Centers of Gravity - Centroids

Notation:

A	= name for area	x	$=$ the distance in the x direction from
C	$\begin{aligned} & =\text { designation for channel section } \\ & =\text { name for centroid } \end{aligned}$		a reference axis to the centroid of a composite shape
F_{z}	$=$ force component in the z direction	y	$=$ vertical distance
L	$=$ name for length	\bar{y}	$=$ the distance in the y direction from
O	$=$ name for reference origin		a reference axis to the centroid of a
Q_{x}	$\begin{aligned} = & \text { first moment area about an } \mathrm{x} \text { axis } \\ & \text { (using y distances) } \end{aligned}$	\hat{y}	$\begin{aligned} & \text { shape } \\ = & \text { the distance in the y direction from } \end{aligned}$
Q_{y}	$=$ first moment area about an y axis (using x distances)		a reference axis to the centroid of a composite shape
t	= name for thickness	z	$=$ distance perpendicular to $x-y$ plane
${ }_{\text {t }}^{W}$	$=$ thickness of web of wide flange	J	= symbol for integration
W	= name for force due to weight $=$ designation for wide flange section	Δ	= calculus symbol for small quantity
x	$=$ horizontal distance	γ	$=$ density of a material (unit weight)
\bar{x}	$=$ the distance in the x direction from a reference axis to the centroid of a shape	Σ	$=$ summation symbol

- The cross section shape and how it resists bending and twisting is important to understanding beam and column behavior.
- The center of gravity is the location of the equivalent force representing the total weight of a body comprised of particles that each have a mass gravity acts upon.

Resultant force: Over a body of constant thickness in x and y

$$
\sum F_{z}=\sum_{i=1}^{n} \Delta W_{i}=\boldsymbol{W} \quad \mathrm{W}=\int \mathrm{dW}
$$

Location: \bar{x}, \bar{y} is the equivalent location of the force W from all $\Delta \mathrm{W}_{\mathrm{i}}$'s over all $\mathrm{x} \& \mathrm{y}$ locations (with respect to the moment from each force) from:

$$
\begin{array}{lll}
\sum M_{y}=\sum_{i=1}^{n} x_{i} \Delta W_{i}=\bar{x} \boldsymbol{W} & \bar{x} \boldsymbol{W}=\int x d W \Rightarrow \bar{x}=\frac{\int x d W}{\boldsymbol{W}} \text { OR } & \bar{x}=\frac{\sum(x \Delta W)}{\boldsymbol{W}} \\
\sum M_{x}=\sum_{i=1}^{n} y_{i} \Delta W_{i}=\bar{y} \boldsymbol{W} & \bar{y} \boldsymbol{W}=\int y d W \Rightarrow \bar{y}=\frac{\int y d W}{\boldsymbol{W}} \text { OR } & \bar{y}=\frac{\sum(y \Delta W)}{\boldsymbol{W}}
\end{array}
$$

- The centroid of an area is the average x and y locations of the area particles

For a discrete shape $\left(\Delta \mathrm{A}_{\mathrm{i}}\right)$ of a uniform thickness and material, the weight can be defined as:
$\Delta \mathrm{W}_{\mathrm{i}}=\gamma \mathrm{t} \Delta \mathrm{A}_{\mathrm{i}} \quad$ where:
γ is weight per unit volume (= specific weight) with units of $\underline{\mathrm{N} / \mathrm{m}^{3}}$ or $\underline{\mathrm{lb} / \mathrm{ft}^{3}}$
$t \Delta A_{i}$ is the volume
So if $\boldsymbol{W}=\gamma t \boldsymbol{A}$:

$$
\bar{x} \not \imath \boldsymbol{A}=\int x \nmid t d A \Rightarrow \bar{x} \boldsymbol{A}=\int x d A \text { OR } \bar{x}=\frac{\sum(x \Delta A)}{\boldsymbol{A}} \text { and similarly } \bar{y}=\frac{\sum(y \Delta A)}{\boldsymbol{A}}
$$

Similarly, for a line with constant cross section, $a\left(\Delta W_{i}=\gamma a \Delta L_{i}\right)$:

$$
\bar{x} \boldsymbol{L}=\int x d L \text { OR } \quad \bar{x}=\frac{\sum(x \Delta L)}{\boldsymbol{L}} \quad \text { and } \quad \bar{y} \boldsymbol{L}=\int y d L \text { OR } \quad \bar{y}=\frac{\sum(y \Delta L)}{\boldsymbol{L}}
$$

- \bar{x}, \bar{y} with respect to an \mathbf{x}, \mathbf{y} coordinate system is the centroid of an area AND the center of gravity for a body of uniform material and thickness.
- The first moment of the area is like a force moment: and is the area multiplied by the perpendicular distance to an axis.

$$
\mathrm{Q}_{\mathrm{x}}=\int \mathrm{ydA}=\overline{\mathrm{y}} \mathrm{~A} \quad \mathrm{Q}_{\mathrm{y}}=\int \mathrm{xdA}=\overline{\mathrm{x}} \mathrm{~A}
$$

- Centroids of Common Shapes

Centroids of Common Shapes of Areas and Lines

- Symmetric Areas
- An area is symmetric with respect to a line when every point on one side is mirrored on the other. The line divides the area into equal parts and the centroid will be on that axis.
- An area can be symmetric to a center point when every (x, y) point is matched by a $(-\mathrm{x},-\mathrm{y})$ point. It does not necessarily have an axis of symmetry. The center point is the centroid.
- If the symmetry line is on an axis, the centroid location is on that axis (value of 0). With double symmetry, the centroid is at the intersection.
- Symmetry can also be defined by areas that match across a line, but are 180° to each other.

Basic Steps

1. Draw a reference origin.
2. Divide the area into basic shapes
3. Label the basic shapes (components)
4. Draw a table with headers of Component, Area, $\bar{x}, \bar{x} A, \bar{y}, \bar{y} A$
5. Fill in the table value
6. Draw a summation line. Sum all the areas, all the $\bar{x} A$ terms, and all the $\bar{y} A$ terms
7. Calculate \hat{x} and \hat{y}

- Composite Shapes

If we have a shape made up of basic shapes that we know centroid locations for, we can find an "average" centroid of the areas.
$\hat{x} \boldsymbol{A}=\hat{x} \sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} \bar{x}_{i} A_{i} \quad \hat{y} \boldsymbol{A}=\hat{y} \sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n} \bar{y}_{i} A_{i}$

Centroid values can be negative.

 Area values can be negative (holes)

Example 1 (pg 243)
Example Problem 7.1: Centroids (Figures 7.5 and 7.6)
Determine the centroidal x and y distances for the composite area shown. Use the lower left corner of the trapezoid as the reference origin.

Component	Area (ΔA) (in. ${ }^{\text {2 }}$)	\bar{x} (in.)	$\bar{x} \Delta A\left(\right.$ in. $\left.{ }^{3}\right)$	\bar{y} (in.)	$\bar{y} \Delta A\left(\right.$ in. $\left.{ }^{3}\right)$
 (a)	$\frac{9^{\prime \prime}\left(3^{\prime \prime}\right)}{2}=13.5 \mathrm{in} .^{2}$	$6{ }^{\prime \prime}$	$81 \mathrm{in}^{3}$	$4{ }^{\prime \prime}$	$54 \mathrm{in} .^{3}$
(b)	$9^{\prime \prime}\left(3^{\prime \prime}\right)=27 \mathrm{in}.{ }^{2}$	4.5"	121.5 in. ${ }^{3}$	1.5"	40.5 in. ${ }^{3}$
	$A=\sum \Delta A=40.5$ in. ${ }^{2}$		$\sum \bar{x} \Delta A=202.5$ in. ${ }^{3}$		$\sum \bar{y} \Delta A=94.5 \mathrm{in} .^{3}$

$$
\begin{aligned}
\hat{x} & =\frac{2025 \mathrm{in}^{3}}{40.5 \mathrm{in}^{2}} \\
& =5 \mathrm{in} \\
\hat{y} & =\frac{94.5 \mathrm{in}^{3}}{40.5 \mathrm{in}^{2}} \\
& =2.33 \mathrm{in}
\end{aligned}
$$

Example 2 (pg 245)

Example Problem 7.3b (Figure 7.13)

An alternate method that can be employed in solving this problem is referred to as the negative area method.

A $6 "$ thick concrete wall panel is precast to the dimensions as shown. Using the lower left corner as the reference origin, determine the center of gravity (centroid) of the panel.

