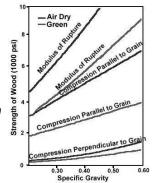
ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

DR. ANNE NICHOLS **S**UMMFR 2013

lecture twelve



wood construction: materials & beams

Wood Beams Architectural Structures F2009abn Lecture 12

Timber

- lightweight : strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by "flaws"
- size varies by tree growth
- renewable resource
- manufactured wood
 - assembles pieces
 - adhesives

F2008abn

Foundations Structures

Wood Beam Design

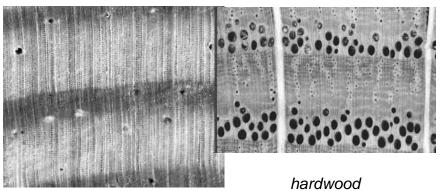
- National Design Specification
 - National Forest Products Association
 - ASD & LRFD (combined in 2005)
 - adjustment factors x tabulated stress = allowable stress
 - adjustment factors terms, C with subscript
 - i.e, bending:

 $f_b \le F_b' = F_b \times (product \ of \ adjustment \ factors)$

Wood Beams 2 Lecture 15

Wood Beams 4

Lecture 15


Foundations Structures

F2008abn

Wood Properties

softwood

cell structure and density

http://www.swst.org/teach/set2/struct1.htr

Foundations Structures

F2008abn

Wood Beams 3 Lecture 15 ARCH 331

Wood Properties

- moisture
 - exchanges with air easily

- excessive drying causes warping and shrinkage

- strength varies some
- temperature
 - steam
 - volatile products
 - combustion

Wood Beams 5 Lecture 15

Foundations Structures ARCH 331

Structural Lumber

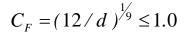
- dimension 2 x's (nominal)
- beams, posts, timber, planks
- grading
 - select structural
 - no. 1, 2, & 3
- tabular values by species
- glu-lam
- plywood

		1		Design V	alues in pound	s per square inch	
	Size classification	Extreme fiber in bending "Fb"		Tension parallel	Horizontal	Compression perpendicular	
Species and commercial grade		Single- member uses	Repetitive- member uses	to grain	shear "F _V "	to grain	
SOUTHERN PINE (Surfaced of Select Structural Dense Select Structural No. 1 No. 1 Dense No. 2 Dense No. 3 No. 3 Dense Stud	ry. Used at 19% m 2" to 4" thick 2" to 4" wide	2000 2350 1700 2000 1400 1650 775 925 775	2300 2700 1950 2300 1650 1900 900 1050 900	1150 1350 1000 1150 825 975 450 525 450	100 100 100 100 90 90 90 90 90	565 660 565 660 565 660 565 660 565	
Construction Standard Utility	2" to 4" thick 4" wide	1000 575 275	1150 675 300	600 350 150	100 90 90	565 565 565	
Select Structural	OR THE PERSON NAMED IN	1750	2000	1150	90	565	ā

Foundations Structures F2008abn

Wood Properties

- load duration
 - short duration
 - · higher loads
 - normal duration
 - > 10 years



additional deformation with no additional load

Wood Beams 6 Foundations Structures F2008abn

Adjustment Factors

- terms
 - $-C_D$ = load duration factor
 - $-C_{M}$ = wet service factor
 - 1.0 dry ≤ 16% MC
 - $-C_{F}$ = size factor
 - · visually graded sawn lumber and round timber > 12" depth

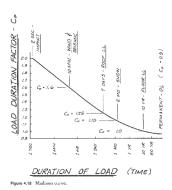


Table 10.3 (pg 376)

Wood Beams 8

Foundations Structures

Adjustment Factors

- terms
 - $-C_{fu} = flat use factor$
 - · not decking
 - $-C_i = incising factor$
 - · increase depth for pressure treatment
 - $-C_t = temperature factor$
 - lose strength at high temperatures

Wood Beams 9 Lecture 15 Foundations Structures ARCH 331 F2008abn

Allowable Stresses

- design values
 - − *F_b*: bending stress
 - $-F_t$: tensile stress | strong
 - F_v: horizontal shear stress
 - − F_{c⊥}: compression stress (perpendicular to grain)
 - F_c: compression stress (parallel to grain) strong
 - E: modulus of elasticity
 - $-F_p$: bearing stress (parallel to grain)

Adjustment Factors

- terms
 - $-C_r$ = repetitive member factor
 - $-C_H$ = shear stress factor
 - splitting
 - $-C_V = volume\ factor$
 - same as C_F for glue laminated timber
 - $-C_1$ = beam stability factor
 - · beams without full lateral support
 - $-C_c$ = curvature factor for laminated arches

Wood Beams 10 Lecture 15 Foundations Structures ARCH 331 F2008abr

Load Combinations

- · design loads, take the bigger of
 - (dead loads)/0.9
 - (dead loads + any possible combination of live loads)/C_D
- deflection limits
 - no load factors
 - for stiffer members:
 - Δ_T max from LL + 0.5(DL)

Wood Beams 11 Lecture 15 Foundations Structures

Wood Beams 12

Foundations Structures ARCH 331

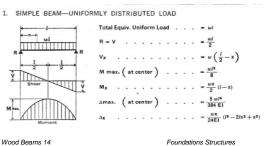
Beam Design Criteria

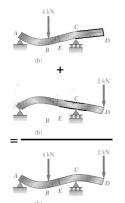
- · strength design
 - bending stresses predominate
 - shear stresses occur
- serviceability
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage

Wood Beams Conding

Foundations Structures ARCH 331

ARCH 331

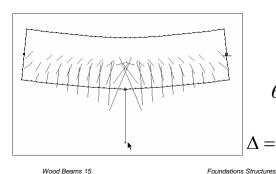




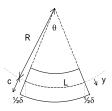
F2008abn

Beam Design Criteria

- superpositioning
 - use of beam charts
 - elastic range only!
 - "add" moment diagrams
 - "add" deflection CURVES (not maximums)



F2008abn


Beam Deformations

- · curvature relates to
 - bending moment
 - modulus of elasticity
 - moment of inertia

Lecture 15

 $\frac{1}{R} = \frac{M}{EI}$

$$curvature = \frac{M(x)}{EI}$$

$$\theta = slope = \int \frac{M(x)}{EI} dx$$

$$\Delta = deflection = \int \int \frac{M(x)}{EI} dx$$

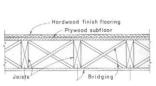
Deflection Limits

• based on service condition, severity

Use	LL only	DL+LL
Roof beams:		
Industrial	L/180	L/120
Commercial		
plaster ceiling	L/240	L/180
no plaster	L/360	L/240
Floor beams:		
Ordinary Usage	L/360	L/240
Roof or floor (damage	eable elements)	L/480

Wood Beams 16

Foundations Structures


Lateral Buckling

lateral buckling caused by compressive forces at top coupled with insufficient rigidity

ARCH 331

can occur at low stress levels

stiffen, brace or bigger I_v

Wood Beams 17 Foundations Structures F2008abn

Design Procedure

- 1. Know F_{all} for the material or F_{ij} for LRFD
- 2. Draw V & M, finding M_{max}

3. Calculate $S_{req'd}$ $(f_b \le F_b)$

Determine section size

$$S = \frac{bh^2}{6}$$

F2008abn

Table 9.3 Lateral bracing requirements for timber beams

Timber Beam Bracing

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	
3 to 1	The ends of the beam should be held in position	End blocking Joist o beam
5 to 1	Hold the compression edge in line (continuously)	Nailing or decking Joist or rafter
6 to 1	Diagonal bracing should be used	Nailed sheathing/decking Bridging Joist
7 to 1	Both edges of the beam should be held in line	Nailed sheathing/decking top and bottom

Wood Beams 18

Foundations Structures ARCH 331

F2008abn

Beam Design

- 4^* . Include self weight for M_{max}
 - and repeat 3 & 4 if necessary
- 5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper

Wood Beams 19 Lecture 15

Foundations Structures

Beam Design

6. Evaluate shear stresses - horizontal

- $(f_v \leq F_v)$
- rectangles and W's $f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{web}}$
- general

$$f_{v-\text{max}} = \frac{VQ}{Ih}$$

Wood Beams 20

Foundations Structures F2008abn ARCH 331

Beam Design

8. Evaluate torsion

$$(f_v \leq F_v)$$

circular cross section

$$f_{v} = \frac{T\rho}{J}$$

rectangular

$$f_{v} = \frac{T}{c_{1}ab^{2}}$$

Foundations Structures ARCH 331

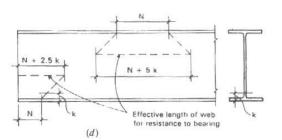


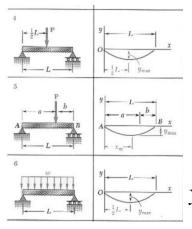
TABLE 3.1. Coefficients for

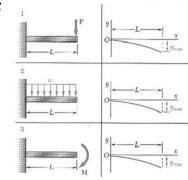
icciani	guiai Dais	III IOISIOII
a/b	c ₁	C ₂
1.0	° 0.208	0.1406
1.2	0.219	0.1661
1.5	0.231	0.1958
2.0	0.246	0.229
2.5	0.258	0.249
3.0	0.267	0.263
4.0	0.282	0.281
5.0	0.291	0.291
10.0	0.312	0.312
00	0.333	0.333
		ΓZU

Beam Design

7. Provide adequate bearing area at supports

Wood Beams 21 Lecture 15


Foundations Structures ARCH 331


F2008abn

 $f_p = \frac{P}{A} \le F_p$

Beam Design

9. Evaluate deflections

 $y_{\text{max}}(x) = \Delta_{actual} \le \Delta_{allowable}$

Wood Beams 23 Lecture 15

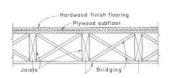
Foundations Structures ARCH 331

Decking

- across beams or joists
- floors: 16 in. span common
 - ¾ in. tongue-in-groove plywood
 - 5/8 in. particle board over ½ in. plywood
 - hardwood surfacing
- roofs: 24 in. span common
 - ½ in. plywood

Wood Beams 24

Foundations Structu ARCH 331


Engineered Wood

- plywood
 - veneers at different orientations
 - glued together
 - split resistant
 - higher and uniform strength
 - limited shrinkage and swelling
 - used for sheathing, decking, shear walls, diaphragms

Joists & Rafters

- allowable load tables (w)
- allowable length tables for common live & dead loads

 TABLE 5.5 Allowable Spans in Feet and In
- lateral bracing needed
- common spacings

Wood Beams 25 Lecture 15 Foundations Structures ARCH 331 F2008abn

Engineered Wood

- glued-laminated timber
 - glulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength
 - more expensive than sawn timber
 - large members (up to 100 feet!)
 - flexible forms

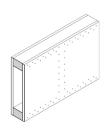
Wood Beams 26 Lecture 15 Foundations Structures ARCH 331 F2008abn

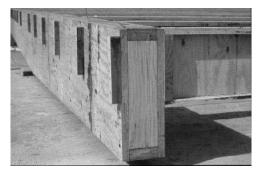
Wood Beams 27 Lecture 15 Foundations Structures ARCH 331

Engineered Wood

- I sections
 - beams
- other products
 - pressed veneer strip panels (Parallam)
 - (LVL)
- wood fibers
 - Hardieboard: cement & wood

Wood Beams 28 Lecture 15 Architectural Structures ARCH 331

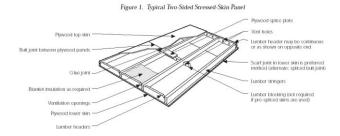



Lecture 15

Timber Elements

- built-up box sections
 - built-up beams
 - usually site-fabricated
 - bigger spans

Wood Beams 30 Lecture 15


Foundations Structures

F2008abn

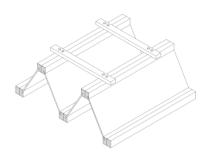
Timber Elements

- · stressed-skin elements
 - modular built-up "plates"
 - typically used for floors or roofs

Wood Beams 29 Lecture 15 Foundations Structures ARCH 331 F2008abn

Timber Elements

- trusses
 - long spans
 - versatile
 - common in roofs



Foundations Structures ARCH 331

Timber Elements

- folded plates and arch panels
 - usually of plywood

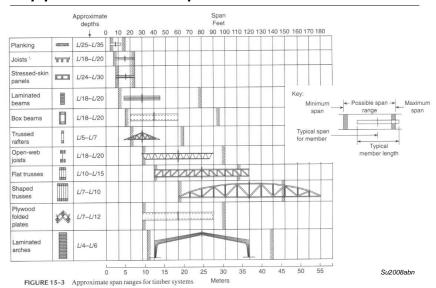
 Wood Beams 32
 Structural Systems I

 Lecture 15
 COSC 321

Su2008abn

Timber Elements

- arches and lamellas
 - arches commonly laminated timber
 - long spans
 - usually only for roofs



Su2008abn

Approximate Depths

