ARCH 331: Practice Quiz 3

Note: No aids are allowed for part 1. One side of a letter sized paper with notes is allowed during part 2, along with a silent, **non-programmable** calculator. There is a reference chart for part 2, shown on page 2.

Clearly show	vour wo	ork and	answer.
0100011 0110 11	,		

Part 1) Worth 5 points (conceptual questions)

Part 2) Worth 45 points

(NOTE: The cross section basic shapes, holes, dimensions and reference origin <u>can and will</u> be changed for the quiz! The beam section information and diagrams will be provided.)

For the cross section shown in Figure 3a complete the chart to find:

- a) The location of the centroid of the shape from the reference origin given.
- b) The moment of inertia about the x axis, I_x , of the section [*or* **about the y axis**, I_y]

For a 20 ft long beam with the following cross section properties in Figure 3b, and the shear and bending moment diagrams shown in Figure 3c find:

- c) The maximum bending stress, f_b , about the x axis
- d) The required shear capacity of the nails, *F*, for the top [*or* bottom] connected piece if the pitch spacing, *p*, is 4.5 in..

	A (in ²)	\overline{x} (in)	$\overline{x}A$ (in ³)	\overline{y} (in)	$\overline{y}A$ (in ³)	l _x (in ⁴)	d _y (in)	Ad_{y^2} (in ⁴)
ellipse hole	4084.1	-14.5	-59219	32.5	132732.3	1078450		

Figure 3c Disclaimer: Answers have NOT been painstakingly researched.

Answers - Not provided on actual quiz!

a) $\hat{x} = -13.6 \text{ in}, \hat{y} = 30.3 \text{ in}$ b) $I_x = 903951 \text{ in}^4 [or I_y = 1586156 \text{ in}^4]$ beel c) $f_b = 2.07 \text{ ksi}$ d) $F \ge 256.0 \text{ lb} (Q_{top} = 20.1 \text{ in}^2) [or 261.3 \text{ lb} (Q_{bottom} = 41.04 \text{ in}^2)]$

REFERENCE CHART FOR QUIZ 3

.

Geometric Properties of Areas

Rectangle	$\begin{array}{c c} y & y' \\ \hline h & & \\ \hline c & & \\ c & & \\ \hline c & & \\ c $	$\bar{I}_{x'} = \frac{1}{12}bh^{3}$ $\bar{I}_{y'} = \frac{1}{12}b^{3}h$ $I_{x} = \frac{1}{3}bh^{3}$ <i>about bottom</i> $I_{y} = \frac{1}{2}b^{3}h$ <i>left</i> $J_{C} = \frac{1}{12}bh(b^{2} + h^{2})$	Area = bh \overline{x} = b/2 \overline{y} = h/2
$\begin{array}{c c} \text{Triangle} \\ \hline \bullet \\ \hline \hline \hline \hline x \\ \hline \end{array} \\ \hline b \\ \hline \end{array}$	$ \begin{array}{c} h \\ \underline{& } \\ \begin{array}{ & & & & & & \\ \underline{& } \\ \begin{array}{ & & & & & & \\ \hline \\ $	$\bar{I}_{x'} = \frac{1}{36}bh^3$ $I_x = \frac{1}{12}bh^3$ $\bar{I}_{y'} = \frac{1}{36}b^3h$	Area = $\frac{bh}{2}$ $\overline{x} = \frac{b}{3}$ $\overline{y} = \frac{h}{3}$
Circle		$\bar{I}_x = \bar{I}_y = \frac{1}{4}\pi r^4$ $J_O = \frac{1}{2}\pi r^4$	Area = $\pi r^2 = \pi d^2 / 4$ $\overline{x} = 0$ $\overline{y} = 0$
Semicircle	y C C $r \rightarrow$ x	$\overline{I}_x = 0.1098 r^4$ $\overline{I}_y = \pi r^4 / 8$	Area = $\pi r^2 / 2 = \pi d^2 / 8$ $\overline{x} = 0$ $\overline{y} = 4r / 3\pi$
Quarter circle	$\begin{array}{c} y \\ \bullet C \\ \hline O \\ \bullet r \end{array} x$	$\bar{I}_{x} = 0.0549r^{4}$ $\bar{I}_{y} = 0.0549r^{4}$	Area = $\pi r^2 / 4 = \pi d^2 / 16$ $\overline{x} = 4r / 3\pi$ $\overline{y} = 4r / 3\pi$
Ellipse		$\bar{I}_x = \frac{1}{4}\pi ab^3$ $\bar{I}_y = \frac{1}{4}\pi a^3 b$ $J_O = \frac{1}{4}\pi ab(a^2 + b^2)$	Area = πab $\overline{x} = 0$ $\overline{y} = 0$
Semiparabolic area		${ar I}_{ m r}$ = 16ah $^3/$ 175	Area = $\frac{4ah}{3}$
Parabolic area	polic area \overline{y}		$\overline{x} = 0$ $\overline{y} = \frac{3h}{5}$
Parabolic span- drel	$y = kx^{2}$	$ar{I}_x$ = 37ah ³ /2100 $ar{I}_y$ = a ³ h/80	Area = $\frac{ah}{3}$ $\overline{x} = \frac{3a}{4}$ $\overline{y} = \frac{3h}{10}$