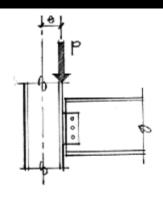
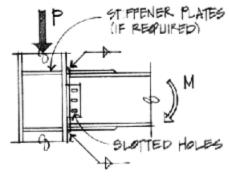
ARCHITECTURAL **S**TRUCTURES: FORM, BEHAVIOR, AND DESIGN


ARCH 331 **D**R. ANNE **N**ICHOLS **SUMMER 2013**

eighteen


steel construction bolts, welds & light gages

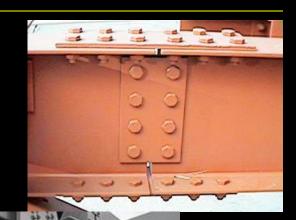
Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

(a) Framed beam (shear) connection. e = Eccentricity; M = $P \times e$

(b) Moment connection (rigid frame). M = Moment due to beam bending

bolted steel connections


http://courses.civil.ualberta.ca

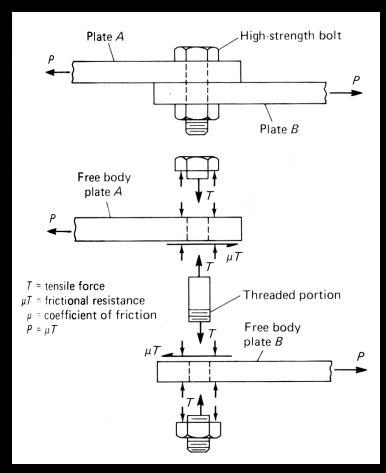
Steel Bolts & Welding 3 Lecture 18

ARCH 331

(AISC - Steel Structures of the Everyday)

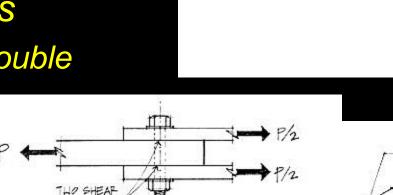
Welds

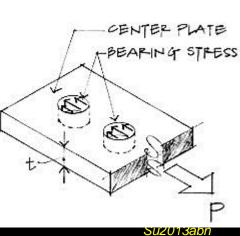
welded steel connections


http://courses.civil.ualberta.ca

Steel Bolts & Welding 4 Lecture 18 Architectural Structures ARCH 331

- types
 - materials


- high strength
- A307, A325, A490
- location of threads
 - included N
 - excluded X
- friction or bearing (SC)
 always tightened


Bolted Connection Design

 considerations bearing stress yielding - shear stress • single & double *– member* • rupture

1 1

ğ

shear

Steel Bolts & Welding 6 Lecture 18

Architectural Structures **ARCH 331**

ANES

tension

- rarely fail in bearing
- holes considered 1/8" larger
- shear & tension

- single shear or tension

- double shear

$$R_n = F_n A_b$$
$$R_n = F_n 2A_b$$

 $R_{u} \leq$

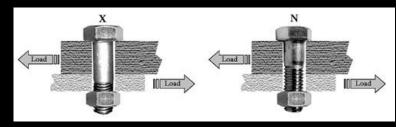

 $\phi_{\rm v} = 0.75$

Table 7-1 Available Shear Strength of Bolts, kips

N	ominal Bolt	Diamete	er, d, in.		5	/8	3/4		7	/8	Conhection		
	Nominal E	Bolt Area	in.2	oM Los	0.307		0.442		0.601		0.785		
ASTM	Thread	F _{nv} /Ω (ksi)	¢ <i>F_{nv}</i> (ksi)	Load-	r _n /Ω	φ r n	r _n /Ω	φ r n	r _n /Ω	φ r n	r _n /Ω	¢r _n	
Desig.	Cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
Group	one N 10	27.0	40.5	S D	8.29 16.6	12.4 24.9	11.9 23.9	17.9 35.8	16.2 32.5	24.3 48.7	21.2 42.4	31.8	
A) - X od	34.0	51.0	S D	10.4 20.9	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0	
Group	N	34.0	51.0	S D	10.4 20.9	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0 80.1	
В	X	42.0	63.0	S D	12.9 25.8	19.3 38.7	18.6 37.1	27.8 55.7	25.2 50.5	37.9 75.7	33.0 65.9	49.5 98.9	
A307	ek <u>"is</u> uit	13.5	20.3	S D	4.14 8.29	6.23 12.5	5.97 11.9	8.97 17.9	8.11 16.2	12.2 24.4	10.6 21.2	15.9 31.9	
No	ominal Bolt	Diamete	r, <i>d</i> , in.	of 200	loor qt	/8	กละเรีย	1/4	1	3/8	. D.,	1/2	
Nominal Bolt Area, in. ²					0.994		1.23		1.48		1.77		
ASTM	Thread Cond.	(Nol) (Nol)		Load-	r η/Ω	φ r n	r _n /Ω	ф г п	r _n /Ω	φ r n	r _n /Ω	φ r _n	
Desig.		ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
Group	N	27.0	40.5	S D	26.8 53.7	40.3 80.5	33.2 66.4	49.8 99.6	40.0 79.9	59.9 120	47.8 95.6	71.7 143	
A	x	34.0	51.0	S D	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181	
Group	N	34.0	51.0	S D	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181	
В	x	42.0	63.0	S D	41.7 83.5	62.6 125	51.7 103	77.5 155	62.2 124	93.2 186	74.3 149	112 223	
A307	-	13.5	20.3	S D	13.4 26.8	20.2 40.4	16.6 33.2	25.0 49.9	20.0 40.0	30.0 60.1	23.9 47.8	35.9 71.9	
ASD	LRFD	For end I	oaded co	nnections	greater th	an 38 in.	, see AISC	Specifica	ation Table	J3.2 foo	tnote b.		

Table 7-2 Available Tensile Strength of Bolts, kips

Nominal B	olt Diameter,	<i>d</i> , in.	5	/8	numi	3/4		7/8	1 0.785		
Nomina	l Bolt Area, ir	n. ²	0.:	307	0.	442	0.	601			
ASTM Desig	<i>F_{nt}/Ω</i> (ksi)	(kei)	¢ <i>F_{nt}</i> (ksi)	r _n /Ω	ф г п	r _n /Ω	\$ r n	r _n /Ω	$\phi r_n = r_n / \Omega$		¢ r n
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	r _n /Ω ASD 35.3 44.4 17.7 11 1.7 r _n /Ω ASD	LRFD	
Group A	45.0 56.5	67.5 84.8	13.8 17.3	20.7 26.0	19.9	29.8	27.1	40.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	53.0	
Group B A307	22.5	33.8	6.90	10.4	25.0 9.94	37.4 14.9	34.0 13.5	51.0 20.3		66.6 26.5	
Nominal Bolt Diameter, d, in.			11/8		11/4		1 ³ /8		1	1/2	
Nomina	l Bolt Area, in	n. ²	0.9	994	1.23		1	48	1.77		
ASTM Desig	F _{nt} /Ω (ksi)	¢ <i>F_{nt}</i> (ksi)	r _n /Ω	φ r n	r _n /Ω	ф г п	r _n /Ω	ф г п	r _n /Ω	ф г п	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
Group A	45.0	67.5	44.7	67.1	55.2	82.8	66.8	100	79.5	119	
Group B A307	56.5 22.5	84.8 33.8	56.2 22.4	84.2 33.5	69.3 27.6	104 41.4	83.9 33.4	126 50.1	99.8 39.8	150	
ASD	LRFD					4				1	
$\Omega = 2.00$	$\phi = 0.75$										

Steel Bolts & Welding 8 Lecture 18 Architectural Structures ARCH 331 http://www.fastenal.com

•

bearing

- $R_{a} \leq \frac{R_{n}}{\Omega} \qquad R_{u} \leq \phi R_{n}$ $\phi = 0.75$
- deformation is concern
- $R_{n} = 1.2 L_{c} tF_{u} \leq 2.4 dtF_{u}$ deformation isn't concern $R_{n} = 1.5 L_{c} tF_{u} \leq 3.0 dtF_{u}$ long slotted holes $R_{n} = 1.0 L_{c} tF_{u} \leq 2.0 dtF_{u}$ $L_{c} \text{ clear length to edge or next hole (ex. 11/4", 3")}$

Table 7-5 **Available Bearing Strength at Bolt Holes Based on Edge Distance**

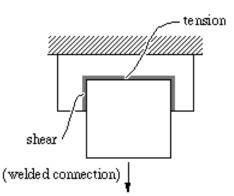
kips/in. thickness

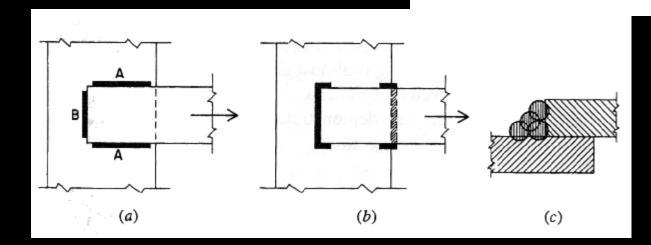
	Edge Distance	neter, d, l	Nominal Bolt Diameter, d, in.											
Hole Type		<i>Fu</i> , ksi		5/8		3/4	- I feel	7/8	a 1					
	L_{θ} , in.		r_n/Ω	φ r n	r_n/Ω	¢ r n	r_n/Ω	φ r _n	r_n/Ω	¢r _n				
	AFD AS	1 08	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRF				
STD	11/4	58 65	31.5 35.3	47.3 53.0	29.4 32.9	44.0 49.4	27.2 30.5	40.8 45.7	25.0 28.0	37.5				
SSLT	2	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	53.3 59.7	79.9 89.6	ASD 25.0 28.0 51.1 57.3 20.7 23.2 46.8 52.4 21.8 24.4 21.8 24.4 47.9 53.6 26.1 29.3 20.8 23.4 42.6 47.7 69.6 78.0 58.0 65.0 29, 21, 21, 21, 21, 21, 21, 21, 21	76.				
SSLP	1 ¹ /4	58 65	28.3 31.7	42.4 47.5	26.1 29.3	39.2 43.9	23.9 26.8	35.9 40.2		31.0 34.1				
JOLF	2	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	50.0 56.1	75.0 84.1	ASD 25.0 28.0 51.1 57.3 20.7 23.2 46.8 52.4 47.9 53.6 26.1 29.3 20.8 23.4 42.6 47.7 69.6 78.0 58.0 65.0 29 25 21	70. 78.0				
ovs	1 ¹ /4	58 65	29.4 32.9	44.0 49.4	27.2 30.5	40.8 45.7	25.0 28.0	37.5 42.0		32.6 36.6				
043	2	58 65	43.5 48.8	65.3 73.1	49.4 30.5 45.7 28. 65.3 52.2 78.3 51. 73.1 58.5 87.8 57. 24.5 10.9 16.3 5. 27.4 12.2 18.3 6.	51.1 57.3	76.7 85.9		71.8					
LSLP	1 ¹ /4	58 65	16.3 18.3				5.44 6.09	8.16 9.14	+++++++++++++++++++++++++++++++++++++++	1				
LƏLP	2	58 65	42.4 47.5	63.6 71.3	37.0 41.4	55.5 62.2	31.5 35.3	47.3 53.0		39.1 43.9				
LSLT	11/4	58 65	26.3 29.5	39.4 44.2	24.5 27.4	36.7 41.1	22.7 25.4	34.0 38.1		31.3 35.0				
LOLI	2	58 65	36.3 40.6	54.4 60.9	43.5 48.8	65.3 73.1	44.4 49.8	66.6 74.6		63.9 71.0				
STD, SSLT, SSLP, OVS, LSLP	$L_e \ge L_e full$	58 65	43.5 48.8	65.3 73.1	52.2 58.5	78.3 87.8	60.9 68.3	91.4 102		104 117				
LSLT	$L_{\theta} \geq L_{\theta}$ full	58 65	36.3 40.6	54.4 60.9	43.5 48.8	65.3 73.1	50.8 56.9	76.1 85.3		87.0 97.5				
Edge di for full t		STD, SSLT, LSLT	15,	/8	1 ¹⁵ /16		21/	4	2 ⁹ /16					
strer		OVS		1/16	2	and the second	25							
$L_e \ge L_e$	_{full} a, in.	SSLP		1/16	2	100 E.	25		211/16					
100000 68	Nem 11 Di	LSLP	21/	16	2	/16	27/	8	31/4					

rai

СН

		ip-C	ritica	al Co		ctio		Grou Bo					
		vailab ass A			100	S	.30) _F	↓490, A4 =2280 \354 Gra					
r	tol pt	necentiero (Gr	oup B Bo	lts	oran plar	/	4354 01					
Value DV	675	Datale	19 960	Non	ninal Bolt I	Diameter,	d, in.	01.3.917	0123-24112 015				
- U. U.S.	URED I	024 5	8	3	/4	7	/8	1.50	1 110				
8.		Minimum Group B Bolt Pretension, kips											
Hole Type	Loading	2	4	3	35	4	19	(64				
		r _n /Ω	φ r n	r_n/Ω	¢r _n	r _n /Ω	φ r _n	r_n/Ω	¢r _n				
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD				
STD/SSLT	S D	5.42 10.8	8.14 16.3	7.91 15.8	11.9 23.7	11.1 22.1	16.6 33.2	14.5 28.9	21.7 43.4				
OVS/SSLP	S D	4.62 9.25	6.92 13.8	6.74 13.5	10.1 20.2	9.44 18.9	14.1 28.2	12.3 24.7	18.4 36.9				
LSL	S D	3.80 7.60	5.70 11.4	5.54 11.1	8.31 16.6	7.76 15.5	11.6 23.3	10.1 20.3	15.2 30.4				
08.	24(23)70 1	Nominal Bolt Diameter, d, in.											
		11	/8	1	1/4	1	³ /8	ti 8 1	1/2				
		Minimum Group B Bolt Pretension, kips											
Hole Type	Loading	8	0	1	02	1	21	1	48				
10.1		r _n /Ω	φ r n	r _n /Ω	¢r _n	r _n /Ω	\$ r _n	r _n /Ω	φ r _n				
1 6 80		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD				
STD/SSLT	S D	18.1 36.2	27.1 54.2	23.1 46.1	34.6 69.2	27.3 54.7	41.0 82.0	33.4 66.9	50.2 100				
OVS/SSLP	S D	15.4 30.8	23.1 46.1	19.6 39.3	29.4 58.8	23.3 46.6	34.9 69.7	28.5 57.0	42.6 85.3				
LSL	S D	12.7 25.3	19.0 38.0	16.2 32.3	24.2 48.4	19.2 38.3	28.7 57.4	23.4 46.9	35.1 70.2				
STD = standard OVS = oversize SSLT = short-sl SSLP = short-sl LSL = long-slo	ed hole otted hole tran otted hole para	allel to the li	ne of force	e	rce	S = single D = doubl		e <mark>s In.</mark> Spacing ^a reduct Fox	nomini nomini				
Hole Type	ASD	LRFD	Note: Slip	o-critical bol	t values assu				n provided				
STD and SSLT	$\Omega = 1.50$	φ = 1.00	or bolts h		dded to distr In Sections J	ibute loads i	n the fillers.						

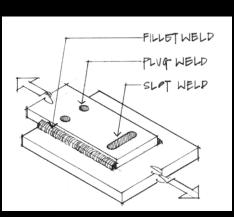

are presen


SSLP = short-slotted hole oriented parallel to the line of force LSLP = long-slotted hole oriented parallel to the line of force

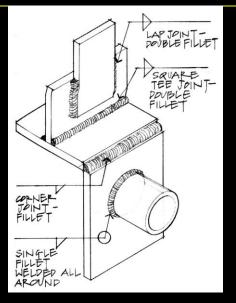
OVS = oversized hole

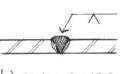
LCLT - long eletted help priorited transverse to the line of fore

- considerations
 - shear stress
 - yielding
 - rupture

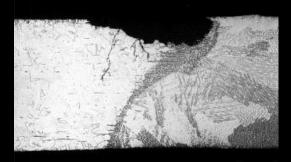


Steel Bolts & Welding 11 Lecture 18



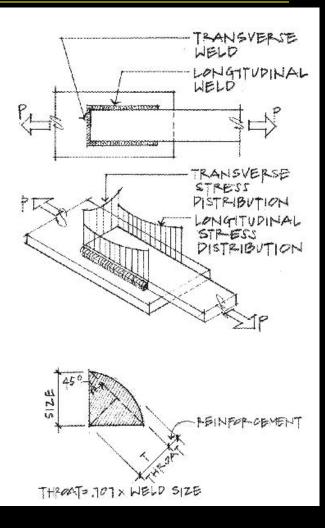

- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat
- field welding
- shop welding

(AISC - Steel Structures of the Everyday)



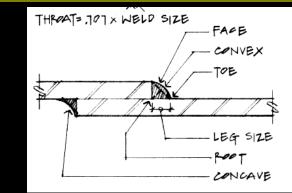
D.) SINGLE VEE GROOVE JOINT

- weld process
 melting of material
 melted filler electrode
 shielding gas / flux
 potential defects
- weld materials
 - *E60XX*
 - E70XX $F_{EXX} = 70 \text{ ksi}$


- shear failure assumed
- throat

-T = 0.707 x weld size

• area


-A = T x length of weld

• weld metal generally stronger than base metal (ex. $F_v = 50$ ksi)

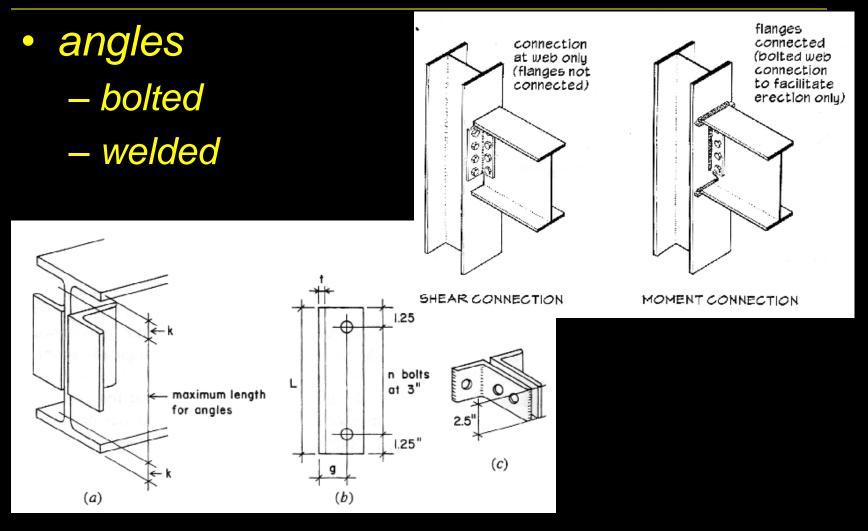
- minimum
 - table
- maximum
 - material thickness (to 1/4")
 - 1/16" less
- min. length $-4 \times \text{size min.}$ $- \ge 1 \frac{1}{2}$

TABLE J2.4 Minimum Size of Fillet Welds						
Material Thickness of	Minimum Size of					
Thicker Part Joined, in. (mm)	Fillet Weld[a] in. (mm)					
To ¼ (6) inclusive	18 (3)					
Over ¼ (6) to ½ (13)	316 (5)					
Over ½ (13) to ⅔ (19)	14 (6)					
Over ¾ (19)	546 (8)					

shear

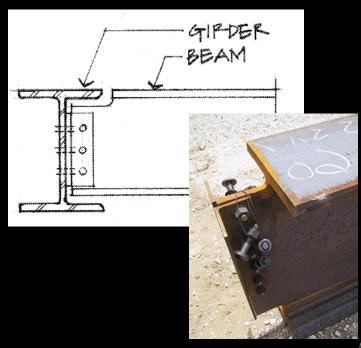
$$\leq \frac{R_n}{\Omega} \qquad \begin{array}{c} R_u \leq \phi R\\ \phi = 0.75 \end{array}$$

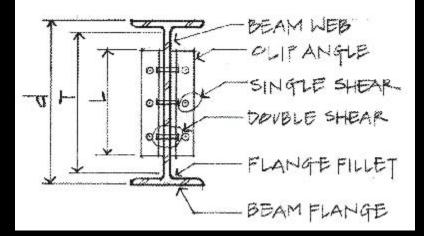
.


Available	Strength of Fil	let Welds
	inch of weld (
Weld Size	E60XX	E70XX
(in.)	(k/in.)	(k/in.)
3/16	3.58	4.18
1/4	4.77	5.57
3/16	5.97	6.96
3/8	7.16	8.35
7/16	8.35	9.74
1/2	9.55	11.14
5/8	11.93	13.92
3⁄4	14.32	16.70
(not conside	nina inanasa i	a threat with

(not considering increase in throat with submerged arc weld process)

$$R_n = 0.6F_{EXX} \underbrace{Tl}_{area} = Sl$$


– table for ϕS


n

Steel Bolts & Welding 17 Lecture 18

- terms
 - coping

(AISC - Steel Structures of the Everyday)

Framed Beam Conne

- tables for standard bolt sizes & spacings
- # bolts
- bolt diameter, angle leg thickness
- bearing on beam web

Beam	F _y = 50 ksi F _u = 65 ksi	elt	AI		olte	10- ed	Do	ubl	e-/		jle	i 8:8. Iest 8		-in.		
Angle	<i>F_y</i> = 36 ksi	Connections Bolts														
2	<i>F_u</i> = 58 ksi	220	a (dig)	9.75 01	B	olt and	Angle	Availab	le Stre	ngth, k	ips	- 232		1.12		
	4 Rows	Bolt	The	read		ole	Angle Thickness, in.									
-		Group	11360		255	/pe	1	/4	5	/16	3	/8	1	12		
W	24, 21, 18, 16	aroup	Cond.		19.8.1	he	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	THU MILL	6 L 8 1	200	N	S	TD	67.1	101	83.9	126	95.5	143	95.5	143		
				X		TD	67.1	101	83.9	126	101	151	120	180		
	그렇게 도둑	16	SC Class A		STD		50.6	75.9	50.6	75.9	50.6	75.9	50.6	75.9		
	이야기 네 지지 [Group A			OVS		43.1	64.5	43.1	64.5	43.1	64.5	43.1	64.5		
					SSLT		50.6	75.9	50.6	75.9		75.9	50.6	75.9		
	1 1		SC Class B		STD		67.1	101	83.9	126	84.4	127	84.4	127		
	<u>, </u>	gi niti j			OVS		65.3	97.9	71.9	108	71.9	108	71.9	108		
		1.3	1.54		S	SLT	65.8	98.7	82.2	123	84.4	127	84.4	127		
			N		S	TD	67.1	101	83.9	126	101	151	120	180		
				X	S	TD	67.1	101	83.9	126	101	151	134	201		
8		Group B	SC Class A		STD		63.3	94.9	63.3	94.9	63.3	94.9	63.3	94.9		
5					OVS		53.9	80.7	53.9	80.7	53.9	80.7	53.9	80.7		
	life of the		Uld	55 A	SSLT		63.3	94.9	63.3	94.9	63.3	94.9	63.3	94.9		
			SC		S	TD	67.1	101	83.9	126	101	151	105	158		
	(B) (E)				OVS SSLT		65.3	97.9	81.6	122	89.9	134	89.9	134		
	195-11 P. P.		Class B				65.8	98.7	82.2	123	98.7	148	105	158		
		Be	am We	eb Avail	able S	trength	per In	ch Thic	kness	, kips/i	n.					
	Hole Type			S	rD			0	/S			SS	LT			
	noie Type		L _{eh} *, in.													
	Lov. in.		1	1/2	1	3/4	1	1/2	1	3/4	1	1/2	13	1/4		
		0.3A	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	nna d'aitead	11/4	167	250	175	262	156	234	164	246	164	245	172	257		
	1351	13/8	169	254	177	266	158	238	167	250	166	249	174	261		
C	oped at Top	11/2	171	257	180	269	161	241	169	254	168	253	177	265		
F	Flange Only	15/8	174	261	182	273	163	245	171	257	171	256	179	268		
	ALC: AND	2	181	272	189	284	171	256	179	268	178	267	186	279		
	501 No.5	3	201	301	209	313	190	285	198	297	198	296	206	309		
		11/4	156	234	156	234	146	219	146	219	156	234	156	234		
	nit " džn (13/8	161	241	161	241	151	227	151	227	161	241	161	241		
1000			Contraction of the			10000								1.1		

been added to distribute loads in the fillers.

256

278

313

171

185

209

SSLT = Short-slotted holes transverse

to direction of load

241

285

351 234 351 234 351

Tabulated values include 1/4-in. reduction in end distance, Leh, to account for possible

Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have

161 241 171

198

297

N = Threads included

X = Threads excluded

SC = Slip critical

161

171 256 176 263 178 267 185 278

190

234

256

296

198

171 256

206 309

234 351

Architectural Struct ARCH 331 **Coped at Both**

Flanges

Uncoped

Support Available

Strength per

Inch Thickness.

kips/in.

ASD

468

Hole

Type

STD/

OVS/

SSLT

11/2 166 249 166 249 156 234 156 234 166 249 166 249

15/8

2

3

LRFD

702

171

181

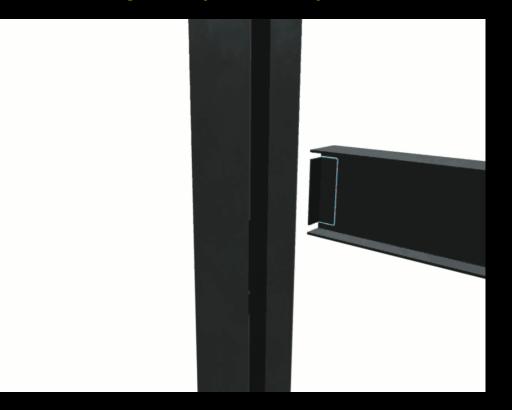
201

234 351 234 351

Notes:

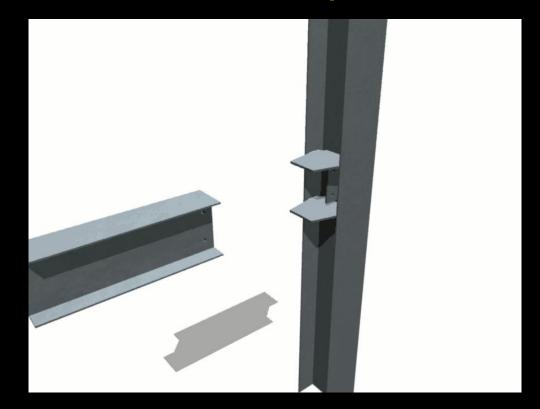
256

272

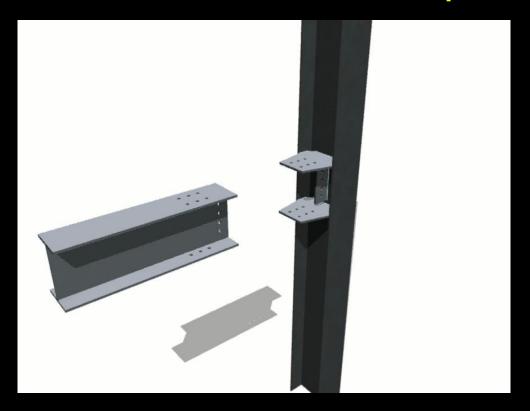

301

STD = Standard holes

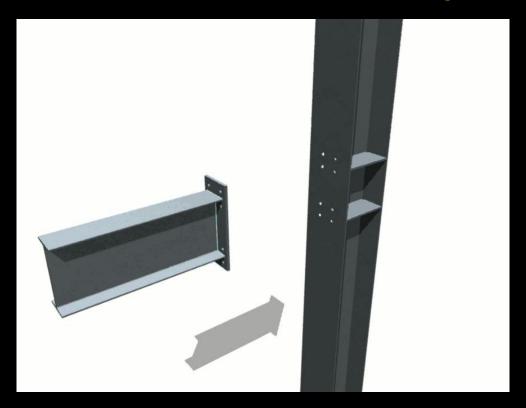
OVS = Oversized holes


underrun in beam length.

• welded example (shear)

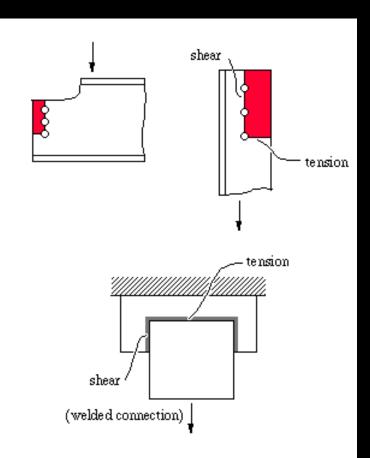

(AISC - Steel Structures of the Everyday)

• welded moment example


(AISC - Steel Structures of the Everyday)

welded/bolted moment example

(AISC - Steel Structures of the Everyday)


welded/bolted moment example

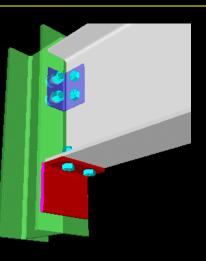
(AISC - Steel Structures of the Everyday)

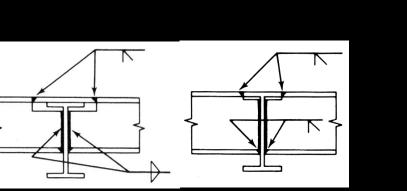
Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

$\begin{array}{l} \textbf{Beam Connections} & \phi = 0.75 \\ \hline R_n = 0.6F_uA_{nv} + U_{bs}F_uA_{nt} \leq 0.6F_yA_{gv} + U_{bs}F_uA_{nt} \\ - \text{ where } U_{bs} \text{ is 1 for uniform tensile stress} \end{array}$

Figure 2-1. Block Shear Rupture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)


Figure 2-14. Tension Fracture Limit State (Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)


tension rupture

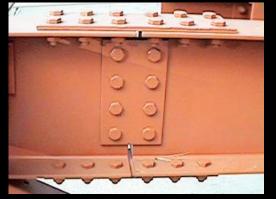
block shear rupture

Steel Bolts & Welding 25 Lecture 18 Architectural Structures ARCH 331

- seated beam
- continuous
 - beam to column
 - beam to beam

Steel Bolts & Welding 26 Lecture 18 Architectural Structures ARCH 331

• splices



The Royal Ontario Museum Toronto . Canada Daniel Libeskind (AISC - Steel Structures of the Everyday)

http://courses.civil.ualberta.ca Su2013abn

Steel Bolts & Welding 27 Lecture 18

- rigid frame knees
- gussets & joints

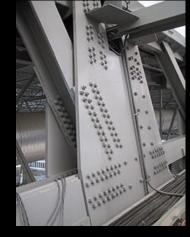
Endwall Frame

4. Rake rafter

3. Endwall column

Main Frame

1. Column


2. Rafter

Secondar

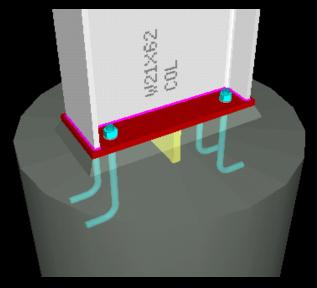
5. Wall gi

6. Roof p

7. Eave st

(AISC - Steel Structures of the Everyday)

Steel Bolts & Welding 28 Lecture 18 Architectural Structures ARCH 331


base plates

 anchor bolts
 bearing on steel
 bending of plate

http://courses.civil.ualberta.ca

