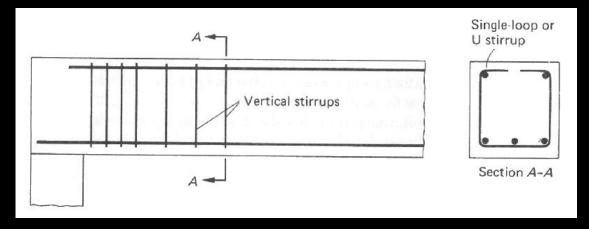

Architectural Structures: Form, Behavior, and Design

Arch 331 Dr. Anne Nichols Summer 2013

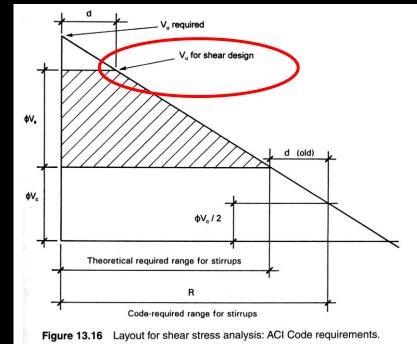

Copyright © Kirk Martini

concrete construction: shear & deflection

Shear in Concrete Beams

flexure combines with shear to form
 diagonal cracks

- horizontal reinforcement doesn't help
- *stirrups = vertical reinforcement*

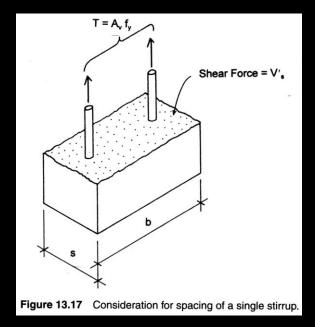


ACI Shear Values

- V_u is at distance d from face of support
- shear capacity:

$$V_c = v_c \times b_w d$$

where b_w means thickness of <u>web</u> at n.a.



ACI Shear Values

• shear stress (beams) - $\upsilon_c = 2\sqrt{f'_c}$ ϕ $\phi V_c = \phi 2\sqrt{f'_c} b_w d$ f'

- shear strength: $V_{u} \leq \phi V_{c} + \phi V_{s}$
 - V_s is strength from stirrup reinforcement

 $\phi = 0.75$ for shear f'_c is in <u>psi</u>

Stirrup Reinforcement

• shear capacity:

$$V_s = \frac{A_v f_y d}{s}$$

 $-A_v = area in all legs of stirrups$ -s = spacing of stirrup

 may need stirrups when concrete has enough strength!

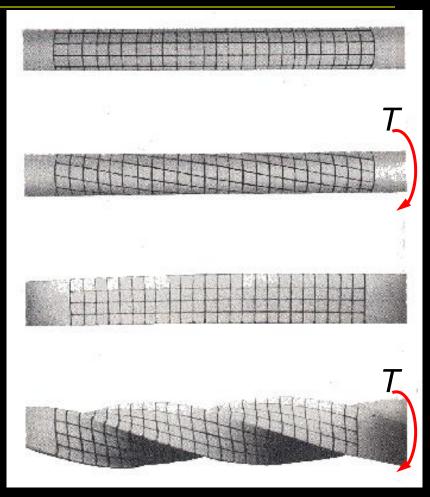
Required Stirrup Reinforcement

spacing limits

		$V_u \leq \frac{\phi V_c}{2}$	$\varphi V_c \geq V_u > \frac{\varphi V_c}{2}$	$V_{u} > \phi V_{c}$
Required area of s	tirrups, Av **	none	50b _w s fy	$\frac{(V_u - \phi V_c)s}{\phi f_y d}$
	Required		Avfy 50bw	$\frac{\phi A_v f_y d}{V_u - \phi V_c}$
	Recommended Minimum [†]			4 in.
Stirrup spacing, s	Maximum ^{††}	ing i de la com superior	d 2 or 24 in.	$\frac{d}{2}$ or 24 in. for $(V_u - \phi V_c) \le \phi 4 \sqrt{f'_c} b_w d$
	(ACI 11.5.4)			$\frac{d}{4}$ or 12 in. for $(V_u - \phi V_c) > \phi 4 \sqrt{f'_c} b_w d$

Table 3-8 ACI Provisions for Shear Design*

*Members subjected to shear and flexure only; $\phi V_c = \phi 2 \sqrt{f'_c} b_w d$, $\phi = 0.75$ (ACI 11.3.1.1)

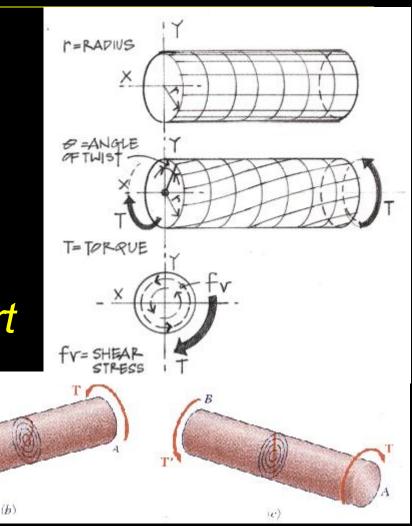

** $A_v = 2 \times A_b$ for U stirrups; $f_y \le 60$ ksi (ACI 11.5.2)

†A practical limit for minimum spacing is d/4

††Maximum spacing based on minimum shear reinforcement (= $A_v f_v / 50b_w$) must also be considered (ACI 11.5.5.3).

Torsional Stress & Strain

- can see torsional stresses & twisting of axi-symmetrical cross sections
 - torque
 - remain plane
 - undistorted
 - rotates
- not true for square sections....

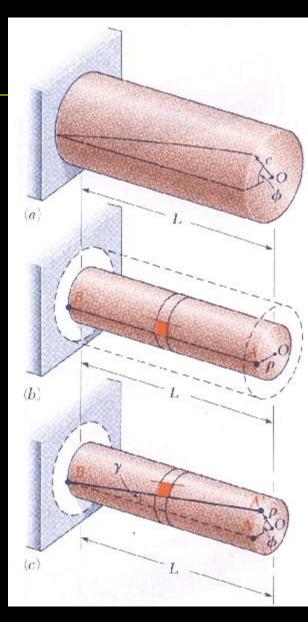


Shear Stress Distribution

- depend on the deformation
- \$\phi\$ = angle of twist
 measure

a

 can prove planar section doesn't distort



Architectural Structures ARCH 331 Su2013abn

Shearing Strain

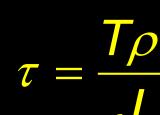
• related to ϕ

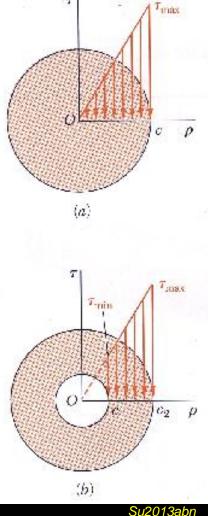
- *ρ* is the radial distance from the centroid to the point under strain
- shear strain varies linearly along the radius: γ_{max} is at outer diameter

Torsional Stress - Strain

• know
$$f_{\nu} = \tau = G \cdot \gamma$$
 and $\gamma = \frac{\rho \phi}{L}$
• so $\tau = G \cdot \frac{\rho \phi}{L}$

• where G is the <u>Shear Modulus</u>

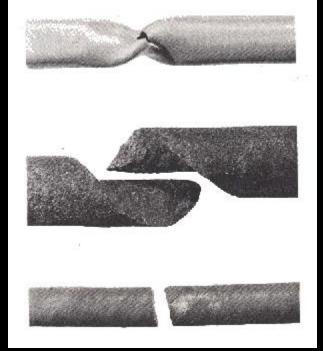

Torsional Stress - Strain


 $T = \Sigma \tau(\rho) \Delta A$ • from

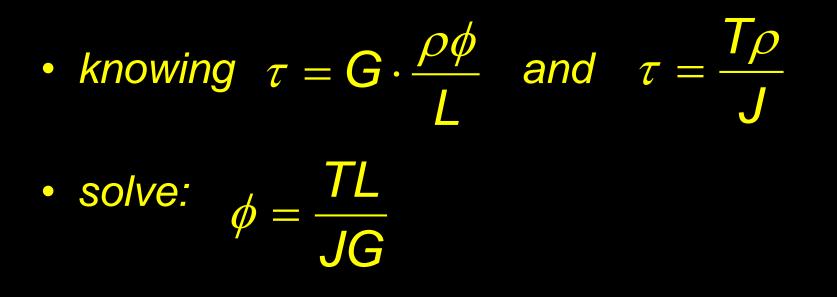
can derive $\overline{}$

 τJ

- where J is the polar moment of inertia – elastic range



Concrete Shear 11 Lecture 20


Shear Stress

• τ_{max} happens at <u>outer diameter</u>

- combined shear and axial stresses
 - maximum shear stress at 45° "twisted" plane

Shear Strain

Noncircular Shapes

- torsion depends on J
- plane sections don't remain plane
- τ_{max} is still at outer diameter

$$\tau_{\max} = \frac{T}{c_1 a b^2} \phi = \frac{TL}{c_2 a b^3 G}$$

– where a is longer side (> b)

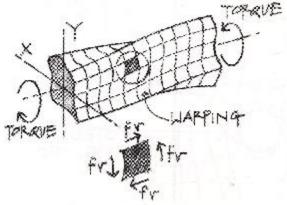
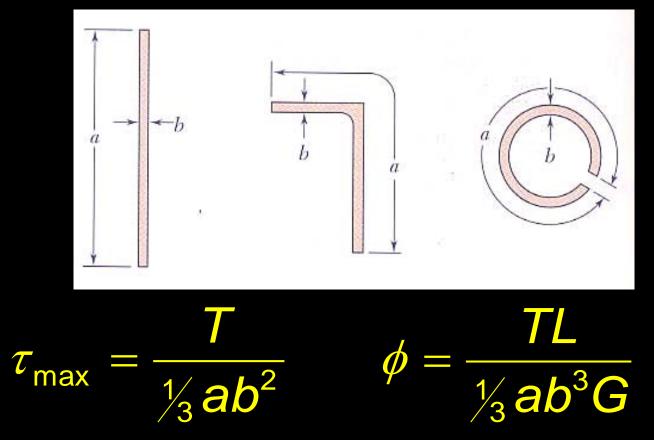
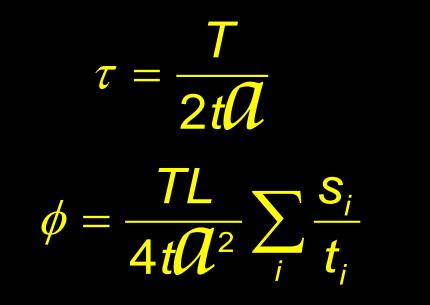
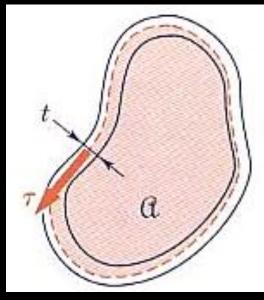



TABLE 3.1. Coefficients for Rectangular Bars in Torsion

a/b	C 1	C2
1.0	* 0.208	0.1406
1.2	0.219	0.1661
1.5	0.231	0.1958
2.0	0,246	0.229
2.5	0.258	0.249
3.0	0.267	0.263
4.0	0.282	0.281
5.0	0.291	0.291
10.0	0.312	0.312
00	0.333	0.333

Open Thin-Walled Sections

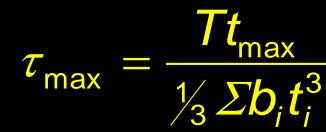

• with very large a/b ratios:



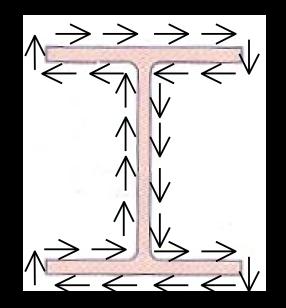
Concrete Shear 15 Lecture 20

Shear Flow in Closed Sections

• q is the internal shear force/unit length



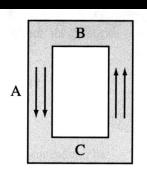
- ${\cal Q}$ is the area bounded by the centerline
- *s_i* is the length segment, *t_i* is the thickness

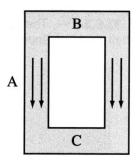

Shear Flow in Open Sections

 each segment has proportion of T with respect to torsional rigidity,

• total angle of twist:

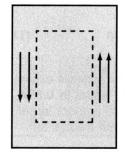
$$\phi = \frac{TL}{\frac{1}{3}G\Sigma b_i t_i^3}$$

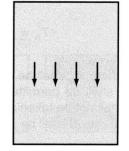

• I beams - web is thicker, so τ_{max} is in web


Concrete Shear 17 Lecture 20 Architectural Structures ARCH 331 Su2013abn

Torsional Shear Stress

- twisting moment
- and beam shear

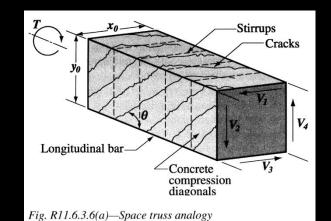




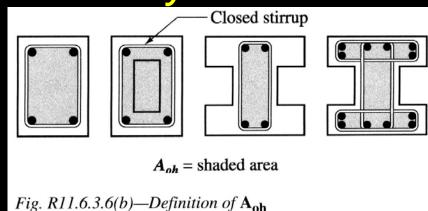
Torsional stresses

Shear stresses

(a) Hollow section


Torsional stresses

Shear stresses


(b) Solid section Fig. R11.6.3.1—Addition of torsional and shear stresses

Torsional Shear Reinforcement

- closed stirrups
- more longitudinal reinforcement

area enclosed by shear flow

- required to allow steel to yield (f_v)
- standard hooks
 - moment at beam end

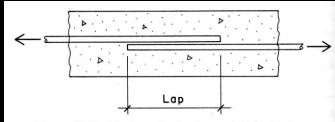
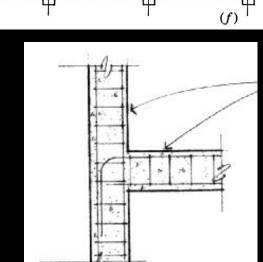



Figure 13.24 The lapped splice for steel reinforcing bars.

- splices
 - lapped

Concrete Shear 20 Lecture 20

Architectural Structures **ARCH 331**

an an an an An Ann An An An An An An

Su2013abn

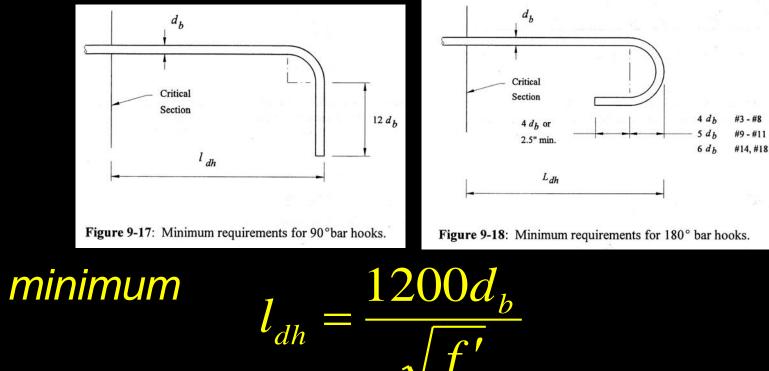
(d)

(e)

- *l*_d, embedment required <u>both</u> sides
- proper cover, spacing:
 - No. 6 or smaller

$$l_d = \frac{d_b F_y}{25\sqrt{f_c'}}$$

– No. 7 or larger

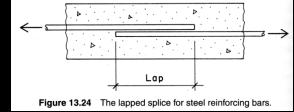

$$l_d = \frac{d_b F_y}{20\sqrt{f_c'}}$$

or 12 in. minimum

or 12 in. minimum

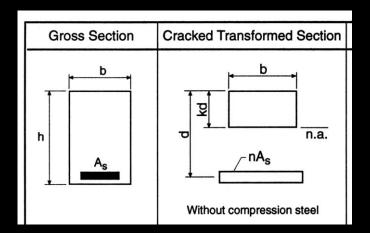
Concrete Shear 21 Lecture 20 Architectural Structures ARCH 331 Su2013abn

- hooks
 - bend and extension



 $\overline{}$

• bars in compression


$$l_d = \frac{0.02d_b F_y}{\sqrt{f_c'}} \le 0.0003d_b F_y$$

- splices
 - tension minimum is function of l_d and splice classification
 - compression minimum
 - is function of d_b and F_y

Concrete Deflections

• elastic range – I transformed – E_c (with f'_c in psi) • normal weight concrete (~ 145 lb/ft³) $E_c = 57,000\sqrt{f'_c}$

• concrete between 90 and 160 lb/ft³

$$E_c = w_c^{1.5} 33 \sqrt{f_c'}$$

- cracked
 - I cracked
 - E adjusted

Deflection Limits

- relate to whether or not beam supports or is attached to a damageable nonstructural element
- need to check <u>service</u> live load and long term deflection against these

L/180 L/240 L/360 L/480

roof systems (typical) – live floor systems (typical) – live + long term supporting plaster – live supporting masonry – live + long term