### **ARCH 331: Practice Quiz 6**

Note: No aids are allowed for part 1. One side of a letter sized paper with notes is allowed during part 2, along with a silent, non-programmable calculator. There are reference charts for part 2, shown on pages 2-3.

### Clearly show your work and answer.

Part 1) Worth 5 points (conceptual questions)

Part 2) Worth 45 points

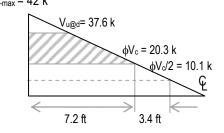
(NOTE: The member size, load magnitudes, reinforcement, and materials can and will be changed for the quiz! The beam supports will not change.)

A 28 ft simply supported reinforced concrete beam (shown) is 14 in. wide by 22 in. deep with 10-#8 bars (two layers). The effective depth, d = 17.625 in.. It has 3000 psi concrete and Grade 40 reinforcement ( $f_v = 40 \text{ ksi}$ ). The beam has a total factored distributed load of 3000 lb/ft. There will be #3 U stirrups.

- a) Determine if the beam is adequate for flexure and reinforcing requirements when  $M_u = 294$  k-ft.
- b) Determine the key values for shear, and determine the lengths over which the beam requires stirrups for strength and stirrups for crack control.  $V_{u-max} = 42 \text{ k}$ .
- c) Determine the spacing required for strength with the maximum design shear.

A 9 in. thick solid one-way continuous slab (no figure) with a 12 ft span is to be designed for a maximum factored moment of 19 k-ft/ft of width. It has 3000 psi concrete and Grade 60 reinforcement  $(f_v = 60 \text{ ksi})$ . Assume d = 8 in.

- d) Determine the required reinforcement and spacing in both directions. (Note: checking moment capacity adequacy is not required for this part.)
- e) Find the minimum thickness if deflections will not be computed.


b = 14 in22

10 - #8 bars

Answers - Not provided on actual quiz!

- $\frac{\text{defined quiz!}}{\phi M_n = 313 \text{ k-ft} > M_u \ \rho_{min} < 0.032} \not \leq \rho_{max} \ \text{... Not Oknstakingly researched.}$   $V_{u@d} = 37.6 \text{ k, } \phi V_c = 20.3 \text{ k, } \frac{1}{2} \phi V_c = 10.1 \text{ keeps the proof of the pr$
- c)  $s_{req'd} = 6.72$  in (and less than d/2)
- d)  $R_n \approx 330 \text{ psi}$ ,  $\rho \approx 0.007$ ,  $A_{\text{smin-temp}} = 0.194 \text{ in}_2/\text{ft.}$ ; one possibility is #4 at 3.5 in.

e) t = 6.0 in.



110

10

 $f_c' = 6000 \ \frac{100}{f_y}$ 

6

90

ω

 $f_c' = 5000_$  $f_y = 40,000_-$ 

8

70

 $f_c' = 4000$  $f_y = 40,000$ 

> $f_c' = 4000$  $f_y = 60,000$

1000

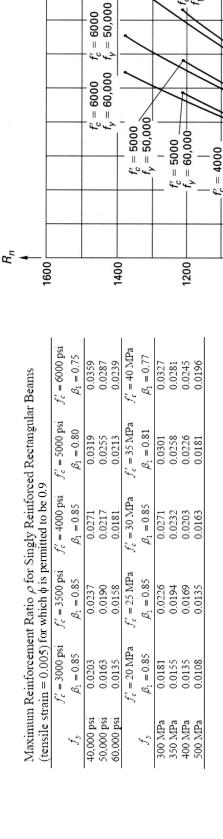
= 50,000

0

b

0.05

0.04


0.03

0.02

0.0

Min p controls

### REFERENCE CHARTS FOR QUIZ 6



# STEEL REINFORCEMENT INFORMATION

R<sub>n</sub>, MPa

<sub>В</sub>», кдf/ст<sup>2</sup>

2

20

; = 3000 ; = 40,000\_

 $f_c' = 3000$  $f_{\gamma} = 60,000$ 

800

Coefficient of resistance, R<sub>n</sub>, psi

3

30

400

20

 $= R_n b d^2$ 

N

200

10

40

 $f_c' = 3000$   $f_{\gamma} = 50,000$ 

009

9

9

Table 3.7.1

Total Areas for Various Numbers of Reinforcing Bars

| 9    | Nominal           | Waight  |      |      |       |       | Numpe | Number of Bar | rs.   |       |       |    |
|------|-------------------|---------|------|------|-------|-------|-------|---------------|-------|-------|-------|----|
| Size | Diameter<br>(in.) | (lb/ft) | -    | 2    | 3     | 4     | 5     | 9             | 7     | ∞     | 6     |    |
| #3   | 0.375             | 0.376   | 0.11 | 0.22 | 0.33  | 0.4   | 0.55  | 99.0          | 0.77  | 0.88  | 0.99  | _  |
| #4   | 0.500             | 0.668   | 0.20 | 0.40 | 0.60  | 0.80  | 1.00  | 1.20          | 1.40  | 1.60  | 1.80  | N  |
| #2   | 0.625             | 1.043   | 0.31 | 0.62 | 0.93  | 1.24  | 1.55  | 1.86          | 2.17  | 2.48  | 2.79  | e  |
| 9#   | 0.750             | 1.502   | 0.44 | 0.88 | 1.32  | 1.76  | 2.20  | 2.64          | 3.08  | 3.52  | 3.96  | 4  |
| #1   | 0.875             | 2.044   | 09.0 | 1.20 | 1.80  | 2.40  | 3.00  | 3.60          | 4.20  | 4.80  | 5.40  | 9  |
| **   | 1.000             | 2.670   | 0.79 | 1.58 | 2.37  | 3.16  | 3.95  | 4.74          | 5.53  | 6.32  | 7.11  | -  |
| 6#   | 1.128             | 3.400   | 1.00 | 2.00 | 3.00  | 4.00  | 5.00  | 9009          | 7.00  | 8.00  | 9.00  | 2  |
| #10  | 1.270             | 4.303   | 1.27 | 2.54 | 3.81  | 5.08  | 6.35  | 7.62          | 8.89  | 10.16 | 11.43 | 7  |
| #    | 1.410             | 5.313   | 1.56 | 3.12 | 4.68  | 6.24  | 7.80  | 9.36          | 10.92 | 12.48 | 14.04 | 15 |
| #14  | 1.693             | 7.65    | 2.25 | 4.50 | 6.75  | 9.00  | 11.25 | 13.50         | 15.75 | 18.00 | 20.25 | 22 |
| #18° | 2.257             | 13.60   | 4.00 | 8.00 | 12.00 | 16.00 | 20.00 | 24.00         | 28.00 | 32.00 | 36.00 | 4  |
|      |                   |         |      |      |       |       |       |               |       |       |       |    |

<sup>\* #14</sup> and #18 bars are used primarily as column reinforcement and are rarely used in beams.

**Figure 3.8.1** Strength curves  $(R_n \text{ vs } \rho)$  for singly reinforced rectangular sections. Upper limit of curves is at  $\rho_{\max}$  (tensile strain of 0.004)

Reinforcement ratio,  $\rho$ 

## REFERENCE CHARTS FOR QUIZ 6

Table 3-8 ACI Provisions for Shear Design\*

| $V_{\mathbf{u}} > \Phi V_{\mathbf{c}}$   | $\frac{p^{t}y\phi}{s(^{\circ})\Lambda\phi - ^{n}\Lambda)}$ | $\frac{\phi A_{v} t_{y} d}{V_{u} - \phi V_{c}}$   | 4 in.                               | $\frac{d}{2}$ or 24 in, for $\left(V_{u} - \phi V_{c}\right) \le \phi 4 \sqrt{\xi}$ $b_{w}d$ | $\frac{d}{4} \text{ or } 12 \text{ in. for } \left( V_{\text{u}} - \phi V_{\text{c}} \right) > \phi 4 \sqrt{f_{\text{c}}} \text{ bwd}$ |
|------------------------------------------|------------------------------------------------------------|---------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| $\phi V_c \ge V_u > \frac{\phi V_c}{2}$  | <sup>k</sup> ł<br>s <sup>w</sup> 905                       | A <sub>v</sub> f <sub>y</sub><br>50b <sub>w</sub> |                                     | d<br>or 24 in.                                                                               |                                                                                                                                        |
| $V_{\rm U} \le \frac{\Phi V_{\rm C}}{2}$ | none                                                       | _                                                 | _                                   | -                                                                                            |                                                                                                                                        |
|                                          | tirrups, Av                                                | Required                                          | Recommended<br>Minimum <sup>†</sup> | ‡                                                                                            | Maximum <sup>1</sup> 1<br>(ACI 11.5.4)                                                                                                 |
|                                          | ** Required area of stirrups, A <sub>V</sub>               |                                                   |                                     | Stirrup spacing, s                                                                           |                                                                                                                                        |

\*Members subjected to shear and flexure only;  $\phi V_c = \phi 2 \sqrt{f_c^c} \, b_w d$ ,  $\phi = 0.75$  (ACI 11.3.1.1) \*\*A $_v = 2 \times Ab_v$  for U stirrups;  $f_y \le 60$  ksi (ACI 11.5.2) †\*A practical limit for minimum spacing is d/4 †\*HMaximum spacing based on minimum shear reinforcement (= A $_v f_y \le 0b_w$ ) must also be considered

(ACI 11.5.5.3).

TABLE 13.6 Areas Provided By Spaced Reinforcement

| Spacing |       |       | DIC.  |       |       | יוים דו היותכת (יווי עד עומון) |       |        |       |
|---------|-------|-------|-------|-------|-------|--------------------------------|-------|--------|-------|
| (in.)   | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 | No. 8                          | No. 9 | No. 10 | No. 1 |
| 3       | 0.44  | 08.0  | 1.24  | 1.76  | 2.40  | 3.16                           | 4.00  |        |       |
| 3.5     | 0.38  | 69.0  | 1.06  | 1.51  | 2.06  | 2.71                           | 3.43  | 4.35   |       |
| 4       | 0.33  | 09.0  | 0.93  | 1.32  | 1.80  | 2.37                           | 3.00  | 3.81   | 4.68  |
| 4.5     | 0.29  | 0.53  | 0.83  | 1.17  | 1.60  | 2.11                           | 2.67  | 3.39   | 4.16  |
| 2       | 0.26  | 0.48  | 0.74  | 1.06  | 4.1   | 1.89                           | 2.40  | 3.05   | 3.74  |
| 5.5     | 0.24  | 0.44  | 89.0  | 96.0  | 1.31  | 1.72                           | 2.18  | 2.77   | 3.40  |
| 9       | 0.22  | 0.40  | 0.62  | 0.88  | 1.20  | 1.58                           | 2.00  | 2.54   | 3.12  |
| 7       | 0.19  | 0.34  | 0.53  | 0.75  | 1.03  | 1.35                           | 1.71  | 2.18   | 2.67  |
| ∞       | 0.16  | 0.30  | 0.46  | 99.0  | 0.00  | 1.18                           | 1.50  | 1.90   | 2.34  |
| 6       | 0.15  | 0.27  | 0.41  | 0.59  | 0.80  | 1.05                           | 1.33  | 1.69   | 2.08  |
| 10      | 0.13  | 0.24  | 0.37  | 0.53  | 0.72  | 0.95                           | 1.20  | 1.52   | 1.87  |
| =       | 0.12  | 0.22  | 0.34  | 0.48  | 0.65  | 98.0                           | 1.09  | 1.38   | 1.70  |
| 12      | 0.11  | 0.20  | 0.31  | 0.44  | 0.60  | 0.79                           | 1.00  | 1.27   | 1.56  |
| 13      | 0.10  | 0.18  | 0.29  | 0.40  | 0.55  | 0.73                           | 0.92  | 1.17   | 4.1   |
| 14      | 0.00  | 0.17  | 0.27  | 0.38  | 0.51  | 89.0                           | 98.0  | 1.09   | 1.34  |
| 15      | 0.00  | 0.16  | 0.25  | 0.35  | 0.48  | 0.63                           | 0.80  | 1.01   | 1.25  |
| 91      | 0.08  | 0.15  | 0.23  | 0.33  | 0.45  | 0.59                           | 0.75  | 0.95   | 1.17  |
| 18      | 0.07  | 0.13  | 0.21  | 0.29  | 0.40  | 0.53                           | 0.67  | 0.85   | 1.04  |
| 24      | 0.05  | 0.10  | 0.15  | 0.22  | 0.30  | 0.39                           | 0.50  | 0.63   | 0.78  |

| and and                              |                                      | Minimum th                                                                                                        | Minimum thickness, h         |                          |
|--------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|
|                                      | Simply sup-<br>ported                | One end continuous                                                                                                | Both ends continuous         | Cantilever               |
| Member                               | Members no other construdeflections. | Members not supporting or attached to partitions or other construction likely to be damaged by large deflections. | or attached to<br>be damaged | partitions o<br>by large |
| Solid one-<br>way slabs              | 6/20                                 | 6/24                                                                                                              | 6/28                         | 6/10                     |
| Beams or<br>ribbed one-<br>way slabs | 6/16                                 | 6/18.5                                                                                                            | 6/21                         | 8/7                      |

Notes: 1) Span length  $\ell$  is in inches. 2) Values given shall be used directly for members with normalweight concrete ( $\mathbf{w}_{c} = 145 \, \mathrm{lb} 1t^{2}$ ) and Grade 60 reinforcement. For other conditions, the values shall be modified as follows: a for structural lightweight concrete having unit weight in the range 90-120 lb/ft², the values shall be multiplied by ( $\mathbf{1.65} = \mathbf{0.005} \mathbf{w}_{c}$ ) but not less than 1.09, where  $\mathbf{w}_{c}$  is the unit weight in lb/ft². b) For  $\mathbf{f}_{y}$  other than 60,000 psi, the values shall be multiplied by ( $\mathbf{0.44} + \mathbf{f}_{y}/\mathbf{100,000}$ ).