Architectural Structures: Form, Behavior, and Design

Arch 331 Dr. Anne Nichols Summer 2013

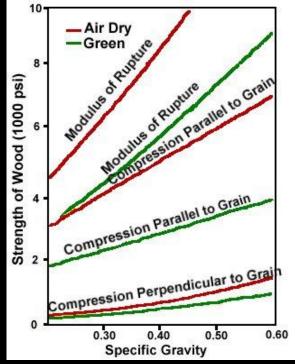
lecture twelve

wood construction: materials & beams

Architectural Structures ARCH 331

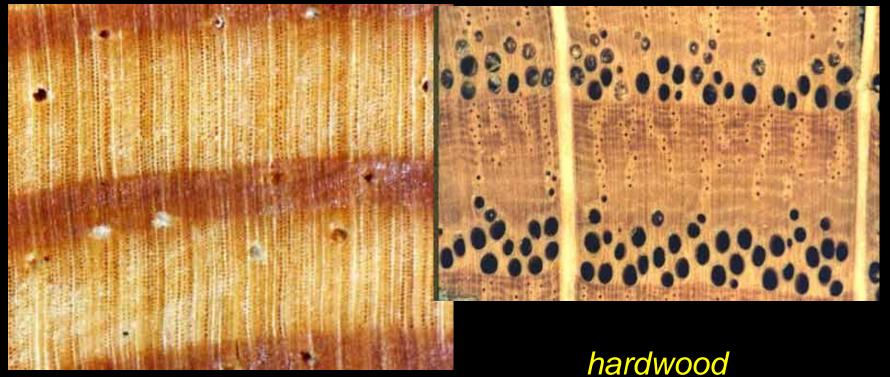
Wood Beam Design

- National Design Specification
 - National Forest Products Association
 - ASD & LRFD (combined 2005)


- adjustment factors x tabulated stress = allowable stress
- adjustment factors terms, C with subscript
- i.e, bending:

 $f_b \leq F'_b = F_b \times (product \ of \ adjustment \ factors)$

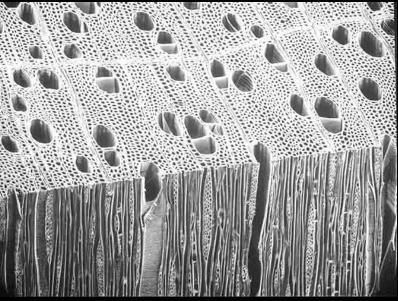
Timber


- lightweight : strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by "flaws"
- size varies by tree growth
- renewable resource
- manufactured wood
 assembles pieces
 - adhesives

Wood Beams 3 Lecture 12

Wood Properties

cell structure and density


http://www.swst.org/teach/set2/struct1.html

Wood Beams 4 Lecture 12 Architectural Structures ARCH 331

Wood Properties

- moisture
 - exchanges with air easily
 - excessive drying causes warping and shrinkage
 - strength varies some
- temperature
 - steam
 - volatile products
 - combustion

http://www.swst.org/teach/set2/struct1.htm

Architectural Structures ARCH 331

Wood Properties

load duration

 short duration
 higher loads
 normal duration
 > 10 years

additional
 deformation with no additional load

Structural Lumber

- dimension 2 x's (nominal)
- beams, posts, timber, planks
- grading
 - select structural
 - no. 1, 2, & 3
- tabular values by species
- glu-lam
- plywood

Wood Beams 7 Lecture 12 Architectural Structures ARCH 331

Species and commercial grade

SOUTHERN PINE (Surfaced dry,

2" to 4"

2" to 4"

4" wide

thick

wide

1400

1650

775

925 775

1000

575

275

1750

Select Structural Dense Select Structural

No. 1 No. 1 Dense

No. 2

No. 3

Stud

No. 2 Dense

No. 3 Dense

Construction

Select Structural

Standard

Utility

	Design values in pounds per square inch					
Size	Extreme fiber in bending "F _b "		Tension parallel	Horizontal	Compression perpendicular	
classification	n Single- member member uses uses	member	to grain "F _t "	shear "F _v "	to grain "F _{c⊥} "	
y. Used at 19% m	ax. m.c.)					
2" to 4" thick	2000 2350 1700 2000	2300 2700 1950 2300	1150 1350 1000 1150	100 100 100 100	565 660 565 660	

825

975

450

525

450

600

350

150

1150

1650

1900

900 1050

900

1150

675

300

2000

90

90

90

90

90

100

90

90

90

565

660

565

660

565

565

565

565

565

Adjustment Factors

• terms

- $-C_D = load$ duration factor
- $-C_M =$ wet service factor
 - 1.0 dry ≤ 16% MC
- $-C_F = size factor$
 - visually graded sawn lumber and round timber > 12" depth

$$C_F = (12 / d)^{\frac{1}{9}} \le 1.0$$

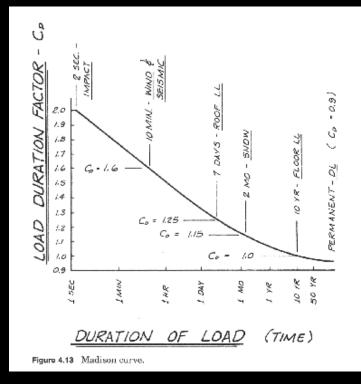


Table 10.3 (pg 376)

Adjustment Factors

- terms
 - $-C_{fu} = flat use factor$
 - not decking
 - $-C_i = incising factor$
 - increase depth for pressure treatment
 - $-C_t = temperature factor$
 - lose strength at high temperatures

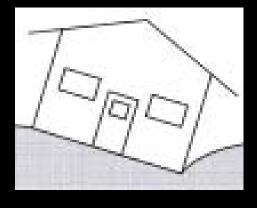
Adjustment Factors

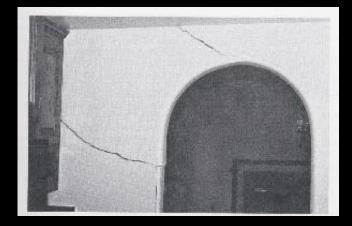
- terms
 - $-C_r$ = repetitive member factor
 - $-C_{H} =$ shear stress factor
 - splitting
 - $-C_V = volume factor$
 - same as C_F for glue laminated timber
 - $-C_L = beam$ stability factor
 - beams without full lateral support

 $-C_{C}$ = curvature factor for laminated arches

Allowable Stresses

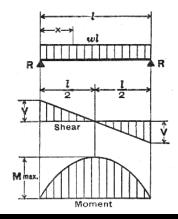
- design values
 - *F_b*: bending stress
 - $-F_t$: tensile stress strong
 - $-F_v$: horizontal shear stress
 - $F_{c\perp}$: compression stress (perpendicular to grain)
 - F_c: compression stress (parallel to grain) strong
 - E: modulus of elasticity
 - $-F_p$: bearing stress (parallel to grain)

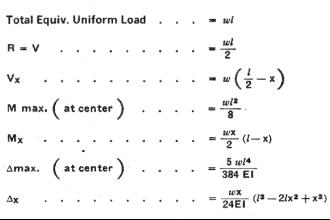

Load Combinations

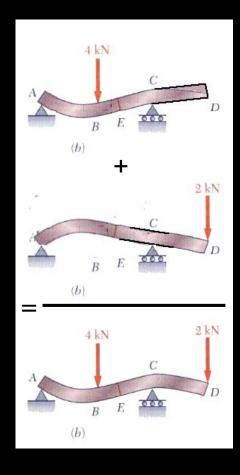

- design loads, take the bigger of
 - (dead loads)/0.9
 - (dead loads + any possible combination of live loads)/ C_D
- deflection limits
 - <u>no load factors</u>
 - for stiffer members:
 - Δ_T max from LL + 0.5(DL)

Beam Design Criteria

- strength design
 - bending stresses predominate
 - shear stresses occur
- serviceability
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding

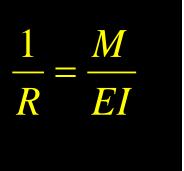


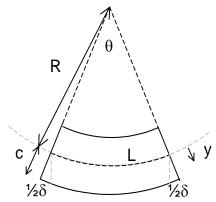



Beam Design Criteria

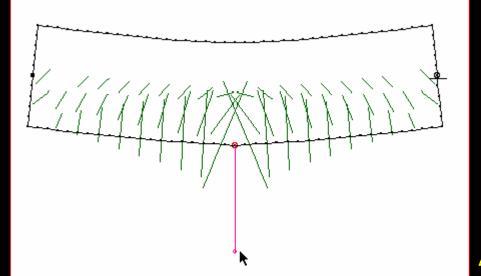
- superpositioning
 - use of beam charts
 - elastic range only!
 - "add" moment diagrams
 - "add" deflection CURVES (not maximums)

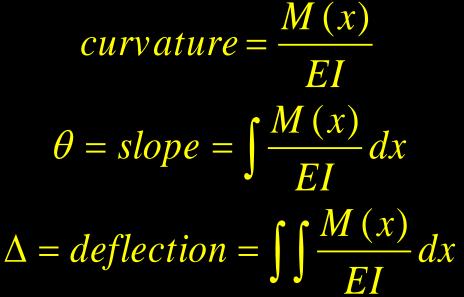
1. SIMPLE BEAM-UNIFORMLY DISTRIBUTED LOAD




Wood Beams 14 Lecture 12 Architectural Structures ARCH 331

Beam Deformations


curvature relates to


 bending moment
 modulus of elasticity
 moment of inertia

Su2013abr

Deflection Limits

based on service condition, severity

Use	LL only	DL+LL
Roof beams:		
Industrial	L/180	L/120
Commercial		
plaster ceiling	L/240	L/180
no plaster	L/360	L/240
Floor beams:		
Ordinary Usage	L/360	L/240
Roof or floor (damage	L/480	

Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_v

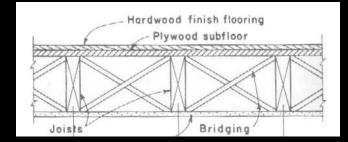


Table 9.3 Lateral bracing requirements for timber beams.

Timber Beam

Bracing

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	
3 to 1	The ends of the beam should be held in position	End blocking Joist or beam
5 to 1	Hold the compression edge in line (continuously)	Sheathing or decking Joist or rafter
6 to 1	Diagonal bracing should be used	Nailed sheathing/decking
7 to 1	Both edges of the beam should be held in line	Nailed sheathing/decking, top and bottom Bridging Joist

Wood Beams 18 Lecture 12 Architectural Structures ARCH 331

Design Procedure

1. Know F_{all} for the material or F_U for LRFD

2. Draw V & M, finding M_{max}

bh²

b

3. Calculate $S_{req'd}$ $(f_b \leq F_b)$

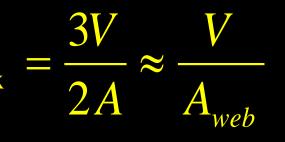
4. Determine section size

Wood Beams 19 Lecture 12 Architectural Structures ARCH 331

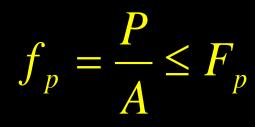
4*. Include self weight for M_{max}
and repeat 3 & 4 if necessary

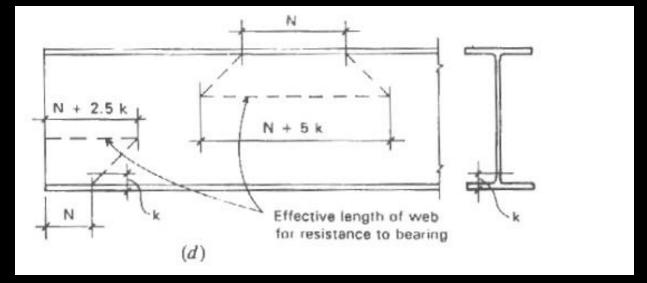
5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.


Photo: Ken Carper

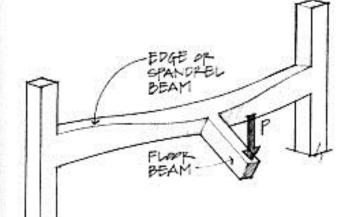
6. Evaluate shear stresses - horizontal


• $(f_v \leq F_v)$


• rectangles and W's $f_{v-\max}$

general •

7. Provide adequate bearing area at supports

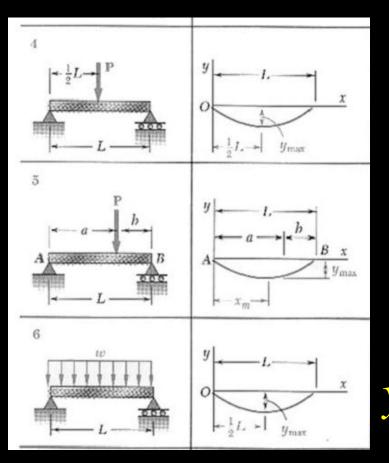


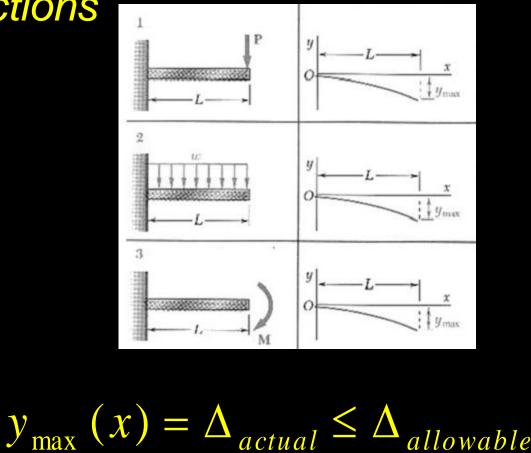
8. Evaluate torsion

$$(f_v \leq F_v)$$

• circular cross section $f_{v} = \frac{T\rho}{f_{v}}$

• rectangular $f_{v} = \frac{T}{c_{1}ab^{2}}$


TABLE 3.1. Coefficients for Rectangular Bars in Torsion


a/b	C 1	C ₂	
1.0	• 0.208	0.1406	
1.2	0.219	0.1661	
1.5	0.231	0.1958	
2.0	0,246	0.229	
2.5	0.258	0.249	
3.0	0.267	0.263	
4.0	0.282	0.281	
5.0	0.291	0.291	
10,0	0.312	0.312	
00	0.333	0.333	

Wood Beams 23 Lecture 12 Architectural Structures ARCH 331

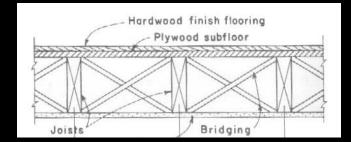
วนZU เวลมก

9. Evaluate deflections

Wood Beams 24 Lecture 12 Architectural Structures ARCH 331

Decking

- across beams or joists
- floors: 16 in. span common
 - ¾ in. tongue-in-groove plywood
 - 5/8 in. particle board over ½ in. plywood
 - hardwood surfacing
- roofs: 24 in. span
 common


 ½ in. plywood

Architectural Structures ARCH 331

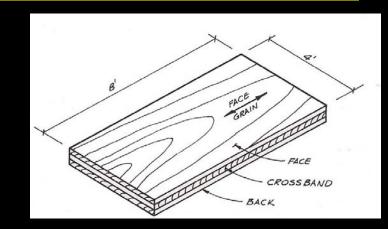
Joists & Rafters

- allowable load tables (w)
- allowable length tables for common live & dead loads
- lateral bracing needed
- common spacings •

oists

Deflec	ion — For to span in to Live k	40 psf (1	.92 kN/m mm) divic psf (1.92	²) live loa ded by 36 2 kN/m ²) p	d.). Ius dead load of 10 psf (0.48 kN/m ²) determines the		
Joist Size S (in) × 25.4 for	Spacing	Modulus of Elasticity, <i>E</i> , in 1,000,000 psi × 0.00689 for N/mm ²					
	(in)	× 0.00689 for N			mme		
× 20.4	1	1.3	10-3	10-6			
2	12.0 16.0	9-1	10-3 9-4	9-6			
× 6		0.001	17				
6	19.2	8-7	8-9	9-0			
	24.0	7-11	8-2	8-4			
	12.0	13-2	13-6	13-10			
2	16.0	12-0	12-3	12-7			
× 8	19.2	11-3	11-7	11-10			
	24.0	10-6	10-9	11-0			
	12.0	16-10	17-3	17-8			
2	16.0	15-3	15-8	16-0			
× 10	19.2	14-5	14-9	15-1			
10	24.0	13-4	13-8	14-0			
	12.0	20-6	21-0	21-6			
2	16.0	18-7	19-1	19-6			
× 12	19.2	17-6	17-11	18-4			
	24.0	16-3	16-8	17-0			
	12.0	993	1,043	1,092			
	16.0	1,093	1,148	1,202			

1,161 1,220 1,277


1,314 1,376

1,251

19.2 24.0

Engineered Wood

- plywood
 - veneers at different orientations
 - glued together
 - split resistant

- higher and uniform strength
- limited shrinkage and swelling
- used for sheathing, decking, shear walls, diaphragms

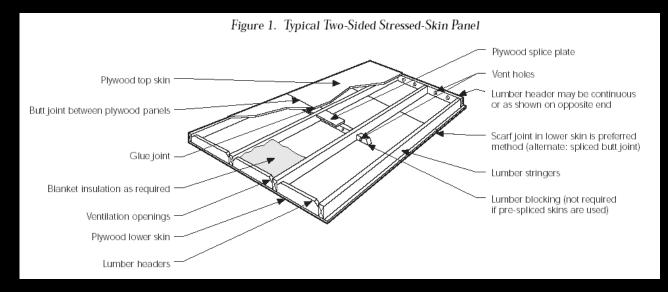
Engineered Wood

- glued-laminated timber
 - glulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength

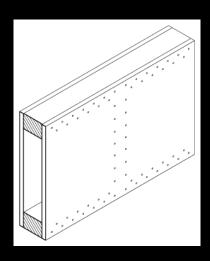
- more expensive than sawn timber
- large members (up to 100 feet!)
- flexible forms

Engineered Wood

- I sections
 - beams
- other products
 - pressed veneer strip panels (Parallam)
 - laminated veneer lumber (LVL)
- wood fibers
 Hardieboard: cement & wood



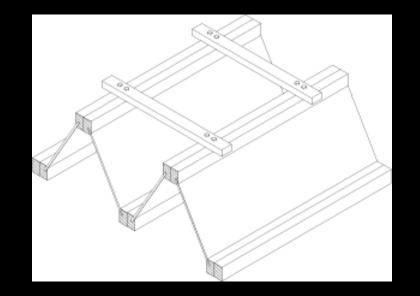
• stressed-skin elements

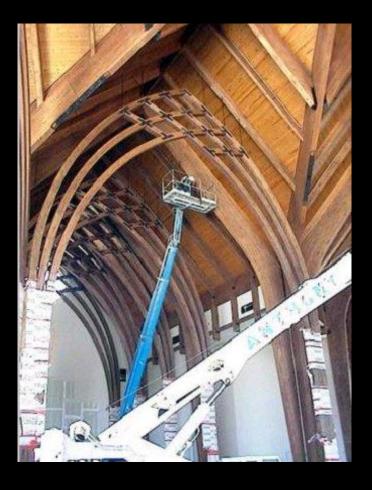

- modular built-up "plates"
- typically used for floors or roofs

Wood Beams 30 Lecture 12 Architectural Structures ARCH 331

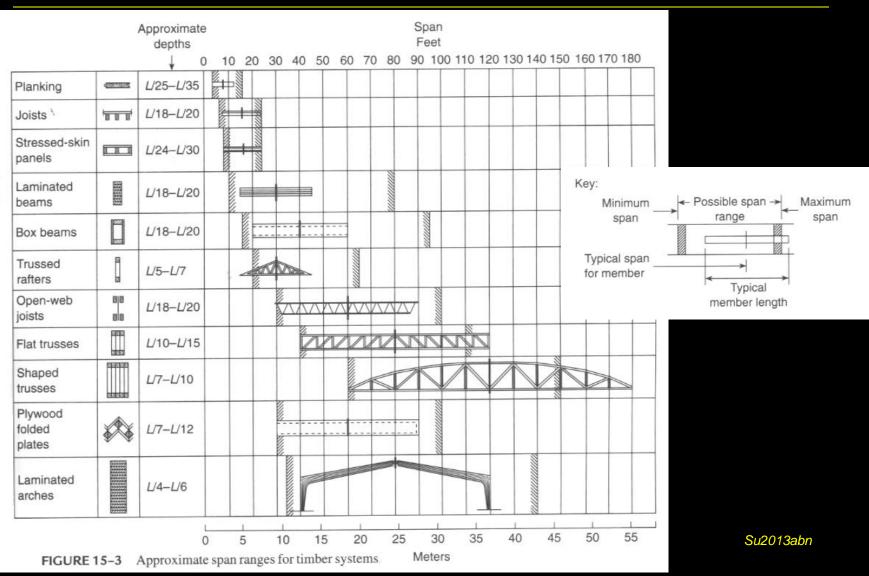
- built-up box sections
 - built-up beams
 - usually site-fabricated
 - bigger spans

- trusses
 - long spans
 - versatile
 - common in roofs




Wood Beams 32 Lecture 12

folded plates and arch panels usually of plywood



- arches and lamellas
 - arches commonly laminated timber
 - long spansusually only for roofs

Approximate Depths

