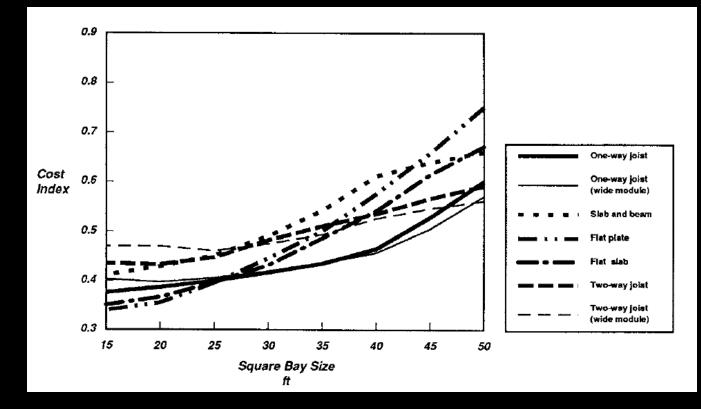
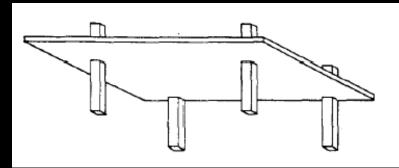
Architectural Structures: Form, Behavior, and Design

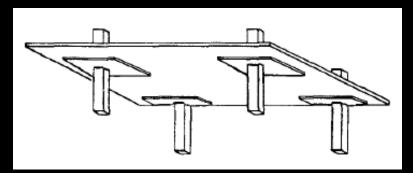

Arch 331 Dr. Anne Nichols Summer 2013

lecture twenty two

CONCrete construction type://misee.berkeley.edu/godden flat spanning systems, columns & frames

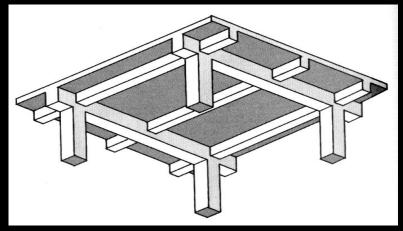

Concrete Spans 1 Lecture 22

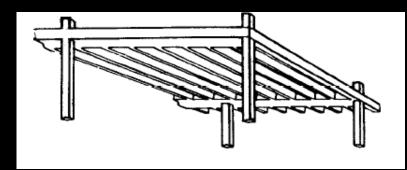
- economical & common
- resist lateral loads



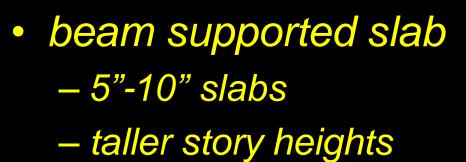
Concrete Spans 2 Lecture 22

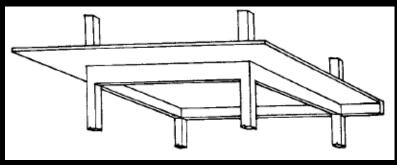
- flat plate
 - 5"-10" thick
 - simple formwork
 - lower story heights

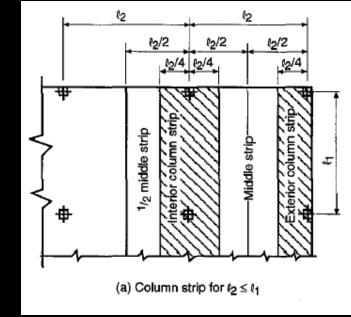

- flat slab
 - same as plate
 2 ¼"-8" drop panels

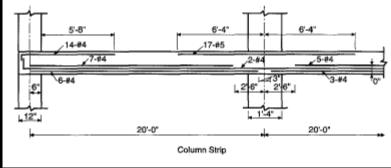

- beam supported

 slab depth ~ L/20
 8"-60" deep
- one-way joists


 3"-5" slab
 8"-20" stems
 5"-7" webs


The Architect's Studio Companion


- two-way joist
 - "waffle slab"
 - 3"-5" slab
 - 8"-24" stems
 - 6"-8" webs



- simplified frame analysis
 - strips, like continuous beams
- moments require flexural reinforcement
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous

Architectural Structures ARCH 331 Su2013abn

- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - $-w_u$ from combos

Figure 2-2 Conditions for Analysis by Coefficients (ACI 8.3.3)

– uniform loads with $L/D \leq 3$

- *l*_n is clear span (+M) or average of adjacent clear spans (-M)

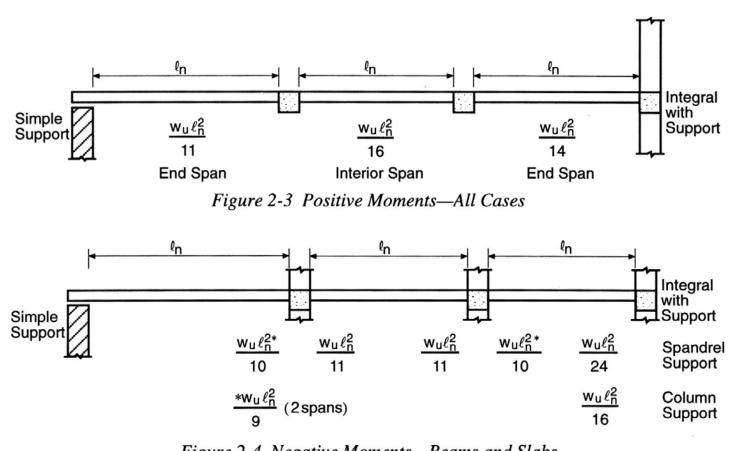


Figure 2-4 Negative Moments—Beams and Slabs

- two-way slabs Direct Design Method
 - 3 or more spans each way
 - uniform loads with $L/D \leq 3$
 - rectangular panels with long/short span < 2
 - successive spans can't differ > longer/3
 - column offset no more than 10% span

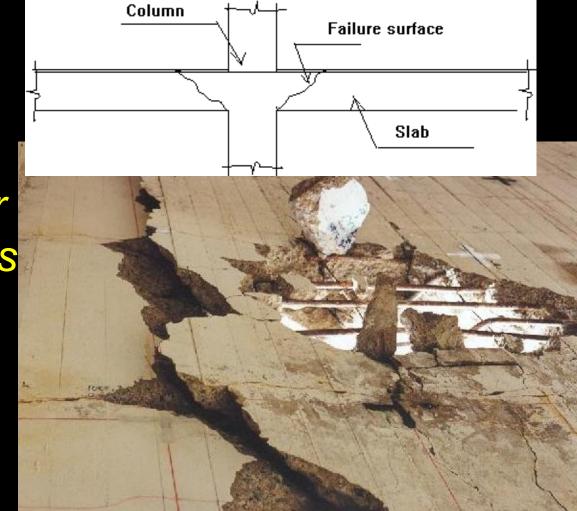
Table 4-6 Two-Way Beam-Supported Slab

		T			<u> </u>	
	End Span ① ②	<u> </u>	Inter	ior Span ④		
		End Span			Interior Span	
Span ratio	Slab Moments	1 Exterior Negative	2 Positive	3 First Interior Negative	4 Positive	5 Interior Negative
શ્ 2/થ	Total Moment	0.16 M _o	0.57 Mo	0.70 M ₀	0.35 M _O	0.65 M ₀
0.5	Column Strip Beam Slab	0.12 M _o 0.02 M _o	0.43 M _o 0.08 M _o	0.54 M _o 0.09 M _o	0.27 M _o 0.05 M _o	0.50 M _o 0.09 M _o
	Middle Strip	0.02 M _o	0.06 M _o	0.07 Mo	0.03 Mo	0.06 M ₀
1.0	Column Strip Beam Slab	0.10 M _o 0.02 M _o	0.37 M ₀ 0.06 M ₀	0.45 M ₀ 0.08 M ₀	0.22 M _o 0.04 M _o	0.42 M ₀ 0.07 M ₀
	Middle Strip	0.04 M ₀	0.14 M ₀	0.17 Mo	0.09 M _o	0.16 M _O
2.0	Column Strip Beam Slab	0.06 M _o 0.01 M _o	0.22 M _o 0.04 M _o	0.27 M _o 0.05 M _o	0.14 M _o 0.02 M _o	0.25 M _o 0.04 M _o
	Middle Strip	0.09 Mo	0.31 Mo	0.38 Mo	0.19 M ₀	0.36 M _O

Notes: (1) Beams and slab satisfy stiffness criteria: $\alpha_1 \ell_2 / \ell_1 \ge 1.0$ and $\beta_t \ge 2.5$.

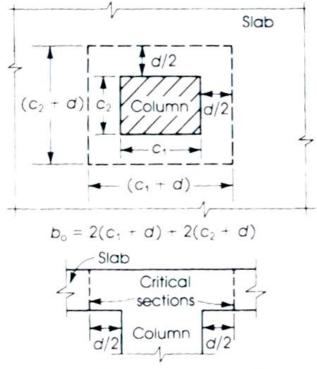
(2) Interpolate between values shown for different l_2/l_1 ratios.

(3) All negative moments are at face of support.

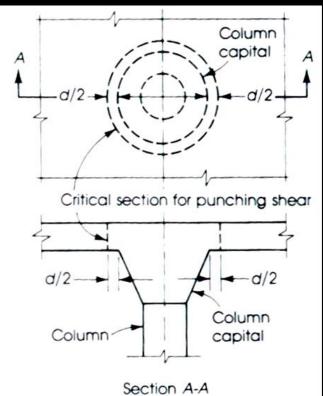

(4) Concentrated loads applied directly to beams must be accounted for separately.

Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads

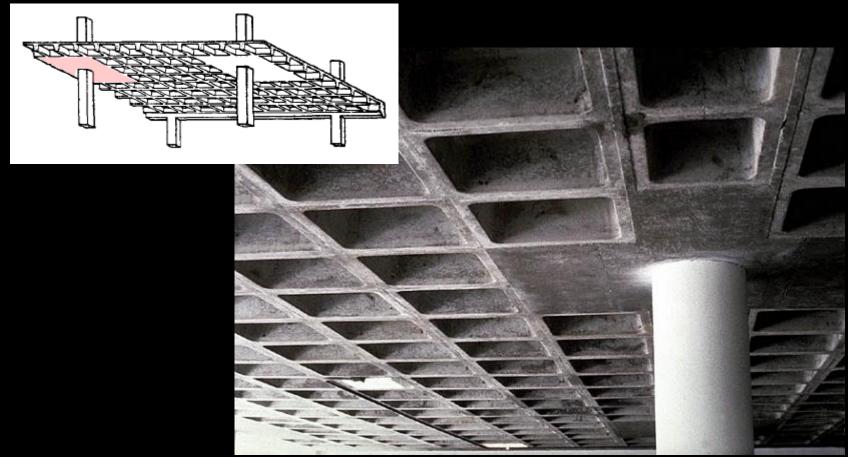


Concrete Spans 11 Lecture 22 Architectural Structures ARCH 331 Su2013abn



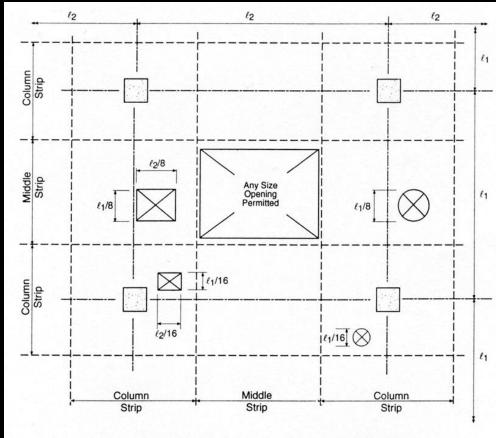
Shear in Concrete

- critical section at d/2 from
 - column face, column capital or drop panel



Section through column and slab

Shear in Concrete


• at columns with waffle slabs

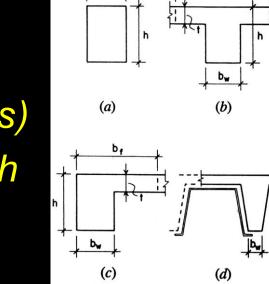
Concrete Spans 13 Lecture 22 Architectural Structures ARCH 331 http:// nisee.berkeley.edu/godden Su2013abn

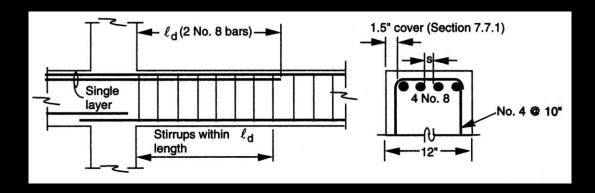
Openings in Slabs

- careful placement of holes
- shear strength reduced
- bending & deflection can increase

General Beam Design

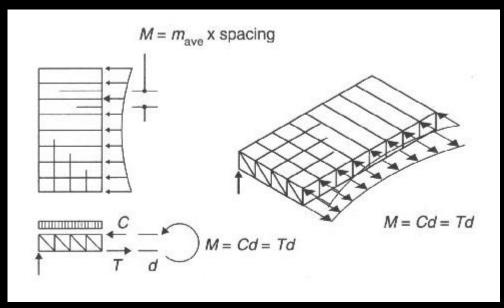
- $f'_c \& f_v$ needed
- usually size just b & h
 - even inches typical (forms)
 - similar joist to beam depth
 - b:h of 1:1.5-1:2.5
 - $-b_w \& b_f$ for T
 - to fit reinforcement + stirrups
- slab design, t
 - deflection control & shear



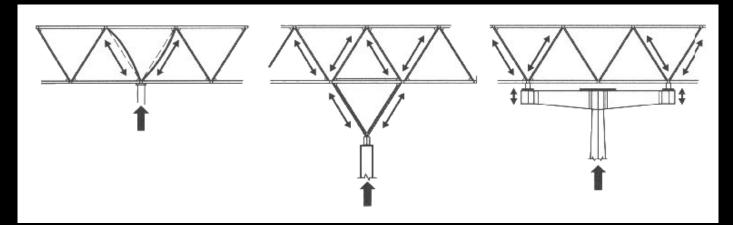

Figure 14.5 Common shapes for beams.

b,

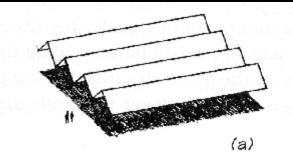
Concrete Spans 15 Lecture 22


General Beam Design (cont'd)

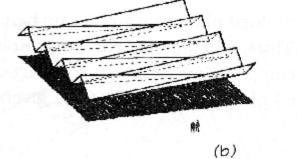
- custom design:
 - longitudinal steel
 - shear reinforcement
 - detailing


Space "Frame" Behavior

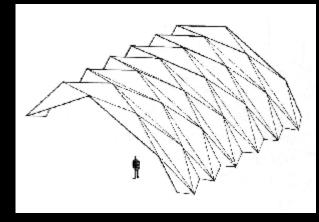
- handle uniformly distributed loads well
- bending moment
 - tension &
 compression
 "couple" with
 depth
 - member sizes
 can vary,
 but difficult

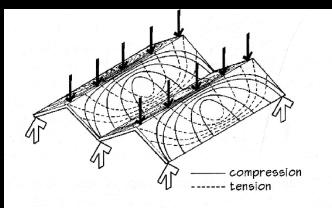

Space "Frame" Behavior

- shear at columns
- support conditions still important
 point supports not optimal
- fabrication/construction can dominate design


Folded Plates

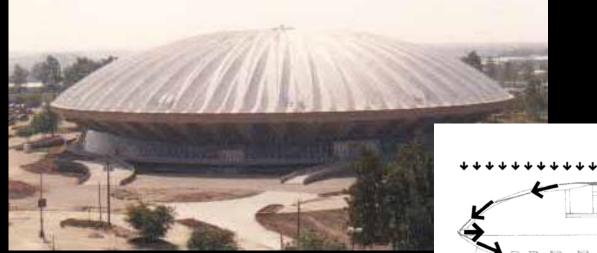
- increased bending stiffness with folding
- lateral buckling avoided



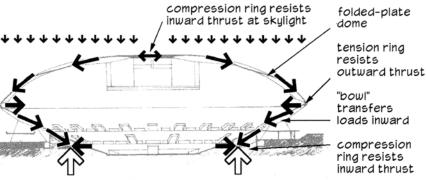

		 1.0	
1-		 	1
-		 2.50	
F-		 	-
	1	 	1

roofpan

Concrete Spans 19 Lecture 22 Architectural Structures ARCH 331 Su2013abn


Folded Plates

- common for roofs
- edges need stiffening



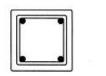
http:// nisee.berkeley.edu/godden

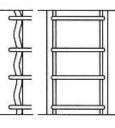
Folded Plates

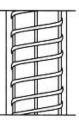
www.library.illinois.edu

- State Farm Center (Assembly Hall), University of Illinois
- Harrison & Abramovitz 1963
- Edge-supported dome spanning 400 feet wound with 614 miles of one-fifth inch steel wire

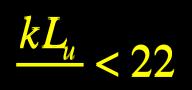
Concrete in Compression

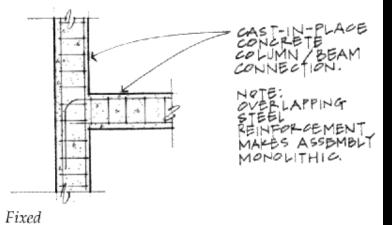

- crushing
- vertical cracking
 tension
- diagonal cracking
 shear
- f_c'

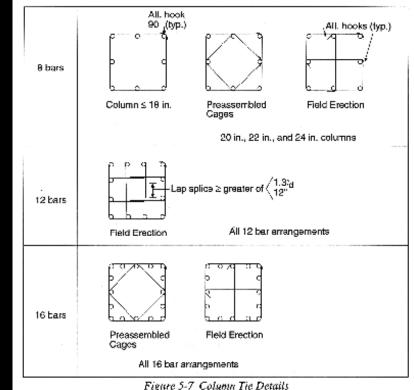

http://www.bam.de


Columns Reinforcement

- columns require
 - ties or spiral reinforcement to "confine" concrete (#3 bars minimum)

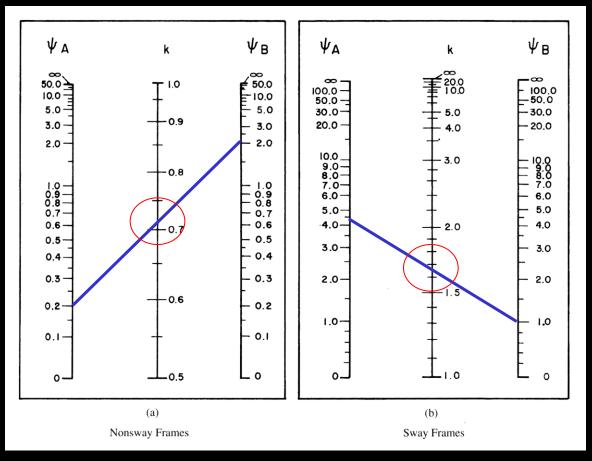


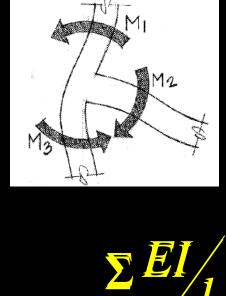

Tied column Spirally reinforced column


minimum amount of longitudinal steel
 (#5 bars minimum: 4 with ties, 5 with spiral)

Slenderness

- effective length in monolithic with respect to stiffness of joint: Ψ & k
- not slender when





Effective Length (revisited)

• relative rotation

 $V \equiv \frac{\frac{v_e}{\Sigma EI}}{\frac{\Sigma EI}{l_b}}$

Concrete Spans 25 Lecture 22

Column Behavior

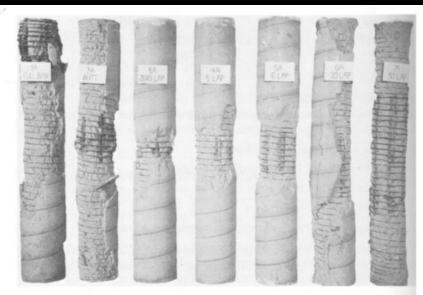


Figure 13.3.2 Spirally reinforced column behavior. (Courtesy of Portland Cement Association.)

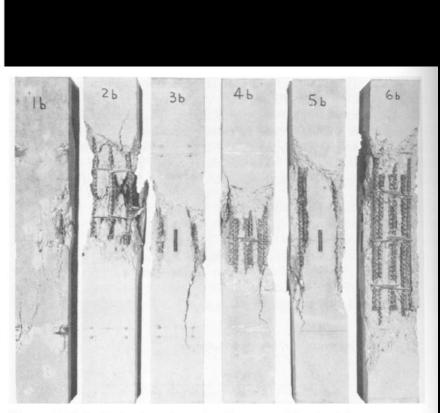
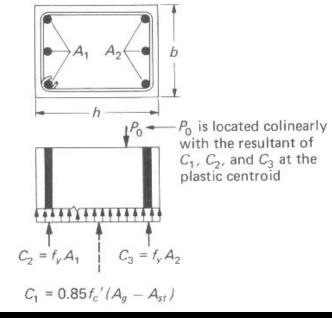



Figure 13.3.3 Tied column behavior. (Courtesy of Portland Cement Association.)

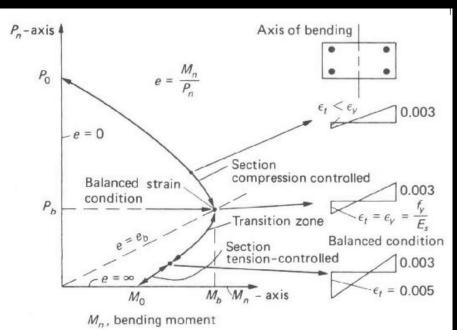
Column Design

- $\phi_c = 0.65$ for ties, $\phi_c = 0.75$ for spirals
- P_o no bending
 - $P_{o} = 0.85 f_{c}'(A_{g} A_{st}) + f_{y}A_{st}$
- $P_u \le \phi_c P_n$ - ties: $P_n = 0.8P_o$
 - spiral: $P_n = 0.85P_o$
- nominal axial capacity:
 presumes steel yields
 concrete at ultimate stress

Columns with Bending

- eccentric loads can cause moments
- moments can change shape and induce more deflection
 (P-Δ)
 P
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 <liI
 <li

(*a*) (*b*) (*c*)


Figure 10.6 Considerations for development of bending in steel columns; (*a*) bending induced by eccentric load, (*b*) bending transferred to column in a rigid frame, and (*c*) combined loading condition, separately producing axial compression and bending.

Columns with Bending

- for ultimate strength behavior, ultimate strains can't be exceeded
 - concrete 0.003

- steel
$$\frac{f_y}{E_s}$$

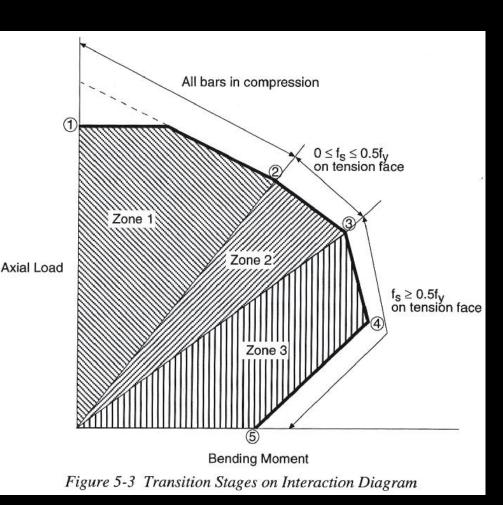
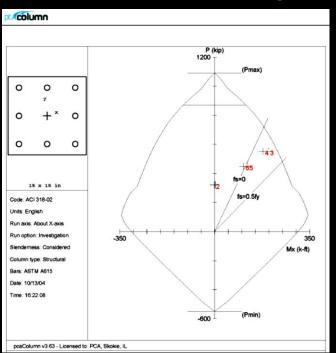
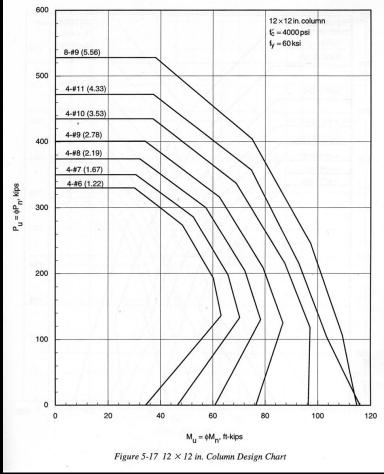

• P reduces with M

Figure 13.6.1 Typical strength interaction diagram for axial compression and bending moment about one axis. Transition zone is where $\epsilon_{\mu} \leq \epsilon_{r} \leq 0.005$.


Columns with Bending


- need to consider combined stresses
- linear strain
- steel stress at or below f_v
- plot <u>interaction</u> diagram

Design Methods

- calculation intensive
 - handbook charts
 - computer programs

Concrete Spans 31 Lecture 22

Design Considerations

- bending at both ends
 - P- ∆ maximum
- biaxial bending
- walls
 - unit wide columns
 - "deep" beam shear
- detailing
 - shorter development lengths
 - dowels to footings

Architectural Structures ARCH 331

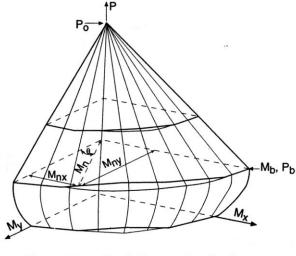
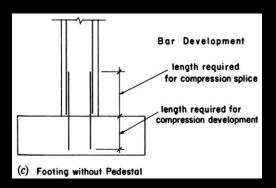



Figure 12-1 Biaxial Interaction Surface

