in compression can buckle

Steel Beams 10 Lecture 18 Foundations Structures ARCH 331 F2008abn

LRFD

- · loads on structures are
 - not constant

- can be more influential on failure
- happen more or less often
- UNCERTAINTY

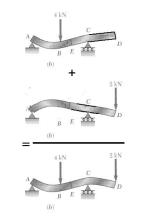

$$R_{u} = \gamma_{D} R_{D} + \gamma_{L} R_{L} \le \phi R_{n}$$

- ϕ resistance factor
- γ load factor for (D)ead & (L)ive load

Steel Beams 12 Lecture 18 Foundations Structures ARCH 331

LRFD Steel Beam Design

- limit state is yielding all across section
- outside elastic range
- load factors & resistance factors

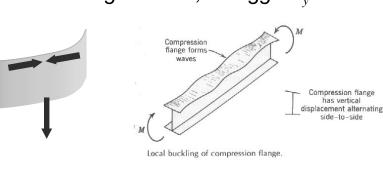


Steel Beams 13 Lecture 18 Foundations Structures ARCH 331

Beam Design Criteria (revisited)

- strength design
 - bending stresses predominate
 - shear stresses occur
- serviceability
 - limit deflection
 - stability
- superpositioning
 - use of beam charts
 - elastic range only!
 - "add" moment diagrams
 - "add" deflection CURVES (not maximums)

Steel Beams 15 Lecture 18 Foundations Structures ARCH 331



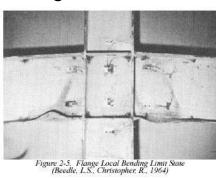
F2008abn

F2008abn

• $1.4D$ • $1.2D + 1.6L + 0.5(L_r \text{ or } \text{S or } R)$ • $1.2D + 1.6(L_r \text{ or } \text{S or } R) + (L \text{ or } 0.5W)$ • $1.2D + 1.0W + L + 0.5(L_r \text{ or } \text{S or } R)$ • $1.2D + 1.0E + L + 0.2S$ • $0.9D + 1.0W$ • $0.9D + 1.0E$ • F has same factor as D in 1-5 and 7 • H adds with 1.6 and resists with 0.9 (permanent Steel Beams 14 Letture 15	LR	FD Load Complinations	(2010)
• $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$ • $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$ • $1.2D + 1.0E + L + 0.2S$ • $0.9D + 1.0W$ • $0.9D + 1.0E$ • F has same factor as D in 1-5 and 7 • H adds with 1.6 and resists with 0.9 (permanent	• 1.	4D	
• $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$ • $1.2D + 1.0E + L + 0.2S$ • $0.9D + 1.0W$ • $0.9D + 1.0E$ • F has same factor as D in 1-5 and 7 • H adds with 1.6 and resists with 0.9 (permanent Ster Barrs 14 Foundations Structures F2011ab	• 1.	2D + 1.6L + 0.5(L _r or S or R)	
 1.2D + 1.0E + L + 0.2S 0.9D + 1.0W 0.9D + 1.0E F has same factor as D in 1-5 and 7 H adds with 1.6 and resists with 0.9 (permanent 	• 1.	2D + 1.6(L _r or S or R) + (L or 0.	5W)
 0.9D + 1.0W 0.9D + 1.0E F has same factor as D in 1-5 and 7 H adds with 1.6 and resists with 0.9 (permanent 	• 1.	2D + 1.0W + L + 0.5(L _r or S or I	R)
 0.9D + 1.0E F has same factor as D in 1-5 and 7 H adds with 1.6 and resists with 0.9 (permanent Steel Beams 14 	• 1.	2D + 1.0E + L + 0.2S	
F has same factor as D in 1-5 and 7 H adds with 1.6 and resists with 0.9 (permanent Steel Beams 14 Foundations Structures F2011at	• 0.	9D + 1.0W	
H adds with 1.6 and resists with 0.9 (permanent Steel Beams 14 Foundations Structures F2011at	• 0.	9D + 1.0E	
Steel Beams 14 Foundations Structures F2011ab		• F has same factor as D in 1-5 and 7	
	Stool Boom		
			1201100
	Ste	el Beams	
Steel Beams	• la	teral stability - bracing	
Steel BeamsIateral stability - bracing	• 10	cal buckling – stiffen, or bigger l	v
lateral stability - bracing		Compression flange forms	I

I DED Load Combinations

Steel Beams 16 Lecture 18 Foundations Structures ARCH 331 F2008abn


ASCE-7

Local Buckling

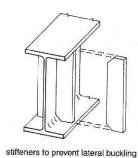
 steel I beams Flange buckling failure • flange Compression - buckle in direction of smaller radius Tension of gyration • web Buckling Crushing Crushina - force m - "crippling" Support Support Suppor Steel Beams 17 Foundations Structures F2008abn Lecture 18 ARCH 331

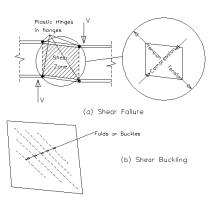
Local Buckling

• flange

• web

Figure 2-7. Web Local Buckling Limit (SAC Project)


Steel Beams 18 Lecture 18


Foundations Structures ARCH 331

F2008abr

Shear in Web

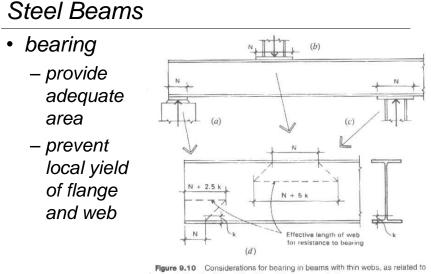
- · panels in plate girders or webs with large shear
- buckling in compression direction
- add stiffeners

Steel Beams 19 Lecture 18

Foundations Structures ARCH 331

F2008abn

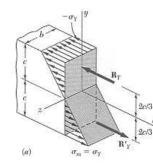
Shear in Web


• plate girders and stiffeners

Steel Beams 20

Lecture 18

Foundations Structures ARCH 331


web crippling (buckling of the thin web in compression).

Steel Beams 21 Lecture 18 Foundations Structures ARCH 331

Internal Moments - at yield

material hasn't failed

$$M_y = \frac{I}{c} f_y = \frac{bh^2}{6}$$

$$=\frac{b(2c)^{2}}{6}f_{y}=\frac{2bc^{2}}{3}f_{y}$$

Steel Beams 23 Lecture 18 Foundations Structures ARCH 331

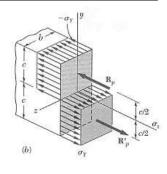
 f_{y}

F2008abn

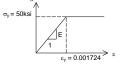
F2008abn

LRFD - Flexure

$$\Sigma \gamma_i R_i = M_u \le \phi_b M_n = 0.9 F_y Z$$

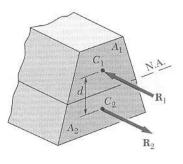

 M_u - maximum moment ϕ_b - resistance factor for bending = 0.9 M_n - nominal moment (ultimate capacity) F_y - yield strength of the steel Z - plastic section modulus*

Steel Beams 22 Lecture 18


Foundations Structures ARCH 331 F2008abn

Internal Moments - ALL at yield

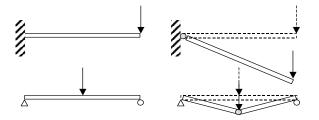
- · all parts reach yield
- plastic hinge forms
- ultimate moment
- $A_{tension} = A_{compression}$


 $M_{p} = bc^{2}f_{y} = \frac{3}{2}M_{y}$

Steel Bearns 24 Lecture 18 Foundations Structures ARCH 331

n.a. of Section at Plastic Hinge

- cannot guarantee at centroid
- $f_{y}A_1 = f_{y}A_2$
- moment found from yield stress times moment area

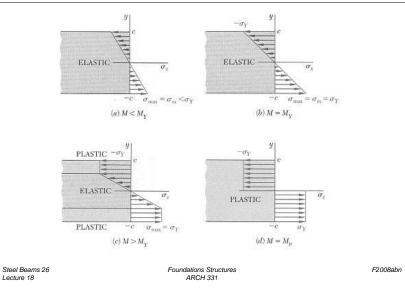

$$M_{p} = f_{y}A_{1}d = f_{y}\sum_{n,a}A_{i}d_{i}$$

Steel Beams 25
Lecture 18

Foundations Structures ARCH 331 F2008abn

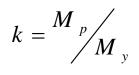
Plastic Hinge Examples

• stability can be effected


Steel Beams 27 Lecture 18 Foundations Structures ARCH 331 F2008abn

Steel Beams 28 Lecture 18 Founda A

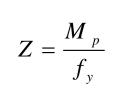
Foundations Structures ARCH 331


ala

Plastic Hinge Development

Plastic Section Modulus

• shape factor, k



= 3/2 for a rectangle

$$\approx$$
 1.1 for an I

• plastic modulus, Z

$$k = \frac{Z}{S}$$

LRFD – Shear (compact shapes)

$$\Sigma \gamma_i R_i = V_u \le \phi_v V_n = 1.0(0.6F_{yw}A_w)$$

 V_u - maximum shear ϕ_v - resistance factor for shear = 1.0 V_n - nominal shear F_{yw} - yield strength of the steel in the web A_w - area of the web = t_w d

Steel Beams 29 Lecture 18

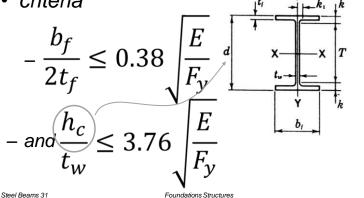
Foundations Structures ARCH 331 F2008abr

LRFD - Flexure Design

- limit states for beam failure 1. yielding $L_p = 1.76r_y \left| \frac{F_y}{L_p} \right|$
 - 2. lateral-torsional buckling*
 - 3. flange local buckling
 - 4. web local buckling
- minimum M_n governs

$$\Sigma \gamma_i R_i = M_u \le \phi_b M_n$$

Steel Beams 30	
Lecture 18	


Steel Beams 32

Lecture 18

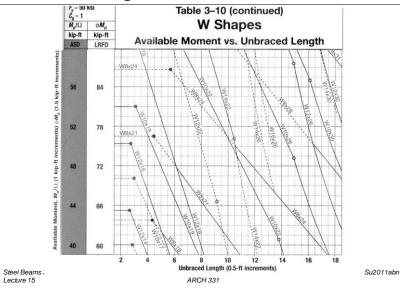
Foundations Structures ARCH 331 F2008abn

Compact Sections

- plastic moment can form before any buckling
 TABLE A.3 Properties of W Shapes
- criteria

Steel Bean Lecture 18 F2008abn

Lateral Torsional Buckling


$$\boldsymbol{M}_{n} = \boldsymbol{C}_{\boldsymbol{b}} \big[\begin{array}{c} \textit{moment based on} \\ \textit{lateral buckling} \end{array} \big] \leq \boldsymbol{M}_{p}$$

$$C_{b} = \frac{12.5M_{max}}{2.5M_{max} + 3M_{A} + 4M_{B} + 3M_{C}}$$

 $C_b = modification factor$ $M_{max} - |max moment|, unbraced segment$ $M_A - |moment|, 1/4 point$ $M_B = |moment|, center point$ $M_C = |moment|, 3/4 point$

ARCH 331

Beam Design Charts

Charts & Deflections

- beam charts
 - solid line is most economical
 - dashed indicates there is another more economical section
 - self weight is NOT included in M_n
- deflections
 - no factors are applied to the loads
 - often governs the design

Steel Beams 34 Lecture 18

Foundations Structures ARCH 331

F2008abr

Design Procedure (revisited)

- 1. Know unbraced length, material, design method (Ω, ϕ)
- 2. Draw V & M, finding M_{max}
- 3. Calculate $S_{reg'd}$ $(M_a \leq M_n/\Omega)$ $(M_{u} \leq \phi_{b}M_{n})$ <u>or Z</u>
- 4. Choose (economical) section from section or beam capacity charts

Steel Beams 35 Lecture 15

Beam Charts by S_x (Appendix A)

Table 11 Listing of W Shapes in Descending Order of Sx for Beam Design

S _x —US (in. ³)	Section	S_x —SI (10 ³ × mm ³)	S _x —US (in. ³)	Section	S_x —SI (10 ³ × mm ³
448	W33×141	7350	188	W18 × 97	3080
439	W36 × 135	7200			
411	W27 × 146	6740	176	W24 × 76	2890
			175	W16×100	2870
406	W33 × 130	6660	173	W14×109	2840
380	W30×132	6230	171	W21×83	2800
371	W24 × 146	6080	166	W18 × 86	2720
			157	W14 × 99	2570
359	W33 × 118	5890	155	W16 × 89	2540
355	W30×124	5820			CHI CONSC
			154	$W24 \times 68$	2530
329	W30 × 116	5400	151	W21 × 73	2480
329	W24 × 131	5400	146	$W18 \times 76$	2390
329	W21 × 147	5400	143	W14 × 90	2350
299	W30×108	4900	140	W21 × 68	2300
299	W27 × 114	4900	134	W16×77	2200

bn

Beam Charts by Z_x

TABLE 9.1	Load Factor Resistance Design Selection for Shapes Used as Beams
-----------	--

		$F_y = 36 \text{ ksi}$			$F_y = 50$ ksi									
Designation	Z _x in. ³	L _p ft	L _r ft	<i>М_р</i> kip-ft	M, kip-ft	L _p ft	L, ft	M _p kip-ft	M, kip-ft	r _y in.	$b_f/2t_f$	h/t _w	X ₁ ksi	$\begin{array}{c} X_2 \times 10 \\ (1/\mathrm{ksi})^2 \end{array}$
W 33 × 141	514	10.1	30.1	1,542	971	8.59	23.1	2,142	1,493	2.43	6.01	49.6	1,800	17,800
$W 30 \times 148$	500	9.50	30.6	1,500	945	8.06	22.8	2,083	1,453	2.28	4.44	41.6	2,310	6,270
W 24 \times 162	468	12.7	45.2	1.404	897	10.8	32.4	1.950	1.380	3.05	5.31	30.6	2.870	2,260
W 24 \times 146	418	12.5	42.0	1,254	804	10.6	30.6	1,742	1,237	3.01	5.92	33.2	2,590	3,420
W 33 × 118	415	9.67	27.8	1,245	778	8.20	21.7	1,729	1,197	2.32	7.76	54.5	1,510	37,700
W 30×124	408	9.29	28.2	1,224	769	7.88	21.5	1,700	1,183	2.23	5.65	46.2	1,930	13,500
W 21 × 147	373	12.3	46.4	1,119	713	10.4	32.8	1,554	1.097	2.95	5.44	26.1	3,140	1,590
$W 24 \times 131$	370	12.4	39.3	1,110	713	10.5	29.1	1,542	1.097	2.97	6.70	35.6	2,330	5,290
W 18 × 158	356	11.4	56.5	1,068	672	9.69	38.0	1,483	1,033	2.74	3.92	19.8	4,410	403
W 30 × 108	346	8.96	26.3	1,038	648	7.60	20.3	1,442	997	2.15	6.89	49.6	1,680	24,200
$W 27 \times 114$	343	9.08	28.2	1,029	648	7.71	21.3	1,429	997	2.18	5.41	42.5	2,100	9,220
$W24 \times 117$	327	12.3	37.1	981	631	10.4	27.9	1,363	970	2.94	7.53	39.2	2,090	8,190
$W21 \times 122$	307	12.2	41.0	921	592	10.3	29.8	1,279	910	2.92	6.45	31.3	2,630	3,160
W 18 × 130	290	11.3	47.7	870	555	9.55	32.8	1,208	853	2.7	4.65	23.9	3,680	810
W 30 × 90	283	8.71	24.8	849	531	7.39	19.4	1,179	817	2.09	8.52	57.5	1,410	49,600
W 24 \times 103	280	8.29	27.0	840	531	7.04	20.0	1,167	817	1.99	4.59	39.2	2,390	5,310
W 27 × 94	278	8.83	25.9	834	527	7.50	19.9	1,158	810	2.12	6.70	49.5	1,740	19,900
W 14 × 145 W 24 × 94	260 254	16.6 8.25	81.6 25.9	780 762	503 481	14.1 7.00	54.7 19.4	1,083 1,058	773 740	3.98 1.98	7.11 5.18	16.8 41.9	4,400 2,180	348 7,800
Steel Beam Lecture 18	s 37						lations S ARCH 3	tructures 31						F2011abi

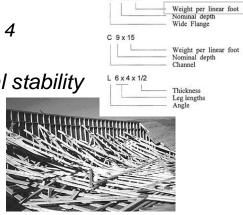
Beam Design (revisited)

- 6. Evaluate shear stresses horizontal
 - $(V_a \leq V_n/\Omega)$ or $(V_u \leq \phi_v V_n)$
 - rectangles and W's $f_{v-max} = \frac{3V}{2A} \approx \frac{V}{A_{web}}$

$$V_n = 0.6 F_{yw} A_w$$

• general

Steel Beams 38 Lecture 15

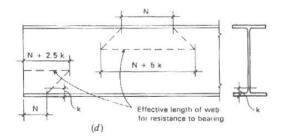

Su2011abn

 $f_{v-max} = \frac{VQ}{Ib}$

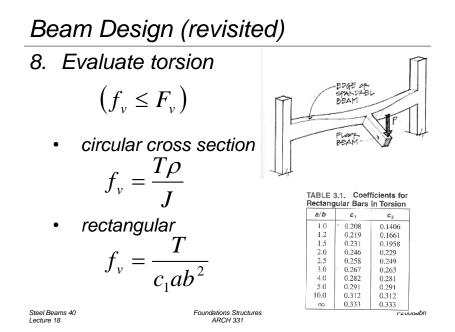
Beam Design (revisited)

- 4^{*}. Include self weight for M_{max}
 - it's <u>dead load</u>
 - and repeat 3 & 4
 if necessary
- 5. Consider lateral stability

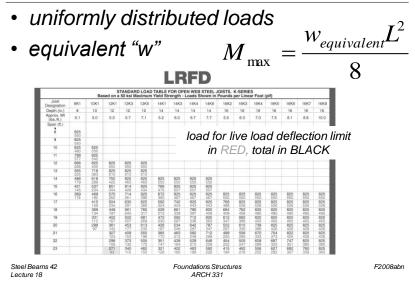
Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho. Photo: Ken Carper



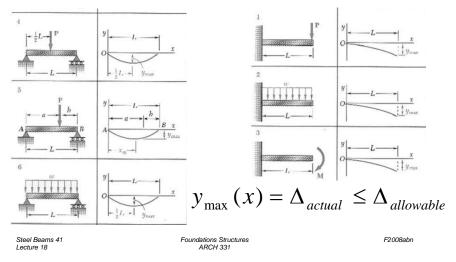
W 18 x 50


Steel Beams 37 Lecture 15 Foundations Structures ARCH 331 Su2011abn

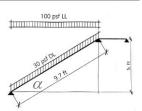
Beam Design (revisited)


7. Provide adequate bearing area at supports $(P_a \leq P_n / \Omega)$ $(P_u \leq \phi P_n)$

Steel Beams 39 Lecture 18 Foundations Structures ARCH 331



Load Tables & Equivalent Load


Beam Design (revisited)

9. Evaluate deflections - NO LOAD FACTORS

Sloped Beams

- stairs & roofs
- · projected live load
- dead load over length

• perpendicular load to beam:

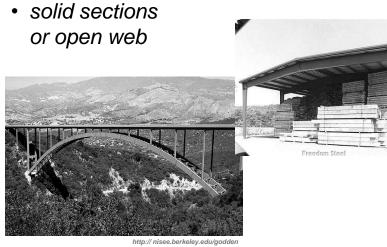
 $w_{\perp} = w \cdot \cos \alpha$

 $\cos \alpha$

Foundations Structures

ARCH 331

• equivalent distributed load:


Steel Beams 43

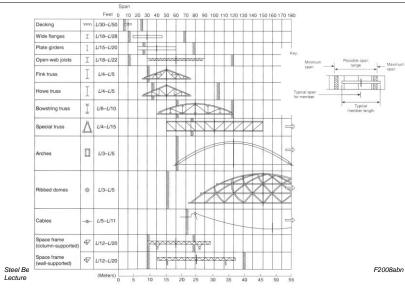
Lecture 18

F2008abn

11

Steel Arches and Frames

Steel Shell and Cable Structures



Steel Beams 44 Lecture 18

Foundations Structures ARCH 331 F2008abn

Steel Beams 45 Lecture 18 Foundations Structures ARCH 331 F2008abn

Approximate Depths

