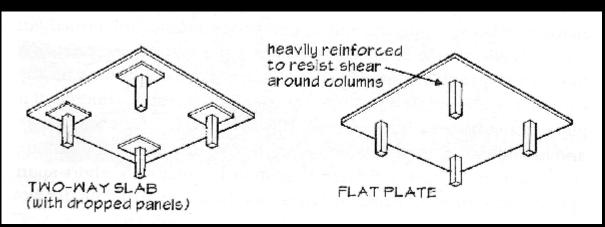
### ARCHITECTURAL STRUCTURES:

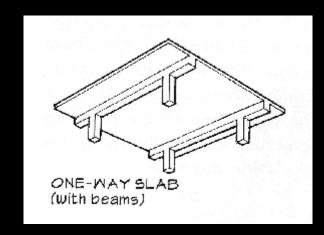
### FORM, BEHAVIOR, AND DESIGN

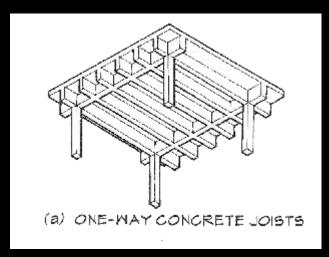
ARCH 331

DR. ANNE NICHOLS

SUMMER 2013


twenty





# concrete construction: T-beams & slabs

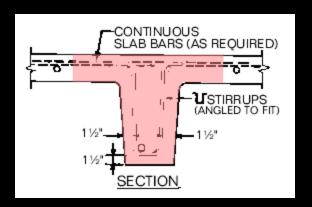
# Systems

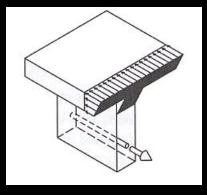
- beams separate from slab
- beams integral with slab
  - close spaced
- continuous beams
- no beams

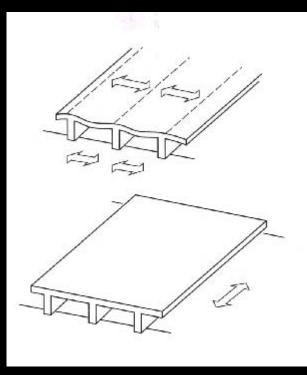







### T sections


two areas of compression in moment


possible

one-way joists

effective flange width







### T sections

negative bending: min A<sub>s</sub>, larger of:

$$A_s = \frac{6\sqrt{f_c'}}{f_v}(b_w d) \qquad A_s = \frac{3\sqrt{f_c'}}{f_v}(b_f d)$$

- effective width (interior)
  - -L/4
  - $-b_w + 16t$
  - center-tocenter of beams

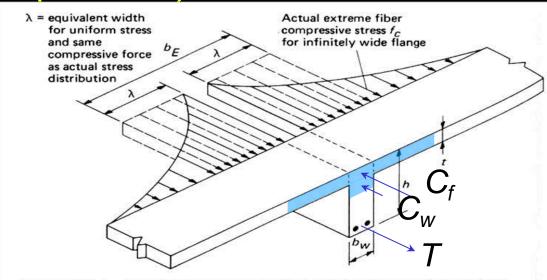
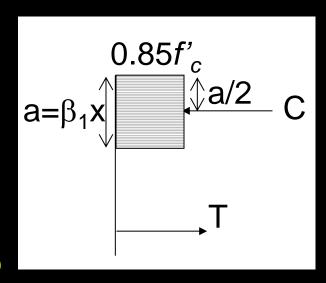
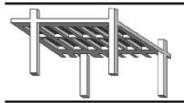




Figure 9.3.1 Actual and equivalent stress distribution over flange width.


### T sections

- usual analysis steps
- 1. assume no compression in web
- 2. design like a rectangular beam
- 3. needs reinforcement in slab too
- 4. also analyze for negative moment, if any



# One-Way

- Joists
  - standard stems
  - 2.5" to 4.5" slab
  - − ~30" widths
  - reusable forms



### **FLANGEforms**

FLANGEforms are available in standard 2- and 3-foot modules. These forms are among the most popular because of their flexibility to accommodate various layouts and joist widths where required. They are efficient for projects with heavy superimposed loads and provide a two hour fire rating by using a 4 1/2- inch hard-rock concrete topping. They are efficient for projects of smaller size and for moderate size projects with irregular layouts or unusual building shapes. They are also efficient for projects where the structure is not required to provide a two-hour fire rating by using 3-inch or 3 1/2-inch top slab.

The varying depths provide flexibility to meet a wide range of spans and loads. Further, they will accommodate in-the-floor raceway electrical and communication distribution systems. Ceco FLANGEforms are capable of producing sound structural concrete, but are incapable of producing tight tolerances and smooth finishes. This form is a seqmented steelform and the concrete will have irregular joists, a rough finish, and offsets at both the laps and flanges.

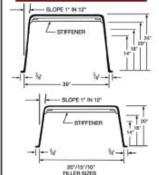
If a higher quality finish is required, you may wish to consider Ceco LONGforms (please see page 6.) The additional cost of higher quality forms are often offset by finishing costs. Contact your Ceco representative for assistance.

### Concrete Quantities/30" Widths\*

| Depth of With of Deathern loat - |                      | Cable feet of concrete per square feet.<br>by slab divolvess* |                      |  |  |  |  |
|----------------------------------|----------------------|---------------------------------------------------------------|----------------------|--|--|--|--|
|                                  | r                    | 41/2"                                                         |                      |  |  |  |  |
|                                  | .456<br>.463<br>.506 | .581.<br>.608<br>.633                                         |                      |  |  |  |  |
| 16"                              | 7                    | .522<br>.950<br>.957                                          | .647<br>.675<br>.702 |  |  |  |  |
| 20"                              | e 7 e                | .605<br>.640<br>.674                                          | .790<br>.765<br>.799 |  |  |  |  |
| 24"                              | e 7 e                | .694<br>.736<br>.776                                          | .539<br>.581<br>.901 |  |  |  |  |

Apply only for areas over FLANGEforms and joists between them. Bridging joists, special headers, beam tees, etc., not included. 10" and 12" depths are also available. Contact your Ceco Concrete

### Concrete Quantities/20" Widths\*


| Depth Width of Sheefform Joint 14" 5" 6" | Width | Cabic fleet of concrete per square flott<br>for surious stab thickness* |                      |  |  |  |  |
|------------------------------------------|-------|-------------------------------------------------------------------------|----------------------|--|--|--|--|
|                                          | loat  | r                                                                       | 4 1/2"               |  |  |  |  |
| 14"                                      | 5     | .57E<br>.572<br>.603                                                    | .663<br>.687<br>.728 |  |  |  |  |
| 16"                                      | r.    | A26<br>A62<br>A64                                                       | .751<br>.767<br>.829 |  |  |  |  |
| 20"                                      | 7     | .741<br>.765<br>.825                                                    | .667<br>.930<br>.950 |  |  |  |  |

Apply only for areas over FLANGEforms and joists between them. Bridging joists, special headers, beam tees, etc., not included. 10" and 12" depths are also available. Contact your Ceco Concrete Construction Engineer.

| Depth<br>of | Wate           | Cable feet of concrete per square first .  by slab thickness* |                       |  |  |  |  |
|-------------|----------------|---------------------------------------------------------------|-----------------------|--|--|--|--|
| Southern    | loist          | r                                                             | 41/2"                 |  |  |  |  |
| 14"         | 5°<br>6°<br>7' | .456<br>.463<br>.506                                          | .581.<br>.608<br>.633 |  |  |  |  |
| 16"         | 7              | .522<br>.950<br>.957                                          | .647<br>.675<br>.712  |  |  |  |  |
| 20"         | e 7 e          | .605<br>.640<br>.674                                          | .790<br>.765<br>.799  |  |  |  |  |
| 24"         | 6"<br>7"<br>6" | .694<br>.736<br>.776                                          | .539<br>.881<br>.961  |  |  |  |  |

| of o     | Width | Cable feet of cond<br>for various s | Cable fleet of concrete per equate that<br>for surious stab thickness* |  |  |  |  |
|----------|-------|-------------------------------------|------------------------------------------------------------------------|--|--|--|--|
| Spelform | Joan  | r                                   | 4 1/2"                                                                 |  |  |  |  |
| 14"      | 5     | .538<br>.572<br>.603                | .663<br>.687<br>.728                                                   |  |  |  |  |
| 16"      | r.    | A26<br>A62<br>A64                   | .751<br>.767<br>.829                                                   |  |  |  |  |
| 20"      | 7.    | .741<br>.765<br>.825                | .667<br>.930<br>.950                                                   |  |  |  |  |

### Dimensions

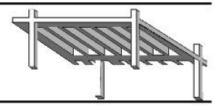


### Voids Created by Various Size **FLANGEforms**

Shaded areas below indicate standard filler widths Depth Steelfor of with ariesto 2.823 1.329 .900 MZ. .521 .400 10" 2.414 1.951 1,165 .746 .625 500 12" 2.801 1.019 1.343 .057 .730 NA. 14" 16" 3.103 2,473 1.515 sela 463. N.A. 3.893 2,544 1.850 1.155 1.943 N.A. 20" 4.657 24"

\*\* Total void width tapers from 30" to 25" or 20" to 16" in

Concrete Slabs 6 Lecture 20


# One-Way

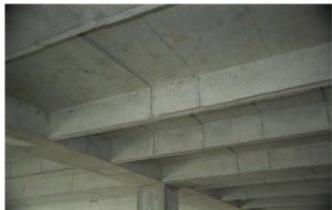
- Joists
  - wide pans
  - 5', 6' up
  - light loads & long spans
  - one-leg stirrups



Concrete Slabs 7 Lecture 20

### WIDE FLANGEforms




WIDE FLANGEforms are available in standard 53 and 66-inch widths. When used with 7 and 6-inch joists they produce 5 and 6-foot modules respectively. ACI 318 requires the "joist" to be designed as a beam with minimum shear reinforcement. Any joist width can be used in combination with standard width pans to address span and load requirements. This system is very efficient for projects where the structural floor must provide a two-hour fire rating.

Using hard rock concrete, a 4 1/2-inch slab and minimum slab reinforcement will result in sufficient capacity for a variety of superimposed loads while reducing structure dead load. Shallower depth forms are appropriate for spans in the 25- to 35-foot range. Deeper depths are appropriate, under moderate loads, for spans in the 35- to 45-foot range using mild steel, while spans up to 60 feet can be achieved with post-tensioning.

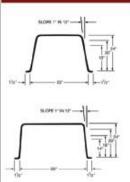
By varying joist widths, different loading conditions can be accommodated using standard forming equipment without the need to add drop beams. Distribution ribs, which add unnecessary cost, are not required with wide module construction.

These forms are appropriate for structural concrete only, and should not be specified for critically exposed surfaces where appearance is important. They are a segmented steel form that will impart irregular lap and flange marks to the finished concrete, though many believe the finished product is acceptable for non-critically exposed work.

If a higher quality of finish is desired, for additional cost, you may wish to consider Ceco LONGforms (please see page 6). Your Ceco representative can assist in form type selection.

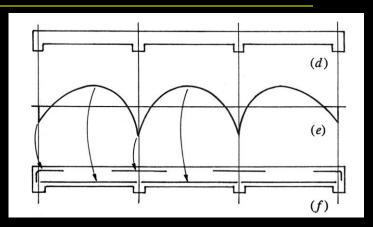


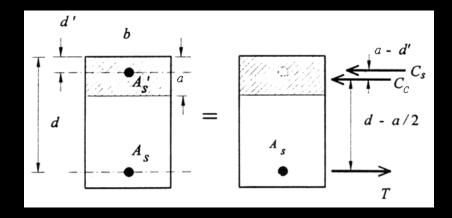



### Voids Created with 53" Design Module

| Depth of Void | Cubic first of void created per linear foot |
|---------------|---------------------------------------------|
| 14"           | Not Available                               |
| 16"           | 5.741                                       |
| 20"           | 7.190                                       |
| 24"           | 8.500                                       |

### Voids Created with 66" Design Module


| Depth of Void | Oubic feet of sold created per linear fact |
|---------------|--------------------------------------------|
| 14"           | 4.303                                      |
| 16"           | 7.185                                      |
| 20"           | 8.995                                      |
| 24"           | 10.667                                     |


### Dimensions

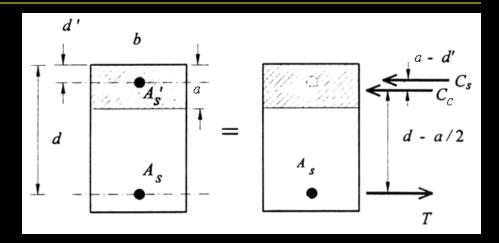


# Compression Reinforcement

- doubly reinforced
- negative bending
- two compression forces
- bigger  $M_n$
- control deflection
- increase ductility
- needs ties because of buckling






# Compression Reinforcement

### analysis

$$-A_s & A_s$$

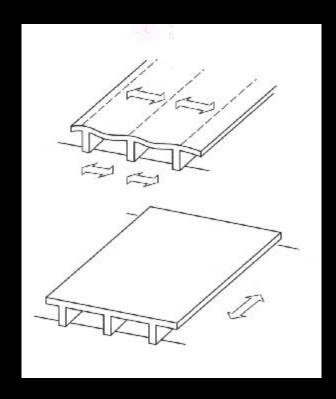
$$-T = C_c + C_s$$

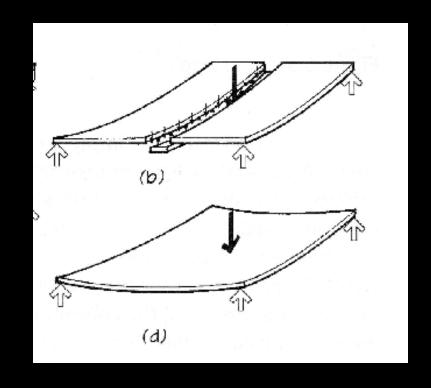
$$-T = A_s f_v$$



$$-C_s = A_s'(f'_s - 0.85f'_c)$$

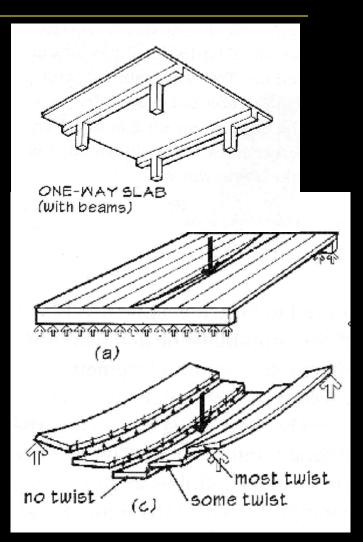
$$-C_c = 0.85 f'_c$$
ba with  $a = \beta_1 x$ 


 $-f_s$  not known, so solve for x (n.a.)


$$-f_{s}$$
'< $f_{v}$ ?

$$-M_n = T(d-a/2) + C_s(d-d')$$

### Slabs


- one way behavior like beams
- two way behavior more complex





# Slab Design

- one unit wide "strip"
- with uniform loads
  - like "wide" beams
  - moment / unit width
  - uniform curvature
- with point loads
  - resisted by stiffness of adjacent strips
  - more curvature in middle



# Slab Design

- min thickness by code
- reinforcement
  - bars, welded wire mesh
  - cover
  - minimum by steel grade

• 40-50: 
$$\rho = \frac{A_s}{bt} = 0.002$$
• 60:

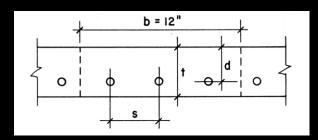
$$\rho = \frac{A_s}{bt} = 0.0018$$

# TABLE 9.5(a)—MINIMUM THICKNESS OF NONPRESTRESSED BEAMS OR ONE-WAY SLABS UNLESS DEFLECTIONS ARE COMPUTED

|                                      |                                            | Minimum tl                           |                              |                           |  |
|--------------------------------------|--------------------------------------------|--------------------------------------|------------------------------|---------------------------|--|
| 6000                                 | Simply sup-<br>ported                      |                                      |                              |                           |  |
| Member                               | Members no<br>other constr<br>deflections. | ot supporting of<br>uction likely to | or attached to<br>be damaged | partitions or<br>by large |  |
| Solid one-<br>way slabs              | ℓ/20                                       | ℓ/24                                 | ℓ/28                         | ℓ/10                      |  |
| Beams or<br>ribbed one-<br>way slabs | ℓ/16                                       | ℓ/18.5                               | ℓ/21                         | ℓ /8                      |  |

### Notes:

Values given shall be used directly for members with normalweight concrete and Grade 60 reinforcement. For other conditions, the values shall be modified as follows:


a) For lightweight concrete having equilibrium density,  $w_c$ , in the range of 90 to 115 lb/ft<sup>3</sup>, the values shall be multiplied by  $(1.65-0.005w_c)$  but not less than 1.09.

b) For  $f_y$  other than 60,000 psi, the values shall be multiplied by  $(0.4 + f_y f_100,000)$ .



# One-Way Slabs

- A<sub>s</sub> tables
- max spacing
  - $\le 3(t)$  and 18"



- $\le 5(t)$  and 18" temp & shrinkage steel
- no room for stirrups

| Table 3-7 | Areas of Ba | rs per Foo | t Width of   | Slab—A. | (in <sup>2</sup> /ft) |
|-----------|-------------|------------|--------------|---------|-----------------------|
| Table 57  | AICUS UI DO | ns per roo | L VVICION ON | Olab—As | (III I. / I L)        |

| Bar  |      | Bar spacing (in.) |      |      |      |      |      |      |      |      |      |      |      |
|------|------|-------------------|------|------|------|------|------|------|------|------|------|------|------|
| size | 6    | 7                 | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   |
| #3   | 0.22 | 0.19              | 0.17 | 0.15 | 0.13 | 0.12 | 0.11 | 0.10 | 0.09 | 0.09 | 0.08 | 0.08 | 0.07 |
| #4   | 0.40 | 0.34              | 0.30 | 0.27 | 0.24 | 0.22 | 0.20 | 0.18 | 0.17 | 0.16 | 0.15 | 0.14 | 0.13 |
| #5   | 0.62 | 0.53              | 0.46 | 0.41 | 0.37 | 0.34 | 0.31 | 0.29 | 0.27 | 0.25 | 0.23 | 0.22 | 0.21 |
| #6   | 0.88 | 0.75              | 0.66 | 0.59 | 0.53 | 0.48 | 0.44 | 0.41 | 0.38 | 0.35 | 0.33 | 0.31 | 0.29 |
| #7   | 1.20 | 1.03              | 0.90 | 0.80 | 0.72 | 0.65 | 0.60 | 0.55 | 0.51 | 0.48 | 0.45 | 0.42 | 0.40 |
| #8   | 1.58 | 1.35              | 1.18 | 1.05 | 0.95 | 0.86 | 0.79 | 0.73 | 0.68 | 0.63 | 0.59 | 0.56 | 0.53 |
| #9   | 2.00 | 1.71              | 1.50 | 1.33 | 1.20 | 1.09 | 1.00 | 0.92 | 0.86 | 0.80 | 0.75 | 0.71 | 0.67 |
| #10  | 2.54 | 2.18              | 1.91 | 1.69 | 1.52 | 1.39 | 1.27 | 1.17 | 1.09 | 1.02 | 0.95 | 0.90 | 0.85 |
| #11  | 3.12 | 2.67              | 2.34 | 2.08 | 1.87 | 1.70 | 1.56 | 1.44 | 1.34 | 1.25 | 1.17 | 1.10 | 1.04 |

### Precast

- prestressed
  - PCI DesignHandbook
  - double T's
  - hollow core
  - -L's
- topping
- load tables

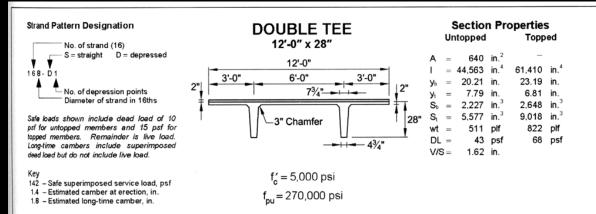



Table of safe superimposed service load (psf) and cambers (in.)

2 in. Normal Weight Topping

12DT28 + 2

Normal Weight Concrete

| Strand        | y <sub>s</sub> (end) in. |     |     |     |     |     |             |     | 8   | pan, ft |      |     |     |     |     |     |      |      |
|---------------|--------------------------|-----|-----|-----|-----|-----|-------------|-----|-----|---------|------|-----|-----|-----|-----|-----|------|------|
| Pattern       | y₅(center)<br>in.        | 40  | 42  | 44  | 46  | 48  | 50          | 52  | 54  | 56      | 58   | 60  | 62  | 64  | 66  | 68  | 70   | 72   |
|               | 6.00                     | 127 | 110 | 95  | 82  | 70  | 60          | 51  | 42  | 35      | 29   |     |     |     |     |     |      |      |
| 108-S         |                          | 8.0 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9         | 0.9 | 8.0 | 8.0     | 0.7  |     |     |     |     |     |      |      |
|               | 6.00                     | 8.0 | 8.0 | 8.0 | 8.0 | 0.7 | 0.6         | 0.5 | 0.3 | 0.1     | -0.1 |     |     |     |     |     |      |      |
| ķ.,           | 7.00                     | 154 | 134 | 117 | 102 | 88  | 77          | 66  | 57  | 49      | 41   | 32  |     |     |     |     |      |      |
| 128-S         |                          | 1.0 | 1.0 | 1.1 | 1.1 | 1.1 | 1.1         | 1.1 | 1.1 | 1.1     | 1.0  | 0.9 |     |     |     |     |      |      |
|               | 7.00                     | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9         | 0.8 | 0.7 | 0.5     | 0.3  | 0.0 |     |     |     |     |      |      |
| 100           | 8.00                     | 177 | 155 | 136 | 119 | 105 | 92          | 80  | 70  | 60      | 50   | 41  | 32  |     |     |     |      |      |
| 148-S         |                          | 1.1 | 1.1 | 1.2 | 1.2 | 1.3 | 1.3         | 1.3 | 1.3 | 1.3     | 1.2  | 1.2 | 1.1 |     |     |     |      |      |
|               | 8.00                     | 1.1 | 1.2 | 1.2 | 1.2 | 1.1 | 1.1         | 1.0 | 0.9 | 8.0     | 0.6  | 0.3 | 0.1 |     |     |     |      |      |
| 2000          | 9.00                     | 197 | 173 | 152 | 134 | 118 | 104         | 90  | 78  | 66      | 56   | 47  | 39  | 31  |     |     |      |      |
| 168-S         |                          | 1.1 | 1.2 | 1.3 | 1.3 | 1.4 | 1.4         | 1.4 | 1.4 | 1.4     | 1.4  | 1.3 | 1.3 | 1.2 |     |     |      |      |
|               | 9.00                     | 1.2 | 1.3 | 1.3 | 1.3 | 1.3 | 1.2         | 1.2 | 1.1 | 0.9     | 0.8  | 0.5 | 0.3 | 0.0 |     |     |      |      |
| in a          | 13.00                    |     |     | 199 | 177 | 157 | 140         | 125 | 111 | 97      | 84   | 72  | 62  | 52  | 43  | 36  | 30   |      |
| 168-D1        |                          |     |     | 1.5 | 1.6 | 1.7 | 1.8         | 1.9 | 1.9 | 2.0     | 2.0  | 2.0 | 2.0 | 1.9 | 1.8 | 1.8 | 1.6  |      |
|               | 3.75                     |     |     | 1.7 | 1.7 | 1.7 | 1.8         | 1.7 | 1.7 | 1.6     | 1.5  | 1.3 | 1.1 | 0.8 | 0.5 | 0.2 | -0.2 |      |
| in the second | 14.39                    |     |     |     |     |     | To the base | 143 | 126 | 111     | 97   | 85  | 73  | 63  | 54  | 45  | 37   | 31   |
| 188-D1        |                          |     |     |     |     |     |             | 2.0 | 2.1 | 2.1     | 2.2  | 2.2 | 2.3 | 2.3 | 2.2 | 2.1 | 2.0  | 1.9  |
|               | 4.00                     |     |     |     |     |     |             | 1.9 | 1.9 | 1.9     | 1.8  | 1.7 | 1.5 | 1.3 | 1.0 | 0.7 | 0.3  | -0.2 |