Steel Design

Notation:

= name for width dimension D = shorthand for dead load a \boldsymbol{A} = name for area DL= shorthand for dead load = area of a bolt = eccentricity A_h e= effective net area found from the \boldsymbol{E} = shorthand for earthquake load A_e = modulus of elasticity product of the net area A_n by the shear lag factor U = axial compressive stress f_c = gross area, equal to the total area = bending stress f_b A_g ignoring any holes f_p = bearing stress = gross area subjected to shear for = shear stress A_{gv} block shear rupture f_{v-max} = maximum shear stress = net area, equal to the gross area = vield stress A_n f_{v} subtracting any holes, as is A_{net} \boldsymbol{F} = shorthand for fluid load = net area subjected to tension for $F_{allow(able)}$ = allowable stress A_{nt} block shear rupture = allowable axial (compressive) stress F_a = net area subjected to shear for block = allowable bending stress F_h A_{nv} shear rupture = flexural buckling stress F_{cr} = area of the web of a wide flange F_e = elastic critical buckling stress A_w F_{EXX} = yield strength of weld material section AISC = American Institute of Steel = nominal strength in LRFD F_n Construction = nominal tension or shear strength of ASD = allowable stress design a bolt = name for a (base) width = allowable bearing stress F_p = total width of material at a F_t = allowable tensile stress horizontal section F_u = ultimate stress prior to failure = name for height dimension F_{ν} = allowable shear stress = width of the flange of a steel beam = yield strength $F_{\rm v}$ b_f cross section F_{yw} = yield strength of web material = factor for determining M_u for = factor of safety B_1 F.S.combined bending and compression = gage spacing of staggered bolt g = largest distance from the neutral holes caxis to the top or bottom edge of a G= relative stiffness of columns to beams in a rigid connection, as is Ψ = coefficient for shear stress for a h = name for a height c_1 rectangular bar in torsion = height of the web of a wide flange h_c = modification factor for moment in C_{h} steel section ASD & LRFD steel beam design Η = shorthand for lateral pressure load = column slenderness classification C_c Ι = moment of inertia with respect to constant for steel column design neutral axis bending C_m = modification factor accounting for = moment of inertia of trial section I_{trial} combined stress in steel design $I_{req'd}$ = moment of inertia required at C_{v} = web shear coefficient limiting deflection = calculus symbol for differentiation = moment of inertia about the y axis I_{y}

= polar moment of inertia

= depth of a wide flange section

nominal bolt diameternominal bolt diameter

 d_{b}

k = distance from outer face of W flange to the web toe of fillet

= shape factor for plastic design of steel beams

K = effective length factor for columns, as is k

l = name for length

 ℓ_b = length of beam in rigid joint

 ℓ_c = length of column in rigid joint

L = name for length or span length

= shorthand for live load

 L_b = unbraced length of a steel beam

L_c = clear distance between the edge of a hole and edge of next hole or edge of the connected steel plate in the direction of the load

 L_e = effective length that can buckle for column design, as is ℓ_e

 L_r = shorthand for live roof load

 maximum unbraced length of a steel beam in LRFD design for inelastic lateral-torsional buckling

L_p = maximum unbraced length of a steel beam in LRFD design for full plastic flexural strength

L' = length of an angle in a connector with staggered holes

LL = shorthand for live load

LRFD = load and resistance factor design

M = internal bending moment

 M_a = required bending moment (ASD)

 M_n = nominal flexure strength with the full section at the yield stress for LRFD beam design

 M_{max} = maximum internal bending moment

 $M_{max-adj}$ = maximum bending moment adjusted to include self weight

 M_p = internal bending moment when all fibers in a cross section reach the yield stress

 M_u = maximum moment from factored loads for LRFD beam design

 M_y = internal bending moment when the extreme fibers in a cross section reach the yield stress

n = number of bolts

n.a. = shorthand for neutral axis

N = bearing length on a wide flange steel section

= bearing type connection with threads included in shear plane

p = bolt hole spacing (pitch)

P = name for load or axial force vector

 P_a = allowable axial force

= required axial force (ASD)

 $P_{allowable}$ = allowable axial force P_{c} = available axial strength

 P_{el} = Euler buckling strength

 P_n = nominal column load capacity in LRFD steel design

 P_r = required axial force

P_u = factored column load calculated from load factors in LRFD steel design

Q = first moment area about a neutral axis

generic axial load quantity for LRFD design

r = radius of gyration

 r_y = radius of gyration with respect to a y-axis

R = generic load quantity (force, shear, moment, etc.) for LRFD design

= shorthand for rain or ice load

= radius of curvature of a deformed beam

 R_a = required strength (ASD)

 R_n = nominal value (capacity) to be multiplied by ϕ in LRFD and divided by the safety factor Ω in ASD

R_u = factored design value for LRFD design

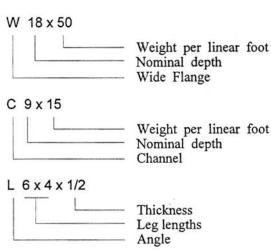
s = longitudinal center-to-center spacing of any two consecutive holes

S = shorthand for snow load

= section modulus

 allowable strength per length of a weld for a given size

 $S_{req'd}$ = section modulus required at allowable stress


 $S_{req'd-adj}$ = section modulus required at allowable stress when moment is adjusted to include self weight

SC = slip critical bolted connection

= thickness of the connected material = vertical distance y = thickness of flange of wide flange Z= plastic section modulus of a steel t_f = thickness of web of wide flange beam t_w T= torque (axial moment) Z_{x} = plastic section modulus of a steel = shorthand for thermal load beam with respect to the x axis = throat size of a weld Δ_{actual} = actual beam deflection U= shear lag factor for steel tension $\Delta_{allowable}$ = allowable beam deflection member design Δ_{limit} = allowable beam deflection limit = reduction coefficient for block U_{bs} Δ_{max} = maximum beam deflection shear rupture = yield strain (no units) V= internal shear force = resistance factor φ = required shear (ASD) = diameter symbol V_{max} = maximum internal shear force = resistance factor for bending for $\phi_{\scriptscriptstyle b}$ $V_{max-adj} = \text{maximum internal shear force}$ **LRFD** adjusted to include self weight = nominal shear strength capacity for V_n = resistance factor for compression ϕ_c LRFD beam design for LRFD = maximum shear from factored loads V_u = resistance factor for tension for ϕ_{t} for LRFD beam design **LRFD** = name for distributed load = resistance factor for shear for ϕ_{v} $w_{adjusted}$ = adjusted distributed load for **LRFD** equivalent live load deflection limit = load factor in LRFD design $w_{equivalent}$ = the equivalent distributed load γ derived from the maximum bending $= pi (3.1415 \text{ radians or } 180^{\circ})$ π moment θ = slope of the beam deflection curve $w_{self wt}$ = name for distributed load from self = radial distance ρ weight of member Ω = safety factor for ASD W= shorthand for wind load = symbol for integration = horizontal distance х Σ = summation symbol X = bearing type connection with threads excluded from the shear plane

Steel Design

Structural design standards for steel are established by the *Manual of Steel Construction* published by the American Institute of Steel Construction, and uses **Allowable Stress Design** and **Load and Factor Resistance Design**. With the 13th edition, both methods are combined in one volume which provides common requirements for analyses and design and requires the application of the same set of specifications.

Materials

American Society for Testing Materials (ASTM) is the organization responsible for material and other standards related to manufacturing. Materials meeting their standards are guaranteed to have the published strength and material properties for a designation.

A36 – carbon steel used for plates, angles $F_y = 36 \text{ ksi}$, $F_u = 58 \text{ ksi}$, E = 29,000 ksi A572 – high strength low-alloy use for some beams A992 – for building framing used for most beams $F_y = 60 \text{ ksi}$, $F_u = 75 \text{ ksi}$, E = 30,000 ksi $F_y = 50 \text{ ksi}$, $F_u = 65 \text{ ksi}$, E = 30,000 ksi (A572 Grade 50 has the same properties as A992)

 $\underline{ASD} \qquad R_a \leq \frac{R_n}{\Omega}$

where R_a = required strength (dead or live; force, moment or stress)

 R_n = nominal strength specified for ASD

 Ω = safety factor

Factors of Safety are applied to the limit stresses for allowable stress values:

 $\begin{array}{ll} \mbox{bending (braced, $L_b < L_p$)} & \Omega = 1.67 \\ \mbox{bending (unbraced, $L_p < L_b$ and $L_b > L_r$)} & \Omega = 1.67 \mbox{ (nominal moment reduces)} \\ \mbox{shear (beams)} & \Omega = 1.5 \mbox{ or } 1.67 \\ \mbox{shear (bolts)} & \Omega = 2.00 \mbox{ (tabular nominal strength)} \\ \mbox{shear (welds)} & \Omega = 2.00 \end{array}$

- L_b is the unbraced length between bracing points, laterally
- L_p is the limiting laterally unbraced length for the limit state of yielding
- $L_{\rm r}$ is the limiting laterally unbraced length for the limit state of inelastic lateral-torsional buckling

LRFD $R_u \leq \phi R_n \qquad where \cdots R_u = \Sigma \gamma_i R_i$ where $\phi = \text{resistance factor}$ $\gamma = \text{load factor for the type of load}$ R = load (dead or live; force, moment or stress) $R_u = \text{factored load (moment or stress)}$ $R_n = \text{nominal load (ultimate capacity; force, moment or stress)}$

Nominal strength is defined as the

capacity of a structure or component to resist the effects of loads, as determined by computations using specified material strengths (such as yield strength, F_y , or ultimate strength, F_u) and dimensions and formulas derived from accepted principles of structural mechanics or by field tests or laboratory tests of scaled models, allowing for modeling effects and differences between laboratory and field conditions

Factored Load Combinations

The design strength, ϕR_n , of each structural element or structural assembly must equal or exceed the design strength based on the ASCE-7 (2010) combinations of factored nominal loads:

$$1.4D$$

$$1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$$

$$1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$$

$$1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$$

$$1.2D + 1.0E + L + 0.2S$$

$$0.9D + 1.0W$$

$$0.9D + 1.0E$$

Criteria for Design of Beams

Allowable normal stress or normal stress from LRFD should not be exceeded:

$$F_b \text{ or } \phi F_n \ge f_b = \frac{Mc}{I}$$
$$(M_a \le M_n / \Omega \text{ or } M_u \le \phi_b M_n)$$

Knowing M and F_b , the minimum section modulus fitting the limit is:

$$S_{\mathit{req'd}} \geq \frac{M}{F_b}$$

Determining Maximum Bending Moment

Drawing V and M diagrams will show us the maximum values for design. Remember:

$$V = \Sigma(-w)dx$$

$$M = \Sigma(V)dx$$

$$\frac{dV}{dx} = -w$$

$$\frac{dM}{dx} = V$$

Determining Maximum Bending Stress

For a prismatic member (constant cross section), the maximum normal stress will occur at the maximum moment.

For a *non-prismatic* member, the stress varies with the cross section AND the moment.

Deflections

If the bending moment changes, M(x) across a beam of constant material and cross section then the curvature will change: $\frac{1}{R} = \frac{M(x)}{EI}$

The slope of the n.a. of a beam, θ , will be tangent to the radius of curvature, R: $\theta = slope = \frac{1}{EI} \int M(x) dx$

The equation for deflection, y, along a beam is: $y = \frac{1}{EI} \int \theta dx = \frac{1}{EI} \iint M(x) dx$

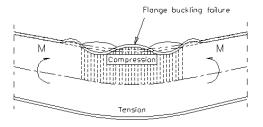
Elastic curve equations can be found in handbooks, textbooks, design manuals, etc...Computer programs can be used as well. Elastic curve equations can be superimposed ONLY if the stresses are in the elastic range.

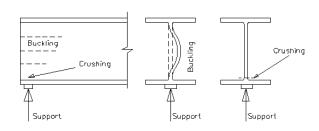
The deflected shape is roughly the same shape flipped as the bending moment diagram but is constrained by supports and geometry.

Allowable Deflection Limits

All building codes and design codes limit deflection for beam types and damage that could happen based on service condition and severity.

$$y_{\text{max}}(x) = \Delta_{actual} \le \Delta_{allowable} = \frac{L}{value}$$


Use	LL only	DL+LL
Roof beams:		
Industrial	L/180	L/120
Commercial		
plaster ceiling	L/240	L/180
no plaster	L/360	L/240
Floor beams:		
Ordinary Usage	L/360	L/240
Roof or floor (damageable	e elements)	L/480


Lateral Buckling

With compression stresses in the top of a beam, a sudden "popping" or buckling can happen even at low stresses. In order to prevent it, we need to brace it along the top, or laterally brace it, or provide a bigger I_y .

Local Buckling in Steel I Beams- Web Crippling or Flange Buckling

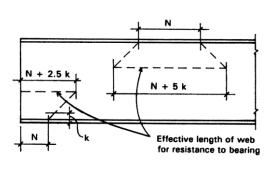
Concentrated forces on a steel beam can cause the web to buckle (called **web crippling**). Web stiffeners under the beam loads and bearing plates at the supports reduce that tendency. Web stiffeners also prevent the web from shearing in plate girders.

The maximum support load and interior load can be determined from:

$$P_{n \text{ (max -end)}} = (2.5k + N)F_{yw}t_w$$

$$P_{n \text{ (interior)}} = (5k + N)F_{yw}t_w$$

where


 t_w = thickness of the web

 F_{yw} = yield strength of the web

N =bearing length

k = dimension to fillet found in beam section tables

$$\phi = 1.00 \, (LRFD)$$
 $\Omega = 1.50 \, (ASD)$

Beam Loads & Load Tracing

In order to determine the loads on a beam (or girder, joist, column, frame, foundation...) we can start at the top of a structure and determine the <u>tributary area</u> that a load acts over and the beam needs to support. Loads come from material weights, people, and the environment. This area is assumed to be from half the distance to the next beam over to halfway to the next beam.

The reactions must be supported by the next lower structural element *ad infinitum*, to the ground.

LRFD - Bending or Flexure

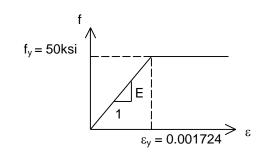
For determining the flexural design strength, $\phi_b M_n$, for resistance to pure bending (no axial load) in most flexural members where the following conditions exist, a single calculation will suffice:

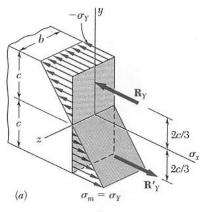
$$\Sigma \gamma_i R_i = M_u \le \phi_b M_n = 0.9 F_y Z$$

where

 $M_u = maximum \ moment \ from \ factored \ loads$

 ϕ_b = resistance factor for bending = 0.9

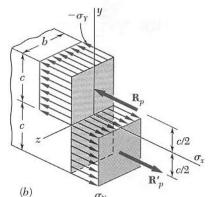

 M_n = nominal moment (ultimate capacity)


 F_y = yield strength of the steel

 \vec{Z} = plastic section modulus

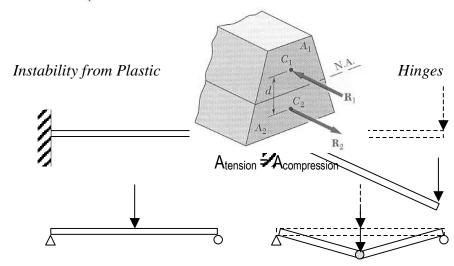
Plastic Section Modulus

Plastic behavior is characterized by a yield point and an increase in strain with no increase in stress.



Internal Moments and Plastic Hinges

Plastic hinges can develop when all of the material in a cross section sees the yield stress. Because all the material at that section can strain without any additional load, the member segments on either side of the hinge can rotate, possibly causing instability.


For a rectangular section:

Elastic to
$$f_y$$
: $M_y = \frac{I}{c} f_y = \frac{bh^2}{6} f_y = \frac{b(2c)^2}{6} f_y = \frac{2bc^2}{3} f_y$

Fully Plastic: M_{ult} or $M_p = bc^2 f_y = \frac{3}{2} M_y$

For a non-rectangular section and internal equilibrium at σ_y , the n.a. will not necessarily be at the centroid. The n.a. occurs where the $A_{tension} = A_{compression}$. The reactions occur at the centroids of the tension and compression areas.

Shape Factor:

The ratio of the plastic moment to the elastic moment at yield:

$$k = \frac{M_p}{M_y}$$
 k = 3/2 for a rectangle $k \approx 1.1$ for an I beam

Plastic Section Modulus

$$Z = \frac{M_p}{f_y} \quad and \quad k = \frac{Z}{S}$$

Design for Shear

$$V_a \leq V_n / \Omega$$
 or $V_u \leq \phi_v V_n$

The nominal shear strength is dependent on the cross section shape. Case 1: With a thick or stiff web, the shear stress is resisted by the web of a wide flange shape (with the exception of a handful of W's). Case 2: When the web is not stiff for doubly symmetric shapes, singly symmetric shapes (like channels) (excluding round high strength steel shapes), inelastic web buckling occurs. When the web is very slender, elastic web buckling occurs, reducing the capacity even more:

Case 1) For
$$h/t_w \le 2.24 \sqrt{\frac{E}{F_y}}$$
 $V_n = 0.6 F_{yw} A_w$ $\phi_v = 1.00 \text{ (LRFD)}$ $\Omega = 1.50 \text{ (ASD)}$

where *h* equals the clear distance between flanges less the fillet or corner radius for rolled shapes

 V_n = nominal shear strength F_{vw} = vield strength of the steel

 $F_{yw} = yield$ strength of the steel in the web

 $A_w = t_w d = area of the web$

Case 2) For
$$h/t_w > 2.24 \sqrt{\frac{E}{F_v}}$$
 $V_n = 0.6 F_{yw} A_w C_v$ $\phi_v = 0.9$ (LRFD) $\Omega = 1.67$ (ASD)

where C_v is a reduction factor (1.0 or less by equation)

Design for Flexure

$$M_a \le M_n / \Omega$$
 or $M_u \le \phi_b M_n$ $\phi_b = 0.90 \text{ (LRFD)}$ $\Omega = 1.67 \text{ (ASD)}$

The nominal flexural strength M_n is the *lowest* value obtained according to the limit states of

- 1. yielding, limited at length $L_p = 1.76r_y \sqrt{\frac{E}{F_y}}$, where r_y is the radius of gyration in y
- 2. lateral-torsional buckling limited at length L_r
- 3. flange local buckling
- 4. web local buckling

Beam design charts show available moment, M_n/Ω and $\phi_b M_n$, for unbraced length, L_b , of the compression flange in one-foot increments from 1 to 50 ft. for values of the bending coefficient $C_b = 1$. For values of $1 < C_b \le 2.3$, the required flexural strength M_u can be reduced by dividing it by C_b . ($C_b = 1$ when the bending moment at any point within an unbraced length is larger than that at both ends of the length. C_b of 1 is conservative and permitted to be used in any case. When the free end is unbraced in a cantilever or overhang, $C_b = 1$. The full formula is provided below.)

NOTE: the self weight is not included in determination of M_n/Ω $\phi_h M_n$

Compact Sections

For a laterally braced *compact* section (one for which the plastic moment can be reached before local buckling) only the limit state of yielding is applicable. For unbraced compact beams and non-compact tees and double angles, only the limit states of yielding and lateral-torsional buckling are applicable.

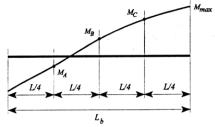
Compact sections meet the following criteria: $\frac{b_f}{2t_f} \le 0.38 \sqrt{\frac{E}{F_y}}$ and $\frac{h_c}{t_w} \le 3.76 \sqrt{\frac{E}{F_y}}$

where:

 b_f = flange width in inches

 t_f = flange thickness in inches

E =modulus of elasticity in ksi

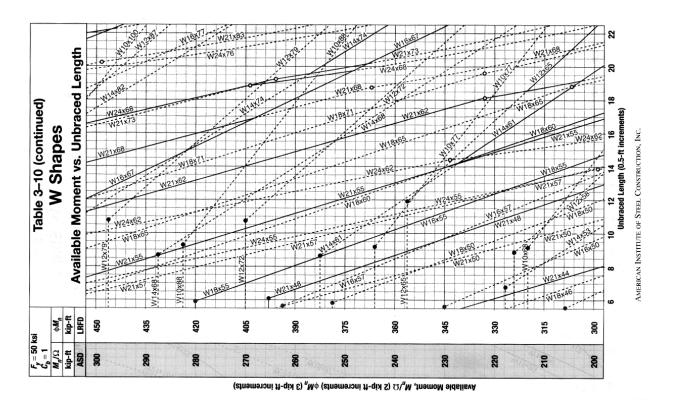

 F_{ν} = minimum yield stress in ksi

 h_c = height of the web in inches

 t_w = web thickness in inches

With lateral-torsional buckling the nominal flexural strength is

$$M_n = C_b \left[M_p - (M_p - 0.7F_y S_x) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le M_p$$


where C_b is a modification factor for non-uniform moment diagrams where, when both ends of the beam segment are braced:

$$C_b = \frac{12.5M_{max}}{2.5M_{max} + 3M_A + 4M_B + 3M_C}$$

 M_{max} = absolute value of the maximum moment in the unbraced beam segment M_A = absolute value of the moment at the quarter point of the unbraced beam segment M_B = absolute value of the moment at the center point of the unbraced beam segment M_C = absolute value of the moment at the three quarter point of the unbraced beam segment length.

Available Flexural Strength Plots

Plots of the available moment for the unbraced length for wide flange sections are useful to find sections to satisfy the design criteria of $M_a \leq M_n / \Omega$ or $M_u \leq \phi_b M_n$. The maximum moment that can be applied on a beam (taking self weight into account), M_a or M_u , can be plotted against the unbraced length, L_b . The limiting length, L_p (fully plastic), is indicated by a solid dot (\bullet), while the limiting length, L_r (for lateral torsional buckling), is indicated by an open dot (\bigcirc). Solid lines indicate the most economical, while dashed lines indicate there is a lighter section that could be used. C_b , which is a modification factor for non-zero moments at the ends, is 1 for simply supported beams (0 moments at the ends). (see *figure*)

Design Procedure

The intent is to find the most light weight member (which is economical) satisfying the section modulus size.

- 1. Determine the unbraced length to choose the limit state (yielding, lateral torsional buckling or more extreme) and the factor of safety and limiting moments. Determine the material.
- 2. Draw V & M, finding V_{max} and M_{max} .for unfactored loads (ASD, $V_a \& M_a$) or from factored loads (LRFD, $V_u \& M_u$)
- 3. Calculate $Z_{\text{req'd}}$ when yielding is the limit state. This step is equivalent to determining if $f_b = \frac{M_{max}}{S} \le F_b$, $Z_{req'd} \ge \frac{M_{max}}{F_b} = \frac{M_{max}}{F_y}$ and $Z_{req'd} \ge \frac{M_u}{\phi_b F_y}$ to meet the design criteria that

$$M_a \le M_n / \Omega$$
 or $M_u \le \phi_b M_n$

If the limit state is something other than yielding, determine the nominal moment, M_n , or use plots of available moment to unbraced length, L_b .

4. For steel: use the section charts to find a trial Z and remember that the beam self weight (the second number in the section designation) will increase $Z_{req'd}$. The design charts show the lightest section within a grouping of similar Z's.

TABLE 9.1 Load Factor Resistance Design Selection

			$F_y = 3$	86 ksi	
Designation	Z_{x} in. ³	$\frac{L_p}{\mathrm{ft}}$	$\frac{L_r}{\mathrm{ft}}$	M_p kip-ft	M _r kip-ft
W 33 × 141	514	10.1	30.1	1,542	971
$W 30 \times 148$	500	9.50	30.6	1,500	945
W 24 \times 162	468	12.7	45.2	1,404	897
W 24 × 146	418	12.5	42.0	1,254	804
W 33 × 118	415	9.67	27.8	1,245	778
W 30 × 124	408	9.29	28.2	1,224	769
W 21 \times 147	373	12.3	46.4	1,119	713
W 24 × 131	370	12.4	39.3	1,110	713
W 18×158	356	11.4	56.5	1,068	672
W 24 × 131	370	12.4	39.3	1,110	

^{****} Determine the "updated" V_{max} and M_{max} including the beam self weight, and verify that the updated $Z_{req'd}$ has been met.*****

- 5. Consider lateral stability.
- 6. Evaluate horizontal shear using V_{max} . This step is equivalent to determining if $f_v \leq F_v$ is satisfied to meet the design criteria that $V_a \leq V_n / \Omega$ or $V_u \leq \phi_v V_n$

For I beams:
$$f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{web}} = \frac{V}{t_w d}$$

$$V_n = 0.6F_{yw}A_w \quad or \ V_n = 0.6F_{yw}A_w C_v$$
 Others:
$$f_{v-\text{max}} = \frac{VQ}{Ib}$$

- 7. Provide adequate bearing area at supports. This step is equivalent to determining if $f_p = \frac{P}{A} \le F_p$ is satisfied to meet the design criteria that $P_a \le P_n / \Omega$ or $P_u \le \phi P_n$
- 8. Evaluate shear due to torsion $f_{v} = \frac{T\rho}{J} \text{ or } \frac{T}{c_{1}ab^{2}} \le F_{v} \text{ (circular section or rectangular)}$
- 9. Evaluate the deflection to determine if $\Delta_{maxLL} \leq \Delta_{LL-allowed}$ and/or $\Delta_{maxTotal} \leq \Delta_{Total allowed}$
- **** note: when $\Delta_{calculated} > \Delta_{limit}$, $I_{req'd}$ can be found with: and $Z_{req'd}$ will be satisfied for similar self weight ***** $I_{req'd} \geq \frac{\Delta_{loobig}}{\Delta_{limit}} I_{trial}$

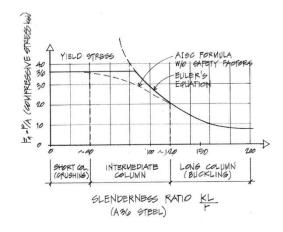
FOR ANY EVALUATION:

Redesign (with a new section) at any point that a stress or serviceability criteria is NOT satisfied and re-evaluate each condition until it is satisfactory.

Load Tables for Uniformly Loaded Joists & Beams

Tables exist for the common loading situation of uniformly distributed load. The tables either provide the safe distributed load based on bending and deflection limits, they give the allowable span for specific live and dead loads including live load deflection limits.

If the load is *not uniform*, an *equivalent uniform load* can be calculated $M_{max} = \frac{w_{equivalent}L^2}{8}$ from the maximum moment equation:


If the deflection limit is less, the design live load to check against allowable must be increased, ex.

$$w_{adjusted} = w_{ll-have} \left(\frac{L/360}{L/400} \right)$$
 table limit wanted

Criteria for Design of Columns

If we know the loads, we can select a section that is adequate for strength & buckling.

If we know the length, we can find the limiting load satisfying strength & buckling.

Allowable Stress Design

American Institute of Steel Construction (AISC) Manual of ASD, 9th ed:

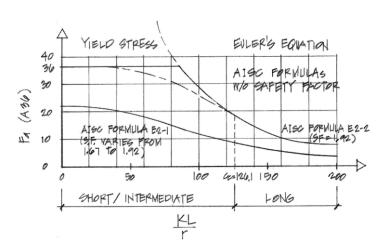
<u>Long and slender:</u> [$L_e/r \ge C_c$, preferably < 200]

$$F_{allowable} = \frac{F_{cr}}{F.S.} = \frac{12\pi^2 E}{23(Kl/r)^2}$$

The yield limit is idealized into a parabolic curve that blends into the Euler's Formula at C_c.

With $F_y = 36$ ksi, $C_c = 126.1$

With $F_y = 50$ ksi, $C_c = 107.0$


$$C_c = \sqrt{\frac{2\pi^2 E}{F_y}}$$

Short and stubby: $[L_e/r < C_c]$

$$F_a = \left[1 - \frac{\left(\frac{Kl}{r}\right)^2}{2C_c^2}\right] \frac{F_y}{F.S.}$$

with:

$$F.S. = \frac{5}{3} + \frac{3(Kl/r)}{8C_c} - \frac{(Kl/r)^3}{8C_c^3}$$

Design for Compression

American Institute of Steel Construction (AISC) Manual 14th ed:

 $P_a \le P_n / \Omega$ or $P_u \le \phi_c P_n$ where $P_u = \sum \gamma_i P_i$

 γ is a <u>load factor</u>

P is a load type

 $\boldsymbol{\varphi}$ is a <u>resistance factor</u>

P_n is the <u>nominal load capacity (strength)</u>

$$\phi = 0.90 \; (LRFD) \qquad \Omega = 1.67 \; (ASD)$$

For compression $P_n = F_{cr} A_g$

where: A_g is the cross section area and F_{cr} is the flexural buckling stress

The flexural buckling stress, F_{cr} , is determined as follows:

when
$$\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{F_y}}$$
 or $(F_e \ge 0.44F_y)$:
$$F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y$$
when $\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}$ or $(F_e < 0.44F_y)$:
$$F_{cr} = 0.877 F_e$$

where F_e is the elastic critical buckling stress:

$$F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$

Design Aids

Tables exist for the value of the flexural buckling stress based on slenderness ratio. In addition, tables are provided in the AISC Manual for Available Strength in Axial Compression based on the effective length with respect to least radius of gyration, r_y . If the critical effective length is about the largest radius of gyration, r_x , it can be turned into an effective length about the y axis with the fraction r_x/r_y .

	A	q	Axial	ริ ์	mpress W Shapes	Compression, W Shapes		KIPS	' 0	₹ ₹	
8	Shape					W12×	×				3
¥	WVff	5	96	87	7	79	6	7	72	9	89
2	1	P,100	\$c.P.	P,10c	φ.P.	P_n/Ω_c	och,	P,10c	o.P.	P,100	\$c.P.
5	illisan	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	844	1270	992	1150	694	1040	633	951	571	859
8	9	811	1220	735	1110	299	1000	209	913	548	824
ر <i>د</i> ا	7	800	1200	725	1090	657	286	298	899	240	811
юде		78/	1180	713	10/0	624	176	288	884	531	798
avre	, <u>2</u>	756	1140	685	1030	620	932	265	849	200	765
to a	=	739	1110	699	1010	909	910	551	828	497	747
suib	12	720	1080	652	086	230	887	537	807	484	727
en 1	₽;	707	1050	634	953	573	862	252	784	470	706
seel	4 to	629	066	595	895	538	808	90 4	736	441	662
of 1	9	637	957	575	864	520	781	473	710	425	639
1080	1	614	923	554	833	201	752	455	684	409	615
dsə.	8	591	888	533	801	481	723	437	657	393	591
ı itti	e 8	567	852	511	769	461	694	419	630	377	566
M (3 8	243	810	989	020	744	600	104	603	200	140
u) 7.	2 2	495	672	446	6/0	362	544	328	548	32/	491
y 41	8	401	602	360	541	323	486	293	440	262	393
,6ua	88	356	534	319	479	286	430	259	389	231	347
ĐΛ	3 8	27.4	2	240	000	200	200	9 5	9	1 5	200
fect	8 8	243	365	218	327	195	293	176	265	157	236
13	*	217	326	194	292	174	261	157	236	140	211
	8 8	195	292	157	262	156	234	141	212	126	189
					Properties	ties					
(kips)		137	206	121	181	104	157	90.9	136	78.2	117
(kips/	ii.)	18.3	27.5	17.2	25.8	15.7	23.5	14.3	21.5	13.0	19.5
P. (kips)		296	445	243	366	185	278	142	213	106	159
(oday)		-	000		200		30.00	100	07.	2000	2
£ €		- 4	46.6	- 4	43.0	= 86 36	39.9	- 60	37.4	- ო	35.1
Ag (in. ²)		8	28.2	25. 740	25.6 40	23.	23.2	597	21.1	533	19.1
			3.09	24	3.07	33.	6 3.05 1.75	5	3.04 3.04	-	3.02
<u> </u>	P. (KL2)/104 (k-in.2) P. (KL2)/104 (k-in.2)	23800	8.0	21200		18900		17100	0.0	15300	
ASD	00	LRFD	9	a STREET				畫	100		8

Procedure for Analysis

- 1. Calculate KL/r for each axis (if necessary). The largest will govern the buckling load.
- 2. Find F_a or F_{cr} as a function of KL/r from the appropriate equation (above) or table.
- 3. Compute $P_{allowable} = F_a \cdot A$ or $P_n = F_{cr} \cdot A_g$ or alternatively compute $f_c = P/A$ or P_u/A
- 4. Is the design satisfactory?

Is
$$P \le P_{\text{allowable}}$$
 (or $P_a \le P_n/\Omega$) or $P_u \le \phi_c P_n$? \Rightarrow yes, it is; no, it is no good or Is $f_c \le F_a$ (or $\le F_{cr}/\Omega$) or $\phi_c F_{cr}$? \Rightarrow yes, it is; no, it is no good

Procedure for Design

- 1. Guess a size by picking a section.
- 2. Calculate KL/r for each axis (if necessary). The largest will govern the buckling load.
- 3. Find F_a or F_{cr} as a function of KL/r from appropriate equation (above) or table.
- 4. Compute $P_{allowable} = F_a \cdot A$ or $P_n = F_{cr} \cdot A_g$ or alternatively compute $f_c = P/A$ or P_u/A
- 5. Is the design satisfactory?
 - Is $P \le P_{\text{allowable}} (P_a \le P_n/\Omega)$ or $P_u \le \phi_c P_n$? yes, it is; no, pick a bigger section and go back to step 2.
 - Is $f_c \le F_a$ ($\le F_{cr}/\Omega$) or $\phi_c F_{cr}$? \Rightarrow yes, it is; no, pick a bigger section and go back to step 2.
- 6. Check design efficiency by calculating percentage of stress used:=

$$\frac{P}{P_{allowable}} \cdot 100\% \left(\frac{P_a}{P_n/\Omega} \cdot 100\% \right) or \frac{P_u}{\phi_c P_n} \cdot 100\%$$

If value is between 90-100%, it is efficient.

If values is less than 90%, pick a smaller section and go back to step 2.

Columns with Bending (Beam-Columns)

In order to *design* an adequate section for allowable stress, we have to start somewhere:

- 1. Make assumptions about the limiting stress from:
 - buckling
 - axial stress
 - combined stress
- 2. See if we can find values for \underline{r} or \underline{A} or \underline{Z}
- 3. Pick a trial section based on if we think r or A is going to govern the section size.

- 4. Analyze the stresses and compare to allowable using the allowable stress method or interaction formula for eccentric columns.
- 5. Did the section pass the stress test?
 - If not, do you *increase* r or A or Z?
 - If so, is the difference really big so that you could *decrease* r or A or Z to make it more efficient (economical)?
- 6. Change the section choice and go back to step 4. Repeat until the section meets the stress criteria.

Design for Combined Compression and Flexure:

The interaction of compression and bending are included in the form for two conditions based on the size of the required axial force to the available axial strength. This is notated as P_r (either P from ASD or P_u from LRFD) for the axial force being supported, and P_c (either P_n/Ω for ASD or $\phi_c P_n$ for LRFD). The increased bending moment due to the P- Δ effect must be determined and used as the moment to resist.

For
$$\frac{P_{r}}{P_{c}} \ge 0.2$$
: $\frac{P}{P_{n}/\Omega} + \frac{8}{9} \left(\frac{M_{x}}{M_{nx}/\Omega} + \frac{M_{y}}{M_{ny}/\Omega} \right) \le 1.0$ $\frac{P_{u}}{\phi_{c}P_{n}} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_{b}M_{nx}} + \frac{M_{uy}}{\phi_{b}M_{ny}} \right) \le 1.0$ (ASD) (LRFD)

For $\frac{P_{r}}{P_{c}} < 0.2$: $\frac{P}{2P_{n}/\Omega} + \left(\frac{M_{x}}{M_{nx}/\Omega} + \frac{M_{y}}{M_{ny}/\Omega} \right) \le 1.0$ $\frac{P_{u}}{2\phi_{c}P_{n}} + \left(\frac{M_{ux}}{\phi_{b}M_{nx}} + \frac{M_{uy}}{\phi_{b}M_{ny}} \right) \le 1.0$

where:

$$\begin{array}{ll} \text{for compression} & \phi_c = 0.90 \; (LRFD) & \Omega = 1.67 \; (ASD) \\ \text{for bending} & \phi_b = 0.90 \; (LRFD) & \Omega = 1.67 \; (ASD) \end{array}$$

For a <u>braced</u> condition, the moment magnification factor B_I is determined by $B_1 = \frac{C_m}{1 - (P_u/P_{el})} \ge 1.0$

(LRFD)

where C_m is a modification factor accounting for end conditions

When not subject to transverse loading between supports in plane of bending:

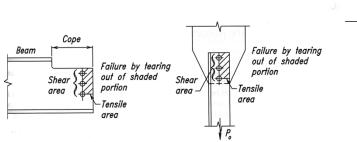
= 0.6 - 0.4 (M₁/M₂) where M₁ and M₂ are the end moments and M₁<M₂. M₁/M₂ is positive when the member is bent in reverse curvature (same direction), negative when bent in single curvature.

When there is transverse loading between the two ends of a member:

= 0.85, members with restrained (fixed) ends

= 1.00, members with unrestrained ends

$$P_{e1} = \frac{\pi^2 EA}{\left(\frac{Kl}{r}\right)^2}$$


P_{e1} =Euler buckling strength

(ASD)

Criteria for Design of Connections

Connections must be able to transfer any axial force, shear, or moment from member to member or from beam to column.

Connections for steel are typically high strength bolts and electric arc welds. Recommended practice for ease of construction is to specified *shop welding* and *field bolting*.

Small tension force

Large tension force

Large tension force

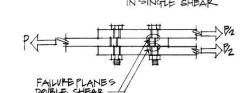
P_o

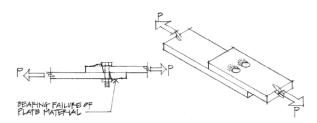
Small shear force

(a)

(b)

Fig. C-J4.1. Failure for block shear rupture limit state.


Fig. C-J4.2. Block shear rupture in tension.


Bolted and Welded Connections

The limit state for connections depends on the loads:

- 1. tension yielding
- 2. shear yielding
- 3. bearing yielding
- 4. bending yielding due to eccentric loads
- 5. rupture

Welds must resist shear stress. The design strengths depend on the weld materials.

Bolted Connection Design

Bolt designations signify material and type of connection where

SC: slip critical

N: bearing-type connection with bolt threads *included* in shear plane

X: bearing-type connection with bolt threads excluded from shear plane

A307: similar in strength to A36 steel (also known as ordinary, common or unfinished bolts)

A325: high strength bolts

A490: high strength bolts (higher than A325)

Bearing-type connection: no frictional resistance in the contact surfaces is assumed and slip between members occurs as the load is applied. (Load transfer through bolt only).

Slip-critical connections: bolts are torqued to a high tensile stress in the shank, resulting in a clamping force on the connected parts. (Shear resisted by clamping force). Requires inspections and is useful for structures seeing dynamic or fatigue loading.

Bolts rarely fail in **bearing**. The material with the hole will more likely yield first.

For the determination of the net area of a bolt hole the width is taken as 1/16" greater than the nominal dimension of the hole. Standard diameters for bolt holes are 1/16" larger than the bolt diameter. (This means the net width will be 1/8" larger than the bolt.)

Design for Bolts in Bearing, Shear and Tension

Available shear values are given by bolt type, diameter, and loading (Single or Double shear) in AISC manual tables. Available shear value for slip-critical connections are given for limit states of serviceability or strength by bolt type, hole type (standard, short-slotted, long-slotted or oversized), diameter, and loading. Available tension values are given by bolt type and diameter in AISC manual tables.

Available bearing force values are given by bolt diameter, ultimate tensile strength, F_u , of the connected part, and thickness of the connected part in AISC manual tables.

For shear OR tension (same equation) in bolts:

$$R_a \le R_n / \Omega \text{ or } R_u \le \phi R_n$$

where $R_u = \sum \gamma_i R_i$

• single shear (or tension) $R_n = F_n A_b$

• double shear
$$R_n = F_n 2A_b$$

where $\phi =$ the resistance factor

 $F_n = \ the \ nominal \ tension \ or \ shear \ strength \ of \ the \ bolt$

 A_b = the cross section area of the bolt

$$\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$$

For bearing of plate material at bolt holes:

$$R_a \le R_n / \Omega \text{ or } R_u \le \phi R_n$$

where $R_u = \sum \gamma_i R_i$

• deformation at bolt hole is a concern

$$R_n = 1.2L_c t F_u \le 2.4 dt F_u$$

• deformation at bolt hole is not a concern

$$R_n = 1.5L_c t F_u \le 3.0 dt F_u$$

• long slotted holes with the slot perpendicular to the load

$$R_n = 1.0 L_c t F_u \le 2.0 dt F_u$$

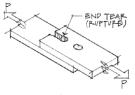


Figure 10.11 End tear-out.

where R_n = the nominal bearing strength

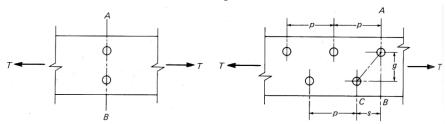
 F_u = specified minimum tensile strength

 L_c = clear distance between the edges of the hole and the next hole or edge in

the direction of the load nominal bolt diameter

t = thickness of connected material

 $\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$


The *minimum* edge desistance from the center of the outer most bolt to the edge of a member is generally 134 times the bolt diameter for the sheared edge and 114 times the bolt diameter for the rolled or gas cut edges.

The maximum edge distance should not exceed 12 times the thickness of thinner member or 6 in.

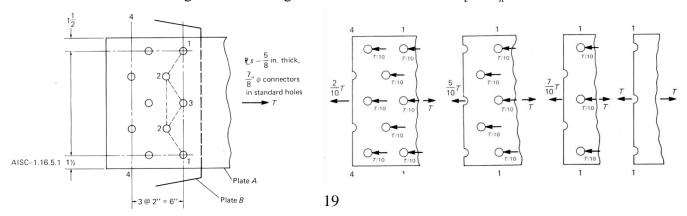
Standard bolt hole spacing is 3 in. with the minimum spacing of $2\frac{2}{3}$ times the diameter of the bolt, d_b . Common edge distance from the center of last hole to the edge is $1\frac{1}{4}$ in..

Tension Member Design

In steel tension members, there may be bolt holes that reduce the size of the cross section.

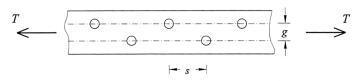
g refers to the row spacing or gage

p refers to the bolt spacing or pitch


s refers to the longitudinal spacing of two consecutive holes

Effective Net Area:

The smallest effective are must be determined by subtracting the bolt hole areas. With staggered holes, the shortest length must be evaluated.


A series of bolts can also transfer a portion of the tensile force, and some of the effective net areas see reduced stress.

The effective net area, A_e , is determined from the net area, A_n multiplied by a shear lag factor, U, which depends on the element type and connection configuration. If a portion of a connected member is not fully connected (like the leg of an angle), the unconnected part is not subject to the full stress and the shear lag factor can range from 0.6 to 1.0: $A_e = A_n U$

The staggered hole path area is determined by:

$$A_n = A_g - A_{of \ all \ holes} + t\Sigma \frac{s^2}{4g}$$

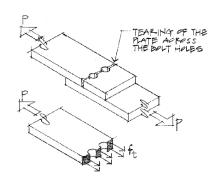
where t is the plate thickness, s is each stagger spacing, and g is the gage spacing.

For tension elements:

$$R_a \le R_n / \Omega$$
 or $R_u \le \phi R_n$
where $R_u = \sum \gamma_i R_i$

1. yielding
$$R_n = F_y A_g$$

$$\phi = 0.90 \, (\text{LRFD}) \qquad \Omega = 1.67 \, (\text{ASD})$$


2. rupture
$$R_n = F_u A_e$$

$$\phi = 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)}$$

 $\begin{array}{ll} \text{where} & A_g = \text{the gross area of the member} \\ & (\text{excluding holes}) \end{array}$

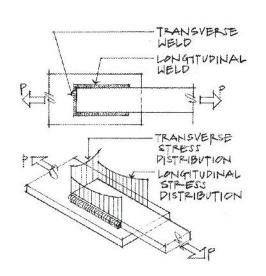
 A_e = the effective net area (with holes, etc.)

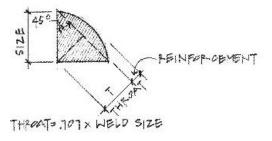
 F_y = the yield strength of the steel

 F_u = the tensile strength of the steel (ultimate)

Welded Connections

Weld designations include the strength in the name, i.e. E70XX has Fy = 70 ksi. Welds are weakest in shear and are assumed to always fail in the shear mode.


The throat size, T, of a fillet weld is determined trigonometry by: $T = 0.707 \times \text{weld size}^*$ * When the submerged arc weld process is used, welds over 3/8"


* When the submerged arc weld process is used, welds over 3/8" will have a throat thickness of 0.11 in. larger than the formula.

Weld sizes are limited by the size of the parts being put together and are given in AISC manual table J2.4 along with the allowable strength per length of fillet weld, referred to as *S*.

The maximum size of a fillet weld:

- a) can't be greater than the material thickness if it is ¼" or less
- b) is permitted to be 1/16" less than the thickness of the material if it is over 1/4"

The *minimum length* of a fillet weld is 4 times the nominal size. If it is not, then the weld size used for design is 1/4 the length.

Intermittent fillet welds cannot be less than four times the weld size, not to be less than 1 ½".

TABLE J2.4 Minimum Size of Fillet Welds

Material Thickness of Thicker	Minimum Size of Fillet
Part Joined (in.)	Weld ^a (in.)
To ¼ inclusive	1/e
Over ¼ to ½	3/16
Over ½ to ¾	1/4
Over ¾	5/16

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

For fillet welds:

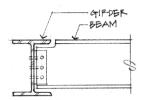
$$R_a \le R_n / \Omega$$
 or $R_u \le \phi R_n$
where $R_u = \sum \gamma_i R_i$

for the weld metal:
$$R_n = 0.6F_{EXX}Tl = Sl$$

$$\phi = 0.75 \text{ (LRFD)}$$
 $\Omega = 2.00 \text{ (ASD)}$

where:

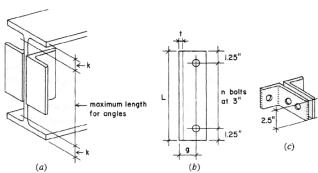
T is throat thickness *l* is length of the weld


For a connected part, the other limit states for the base metal, such as tension yield, tension rupture, shear yield, or shear rupture **must** be considered.

Available	Strength of Fil	llet Welds
per	r inch of weld (φS)
Weld Size	E60XX	E70XX
(in.)	(k/in.)	(k/in.)
$\frac{3}{16}$	3.58	4.18
1/4	4.77	5.57
5/16	5.97	6.96
3/8	7.16	8.35
7/16	8.35	9.74
1/2	9.55	11.14
5/8	11.93	13.92
3/4	14.32	16.70

(not considering increase in throat with submerged arc weld process)

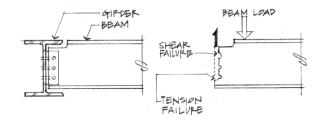
Framed Beam Connections


Coping is the term for cutting away part of the flange to connect a beam to another beam using welded or bolted angles.

AISC provides tables that give bolt and angle available strength knowing number of bolts, bolt type, bolt diameter, angle leg thickness, hole type and coping, and the wide flange beam being connected. For the connections the limit-state of bolt shear, bolts bearing on the angles, shear yielding of the angles, shear rupture of the angles, and block shear rupture of the angles, and bolt bearing on the beam web are considered.

Group A bolts include A325, while Group B includes A490.

There are also tables for bolted/welded double-angle connections and all-welded double-angle connections.


Sample AISC Table for Bolt and Angle Available Strength in All-Bolted Double-Angle Connections

e)	r _u = 65 KSI	(3)	₹	All-Bolted Double-Angle	¥	었	2	<u>5</u> 5	6	Y DO	<u>e</u>	5	4	7/4-in
igr igr	l II				ŏ	Connections	ec	Ę	ns	,			Bolts	ts
À آع	= 58 ksi	(E)		316 91	8	It and	Angle	Availab	le Stre	Bolt and Angle Available Strength, kips	ips	3 3 3		3 P.\
4	4 Rows	100	Ě	Y	٤	٩	ole	3	A	Angle Thickness, in.	ckness	Ë	NO.	
		10 6		Cond	£ 2	10 E	-08	1,4	5,	5/16	3	3/8		1/2
W24,	W24, 21, 18, 16	084		asa	8483	922	ASD	LRFD	ASD	LRFD		ASD LRFD	ASD	ASD LRFD
			- '	z	လ ပ	ers ers	67.1	5	83.9	_	95.5		95.5	
					٥١٥		- 2	101	10	071		ᅩ		-1
		Cura	S	သ	<i>y</i> 6	O S	20.6	64.5	90.6	73.9	50.6	75.9	50.6	67.5
3	1	dioip A	Clas	Class A	- W	SSIT	50.6	75.9	8.100	75.9				- 1
1	6-	100			S	STD	67.1	101	1000	126		-	84.4	-
	ce c		Clas	Class B	0	SNO	65.3	97.9	10000	108	71.9		71.9	
7	-				SS	SSLT	65.8	98.7	82.2	123	84.4	127	84.4	
P7			z >	z >	s s	STO	67.1	5 5	83.9	126	<u> </u>	15.	120	180
6-08	^				0 60	STD	63.3	94.9	63.3	94.9	633	94.9	63.3	949
1		Group	SS	٠ د	6	SAO	53.9	80.7	200	80.7	53.9	80.7	53.9	
		80	Sas	Class A	SS	SSLT	63.3	94.9	100	94.9	63.3	94.9	63.3	
			S	٠	S	STD	67.1	101	CHARLE	126	5	151	105	
			Clas	Class B	Ó	ovs	65.3	97.9		122	89.9	134	89.9	
					SS	SSLT	65.8	98.7	82.2	123	98.7	148	105	128
		Be	am We	b Avail.	able S	rength	per In	ch Thic	kness,	Beam Web Available Strength per Inch Thickness, kips/in.	-			
	Hole Tyne			STD	و			6	OVS			SSLT	17	
	add: am.			1.1	- 3			Let,	<i>L_{eh}</i> *, in.					
	ei j	1 - 4	11/2	/2	+	13/4	1	11/2	7	13/4	-	11/2	1	13/4
	-04,	GRA.	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
		11/4	167	250	175	262	156	234	164	246	164	245	172	257
į		<u>۾</u>	2 5	407	> 4	907	200	238	/91	22	2 5	249	1/4	197
3 5	Coped at 10p	1.72	121	767	8 5	273	101	245	2 5	257	9 7	256	170	090
	ge cellin	,	1 5	273	100	284	3 5	256	- 6	268	2 2	267	100	270
		۰ ۳	201	305	209	313	190	285	198	297	198	296	200	309
		11/4	156	234	156	234	146	219	146	219	156	234	156	234
		13/8	191	241	161	241	151	227	151	227	161	241	161	241
Sope	Coped at Both	11/2	166	249	166	249	156	234	156	234	166	546	166	249
Ë	Flanges	15/8	171	256	171	256	161	241	161	241	171	526	171	256
		2	181	272	185	278	171	256	176	263	178	267	185	278
		8	201	301	209	313	190	285	198	297	198	596	206	309
	Uncoped	37.5	234	351	234	351	234	351	234	351	234	351	234	351
S or	Support Available Strength per Inch Thickness, kips/in.	e	Notes: STD = OVS = SSLT =	STD = Standard holes OVS = Oversized holes SSLT = Short-slotted h	Standard holes Oversized holes Short-slotted holes to direction of load	Notes: STD = Standard holes OVS = Oversized holes SSLT = Short-slotted holes transverse to direction of load	sverse		N = Th X = Th SC = Sli	N = Threads included X = Threads excluded SC = Silp critical	cluded			
Type Type	ASD	LRFD	* Tabula	ated valu	les inclu	de 1/4-in	. reducti	on in en	d distan	*Tabulated values include ½-in. reduction in end distance, $\mathcal{L}_{\mathrm{eh}}$, to account for possible	o accour	nt for pos	ssible	SQE?
SSI T	468	702	Note: St been ad	underrun in beam lengtn. ote: Slip-critical bolt value een added to distribute lo	eam len al bolt va distribute	underrun in beam lengtn. Note: Slip-critical bolt values assume no mo been added to distribute loads in the fillers.	sume no n the fills	more tt.	an one	underrun in beam lengtin. Note: Silp-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads in the fillers.	peen pr	ovided or	r bolts h	ave

Limiting Strength or Stability States

In addition to resisting shear and tension in bolts and shear in welds, the connected materials may be subjected to shear, bearing, tension, flexure and even prying action. Coping can significantly reduce design strengths and may require web reinforcement. All the following must be considered:

- shear yielding
- shear rupture
- block shear rupture failure of a block at a beam as a
 result of shear and tension
- tension yielding
- tension rupture
- local web buckling
- lateral torsional buckling

Block Shear Strength (or Rupture):

$$R_a \le R_n / \Omega$$
 or $R_u \le \phi R_n$
where $R_u = \sum \gamma_i R_i$

$$\begin{split} R_n &= 0.6 F_u A_{nv} + U_{bs} F_u A_{nt} \leq 0.6 F_y A_{gv} + U_{bs} F_u A_{nt} \\ \phi &= 0.75 \text{ (LRFD)} \qquad \Omega = 2.00 \text{ (ASD)} \end{split}$$

where:

 A_{nv} is the net area subjected to shear

 A_{nt} is the net area subjected to tension

 A_{gv} is the gross area subjected to shear

 $U_{bs} = 1.0$ when the tensile stress is uniform (most cases)

= 0.5 when the tensile stress is non-uniform

Gusset Plates

Gusset plates are used for truss member connections where the geometry prevents the members from coming together at the joint "point". Members being joined are typically double angles.

Decking

Shaped, thin sheet-steel panels that span several joists or evenly spaced support behave as continuous beams. Design tables consider a "1 unit" wide strip across the supports and determine maximum bending moment and deflections in order to provide allowable loads depending on the depth of the material.

The other structural use of decking is to construct what is called a *diaphragm*, which is a horizontal unit tying the decking to the joists that resists forces parallel to the surface of the diaphragm.

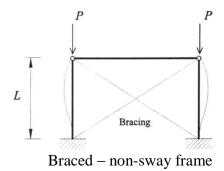
When decking supports a concrete topping or floor, the steel-concrete construction is called *composite*.

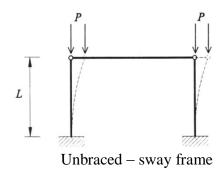
Frame Columns

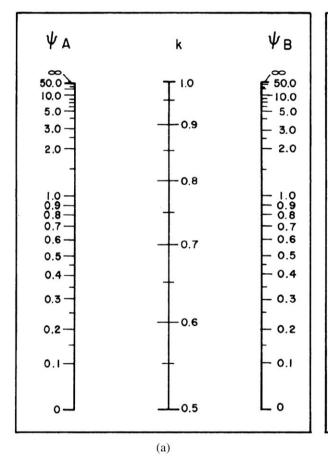
Because joints can rotate in frames, the effective length of the column in a frame is harder to determine. The stiffness (EI/L) of each member in a joint determines how rigid or flexible it is. To find k, the relative stiffness, G or Ψ , must be found for both ends, plotted on the alignment charts, and connected by a line for braced and unbraced fames.

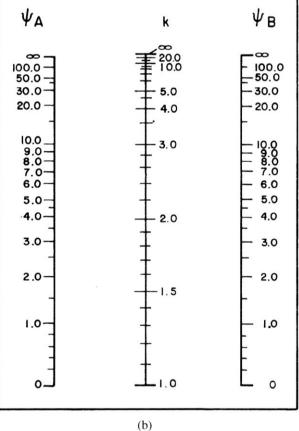
$$G = \Psi = \frac{\sum EI/l_c}{\sum EI/l_t}$$

where


E = modulus of elasticity for a member


I = moment of inertia of for a member

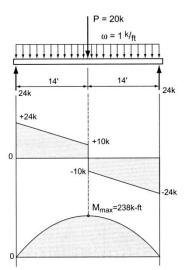

 l_c = length of the column from center to center

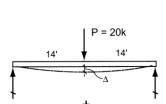

 $l_{\rm b}$ = length of the beam from center to center

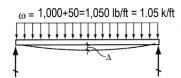
- For pinned connections we typically use a value of 10 for Ψ .
- For fixed connections we typically use a value of 1 for Ψ .

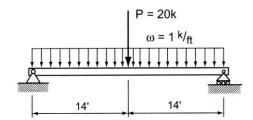
Nonsway Frames

Sway Frames

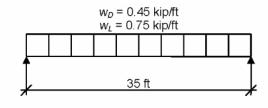

Example 1 (pg 330)


*Hypothetically determine the size of section required when the deflection criteria is NOT met


Example Problem 9.16 (Figures 9.76 to 9.78)


A steel beam (A572/50) is loaded as shown. Assuming a deflection requirement of $\Delta_{\rm total}$ = L/240 and a depth restriction of 18" nominal, select the most economical section. (unified ASD)

$$F_b = 30 \text{ ksi}$$
; $F_v = 20 \text{ ksi}$; $E = 30 \times 10^3 \text{ ksi}$ $F_v = 50 \text{ ksi}$



Given:

Select an ASTM A992 W-shape beam with a simple span of 35 feet. Limit the member to a maximum nominal depth of 18 in. Limit the live load deflection to L/360. The nominal loads are a uniform dead load of 0.45 kip/ft and a uniform live load of 0.75 kip/ft. Assume the beam is continuously braced. Use ASD of the Unified Design method.

Beam Loading & Bracing Diagram (full lateral support)

Solution:

Material Properties:

ASTM A992

 $F_v = 50 \text{ ksi}$

 $F_u = 65 \text{ ksi}$

- 1. The unbraced length is 0 because it says it is fully braced.
- 2. Find the maximum shear and moment from unfactored loads:

 $w_a = 0.450 \text{ k/ft} + 0.750 \text{ k/ft} = 1.20 \text{ k/ft}$

 $V_a = 1.20 \text{ k/ft}(35 \text{ ft})/2 = 21 \text{ k}$

 $M_a = 1.20 \text{ k/ft}(35 \text{ ft})^2/8 = 184 \text{ k-ft}$

If $M_a \le M_n/\Omega$, the maxmimum moment for design is $M_a\Omega$: $M_{max} = 184$ k-ft

3. Find Zreg'd:

 $Z_{\text{reg'd}} \ge M_{\text{max}}/F_b = M_{\text{max}}/\Omega)/F_v = 184 \text{ k-ft}(1.67)(12 \text{ in/ft})/50 \text{ ksi} = 73.75 \text{ in}^3 (F_v \text{ is the limit stress when fully braced})$

4. Choose a trial section, and also limit the depth to 18 in as instructed:

W18 x 40 has a plastic section modulus of 78.4 in³ and is the most light weight (as indicated by the bold text) in Table 9.1

Include the self weight in the maximum values:

 $w^*_{a-adjusted} = 1.20 \text{ k/ft} + 0.04 \text{ k/ft}$

 $V_{a-adjusted}^* = 1.24 \text{ k/ft}(35 \text{ ft})/2 = 21.7 \text{ k}$

 $M_{a-adjusted}^* = 1.24 \text{ k/ft}(35 \text{ ft})^3/8 = 189.9 \text{ k}$

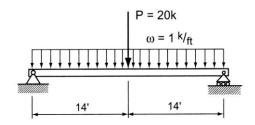
 $Z_{\text{reg/d}} \ge 189.9 \text{ k-ft} (1.67) (12 \text{ in/ft})/50 \text{ ksi} = 76.11 \text{ in}^3$ And the Z we have (78.4) is larger than the Z we need (76.11), so OK.

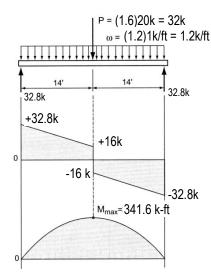
Evaluate shear (is V_a ≤ V₀/Ω): A_w = dt_w so look up section properties for W18 x 40: d = 17.90 in and t_w = 0.315 in

 $V_n/\Omega = 0.6F_{yy}A_{yy}/\Omega = 0.6(50 \text{ ksi})(17.90 \text{ in})(0.315 \text{ in})/1.5 = 112.8 \text{ k which is much larger than } 21.7 \text{ k, so OK}$.

9. Evaluate the deflection with respect to the limit stated of L/360 for the live load. (If we knew the **total** load limit we would check that as well). The moment of inertia for the W18 x 40 is needed. I_x = 612 in⁴

 Δ live load limit = 35 ft(12 in/ft)/360 = 1.17 in


 Δ = 5wL⁴/384EI = 5(0.75 k/ft)(35 ft)⁴(12 in/ft)³/384(29 x 10³ ksi)(612 in⁴) = 1.42 in! This is TOO BIG (not less than the limit. Find the moment of inertia needed:


$$I_{req'd} \ge \Delta_{too\ big} (I_{trial})/\Delta_{limit} = 1.42\ in(612\ in^4)/(1.17\ in) = 742.8\ in^4$$

From Table 9.1, a W16 x 45 is larger (by Z), but not the most light weight (efficient), as is W10 x 68, W14 x 53, W18 x 46, (W21 x 44 is too deep) and W18 x 50 is bolded (efficient). (Now look up I's). (In order: $I_x = 586$, 394, 541, 712 and 800 in⁴)

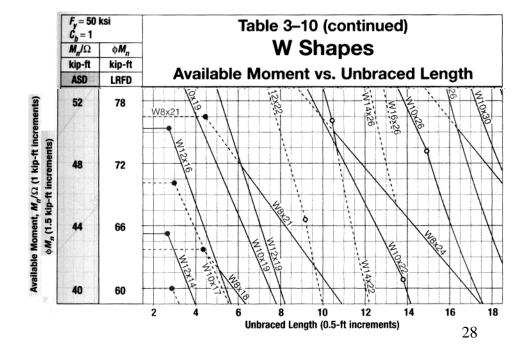
Choose a W18 x 50

For the same beam and loading of Example 1, select the most economical beam using Load and Resistance Factor Design (LRFD) with the 18" depth restriction. Assume the distributed load is dead load, and the point load is live load. $F_v = 50$ ksi and $E = 30 \times 10^3$ ksi

- 1. To find $V_{u\text{-max}}$ and $M_{u\text{-max}}$, factor the loads, construct a *new* load diagram, shear diagram and bending moment diagram.
- 2. To satisfy $M_u \le \phi_b M_{n}$, we find $M_n = \frac{M_u}{\phi_b} = \frac{341.6^{k-ft}}{0.9} = 379.6^{k-ft}$ and solve for Z needed: $Z = \frac{M_n}{F_v} = \frac{379.6^{k-ft}(12^{in}/f_t)}{50ksi} = 91.1in^3$
 - Choose a *trial* section from the <u>Listing of W Shapes in Descending Order of Z</u> by selecting the **bold** section at the top of the grouping satisfying our Z and depth requirement W18 x 50 is the *lightest* with Z = 101 in³. (W22 x 44 is the lightest without the depth requirement.) Include the additional self weight (dead load) and find the maximum shear and bending moment:

$$\begin{split} &V_{u-adjusted}^* = 32.8k + \frac{1.2(50^{\,lb}/_{ft})28\,ft}{2(1000^{\,lb}/_{k})} = 33.64k \\ &M_{u-adjusted}^* = 341.6^{k-ft} + \frac{1.2(50^{\,lb}/_{ft})(28\,ft\,)^2}{8(1000^{\,lb}/_{k})} = 347.5^{k-ft} \\ &Z_{req'd}^* \geq \frac{M_u}{\phi_b F_v} = \frac{347.5^{k-ft}(12^{\,in}/_{ft})}{0.9(50ksi\,)} = 92.7in^3 \text{ , so Z (have) of 101 in}^3 \text{ is greater than the Z (needed)}. \end{split}$$

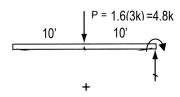
- 3. Check the shear capacity to satisfy $V_u \le \phi_v V_n$: $A_{web} = dt_w$ and d=17.99 in., $t_w = 0.355$ in. for the W18x50 $\phi_v V_n = \phi_v 0.6 F_{vw} A_w = 1.0(0.6)50 ksi(17.99in)0.355in = 191.6k$ So 33.64k \le 191.6 k OK
- 4. Calculate the deflection from the *unfactored* loads, including the self-weight now because it is known, and satisfy the deflection criteria of $\Delta_{LL} \leq \Delta_{LL-limit}$ and $\Delta_{total-limit}$. (This is <u>identical</u> to what is done in Example 1.) $I_x = 800 \text{ in}^3$ for the W18x50


$$\Delta_{\text{total-limit}}$$
 = L/240 = 1.4 in., say Δ_{LL} = L/360 = 0.93 in

$$\Delta_{total} = \frac{PL^3}{48EI} + \frac{5wL^4}{384EI} = \frac{20k(28ft)^3(12^{in}/f_t)^3}{48(30x10^3ksi)800in^3} + \frac{5(1.050^{k/f_t})(28ft)^4(12^{in}/f_t)^3}{384(30x10^3ksi)800in^3} = 0.658 + 0.605 = 1.26in$$

So 1.26 in. \leq 1.4 in., and 0.658 in. \leq 0.93 in. OK

∴ FINAL SELECTION IS W18x50


A steel beam with a 20 ft span is designed to be simply supported at the ends on columns and to carry a floor system made with open-web steel joists at 4 ft on center. The joists span 28 feet and frame into the beam from *one side only* and have a self weight of 8.5 lb/ft. Use A992 (grade 50) steel and select the most economical wide-flange section for the beam with LRFD design. Floor loads are 50 psf LL and 14.5 psf DL.

Select a A992 W shape flexural member ($F_y = 50$ ksi, $F_u = 65$ ksi) for a beam with distributed loads of 825 lb/ft (dead) and 1300 lb/ft (live) and a live point load at midspan of 3 k using the Available Moment tables. The beam is simply supported, 20 feet long, and braced at the ends and midpoint only ($L_b = 10$ ft.) The beam is a roof beam for an institution without plaster ceilings. (LRFD)

SOLUTION:

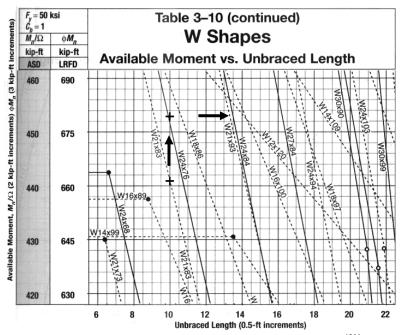
To use the Available Moment tables, the maximum moment required is plotted against the unbraced length. The first solid line with capacity or unbraced length *above* what is needed is the most economical.

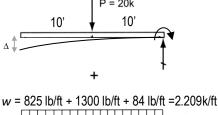
w = 1.2(825 lb/ft) + 1.6(1300 lb/ft) = 3.07 k/ftDESIGN LOADS (load factors applied on figure):

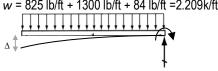
$$M_{u} = \frac{wl^{2}}{2} + Pb = \frac{3.07 \frac{k}{f}(20 ft)^{2}}{2} + 4.8k(10 ft) = 662^{k-ft} \quad V_{u} = wl + P = 3.07 \frac{k}{f}(20 ft) + 4.8k = 66.2k$$

Plotting 662 k-ft vs. 10 ft lands just on the capacity of the W21x83, but it is dashed (and not the most economical) AND we need to consider the contribution of self weight to the total moment. Choose a *trial* section of W24 x 76. Include the new dead load:

$$M_{u-adjusted}^* = 662^{k-ft} + \frac{1.2(76^{lb}/f_t)(20ft)^2}{2(1000^{lb}/f_t)} 680.2^{k-ft} \qquad V_{u-adjusted}^* = 66.2k + 1.2(0.076 \frac{k}{f_t})(20ft) = 68.0k$$

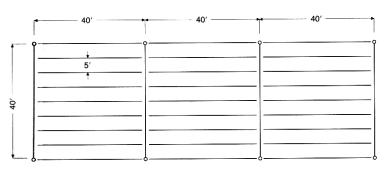

Replot 680.2 k-ft vs. 10ft, which lands *above* the capacity of the W21x83. We can't look up because the chart ends, but we can look for that capacity with a longer unbraced length. This leads us to a **W24** x **84** as the most economical. (With the additional self weight of 84 - 76 lb/ft = 8 lb/ft, the increase in the *factored* moment is only 1.92 k-ft; therefore, it is still OK.)


Evaluate the shear capacity:


$$\phi_{v}V_{n} = \phi_{v}0.6F_{vw}A_{w} = 1.0(0.6)50ksi(24.10in)0.47in = 338.4k$$
 so yes, 68 k \leq 338.4k OK

Evaluate the deflection with respect to the limits of L/240 for live (unfactored) load and L/180 for total (unfactored) load: L/240 = 1 in. and L/180 = 1.33 in.

$$\Delta_{total} = \frac{Pb^2(3l-b)}{6EI} + \frac{wL^4}{24EI} = \frac{3k(10ft)^{12}(3\cdot20-10ft)(12\frac{i\eta_{ft}}{10})^3}{6(30x10^3ksi)2370in^3} + \frac{(2.209\frac{k_{ft}}{10})(20ft)^4(12\frac{i\eta_{ft}}{10})^3}{24(30x10^3ksi)2370in^3} = 0.06 + 0.36 = 0.42in$$


So, $\Delta_{LL} \leq \Delta_{LL-limit}$ and $\Delta_{total} \leq \Delta_{total-limit}$:

 $0.06 \text{ in.} \le 1 \text{ in.}$ and $0.42 \text{ in.} \le 1.33 \text{ in.}$

(This section is so big to accommodate the large bending moment at the cantilever support that it deflects very little.)

∴ FINAL SELECTION IS W24x84

Select the most economical joist for the 40 ft grid structure with floors and a flat roof. The roof loads are 10 lb/ft² dead load and 20 lb/ft² live load. The floor loads are 30 lb/ft² dead load 100 lb/ft² live load. (Live load deflection limit for the roof is L/240, while the floor is L/360). Use the (LRFD) K and LH series charts provided.

Figure 7.218 Framing plan for joists, girders, and columns on 40 ft \times 40 ft grid.

(Top values are maximum total factored load in lb/ft, while the lower (lighter) values are maximum (unfactored) live load for a deflection of L/360)

			Ва	sed or										TS, K-S			(plf)				
Joist Designation	18K3	18K4	18K5	18K6	18K7	18K9	18K10	20K3	20K4	20K5	20K6	20K7	20K9	20K10	22K4	22K5	22K6	22K7	22K9	22K10	22K11
Depth (In.)	18	18	18	18	18	18	18	20	20	20	20	20	20	20	22	22	22	22	22	22	22
Approx. Wt. (lbs./ft.)	6.6	7.2	7.7	8.5	9	10.2	11.7	6.7	7.6	8.2	8.9	9.3	10.8	12.2	8	8.8	9.2	9.7	11.3	12.6	13.8
Span (ft.) ↓																					
38								211 74	255 87	286 98	312 106	348 118	418 139	496 164	280 107	316 119	345 130	384 144	462 170	549 200	628 228
39								199 69	241	271 90	297 98	330 109	397 129	471 151	267 98	300	327 120	364 133	438 157	520 185	595 211
40								190	229	258 84	282 91	313	376	447	253	285	310	346 123	417	495	565
41								64	75	84	91	101	119	140	91 241	102 271	111 295	330	146 396	171 471	195 538
															85	95	103	114	135	159	181
Joist Designation	2	4K4	24K5	24	< 6	24K7	24K8	24	(9	24K10	24K1	2 ;	26K5	26K6	26K	7 2	26K8	26K9	26	K10	26K12
Depth (In.)		24	24	2	4	24	24	24	4	24	24		26	26	26		26	26	2	26	26
Approx. Wt. (lbs./ft.)		8.4	9.3	9.	7	10.1	11.5	12	.0	13.1	16.0		9.8	10.6	10.9	9	12.1	12.2	10	3.8	16.6
Span (ft.)																					
38		307 128	346 143	37 15	-	421 172	465 189	50 20		601 240	691 275		376 169	411 184	457 204		505 223	550 241	_	54 84	691 299
39		292	328 132	35		399 159	441 174	48 18	-	570 222	673 261		357 156	390 170	433		480 206	522 223		19 62	673 283
40	2	277	312 122	34	10	379 148	420 161	45 17	6	541 206	657 247		340 145	370 157	412	2	456 191	496 207	5	89 43	657 269
41	2	264	297	32	4	361 137	399 150	43	5	516 191	640 235		322 134	352 146	393	3	433 177	472 192	5	61 25	640 256
				12				10							.02			102			
Joist Designation		28K6		BK7	28		28K9		K10	28K		30K		30K8		K9	30K		30K11	3	0K12
Depth (In.) Approx. Wt (lbs./ft.)		28 11.4		1.8	12		28 13.0		28 4.3	17		12.		30 13.2		3.4	30 15.		30 16.4		30 17.6
Span (ft.)																					
38		444 214	2	93 37	54 26	0	594 282	3	91 825	69 32	5	531 274	1	586 300	3	39 25	691 353	3	691 353		691 353
39		420 198	2	69 19	51 24	0	564 260	3	370 306	67 30	8	504 253	3	556 277	30	06 00	673 333	3	673 333		673 333
40		399 183	2	45 03	49 22	2	535 241	2	36 84	65 29	1	478 234	1	529 256	2	76 78	657 315	5	657 315		657 315
41		379 170		24 89	46 20		510 224		606 263	64 27		454 217		502 238		47 58	640 300		640 300		640 300

Example 6 (continued)

(Top values are maximum total factored load in lb/ft, while the lower (lighter) values are maximum (unfactored) live load for a deflection of L/360)

	Approx. Wt	Base Depth	SAFE LOAD*	Maxim	ium Yi	eia Str	ength	- Load	s Sho	wn in I	ound	s per L	ınear	root (pit)				
Joist Designation	in Lbs. Per Linear Ft	in inches	in Lbs. Between							CLE	AR SP	AN IN F	EET						
Ü	(Joists only)		22-24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	4
20LH02	10	20	16950	663	655	646	615	582	547	516	487	460	436	412	393	373	355	337	3
				306	303	298	274	250	228	208	190	174	160	147	136	126	117	108	10
20LH03	11	20	18000	703	694	687	678	651	621	592	558	528	499	474	448	424	403	382	3
20LH04	12	20	22050	337 861	333 849	317 837	302 792	280 744	258 700	238 660	218 624	200 589	184 558	169 529	156 502	143 477	133 454	123 433	4
20LH04	12	20	22050	428	406	386	352	320	291	265	243	223	205	189	174	161	149	139	1:
20LH05	14	20	23700	924	913	903	892	856	816	769	726	687	651	616	585	556	529	504	4
				459	437	416	395	366	337	308	281	258	238	219	202	187	173	161	18
20LH06	15	20	31650	1233	1186	1144	1084	1018	952	894	840	790	745	703	666	631	598	568	5
				606	561	521	477	427	386	351	320	292	267	246	226	209	192	178	16
20LH07	17	20	33750	1317	1267	1221	1179	1140	1066	1000	940	885	834	789	745	706	670	637	6
0011100	40	00	0.4000	647	599	556	518	484	438	398	362	331	303	278	256	236	218	202	18
20LH08	19	20	34800	1362 669	1309 619	1263 575	1219 536	1177 500	1140 468	1083 428	1030 395	981 365	931 336	882 309	837 285	795 262	754 242	718 225	6
20LH09	21	20	38100	1485	1429	1377	1329	1284	1242	1203	1167	1132	1068	1009	954	904	858	816	7
LOLITOS			1	729	675	626	581	542	507	475	437	399	366	336	309	285	264	244	2
20LH10	23	20	41100	1602	1542	1486	1434	1386	1341	1297	1258	1221	1186	1122	1060	1005	954	906	8
			l ,	786	724	673	626	585	545	510	479	448	411	377	346	320	296	274	2
0.11.1100				33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	4
24LH03	11	24	17250	513 235	508 226	504 218	484 204	460 188	439 175	418 162	400 152	382 141	366 132	351 124	336 116	322 109	310 102	298 96	2
24LH04	12	24	21150	628	597	568	540	514	490	468	447	427	409	393	376	361	346	333	3
				288	265	246	227	210	195	182	169	158	148	138	130	122	114	107	1
24LH05	13	24	22650	673	669	660	628	598	570	544	520	496	475	456	436	420	403	387	3
24LH06	16	24	30450	308 906	297 868	285 832	264 795	244 756	226 720	210 685	196 655	182 625	171 598	160 571	150 546	141 522	132 501	124 480	4
24LI 100	10	24	30430	411	382	356	331	306	284	263	245	228	211	197	184	172	161	152	1
24LH07	17	24	33450	997	957	919	882	847	811	774	736	702	669	639	610	583	559	535	5
				452	421	393	367	343	320	297	276	257	239	223	208	195	182	171	1
24LH08	18	24	35700	1060 480	1015 447	973 416	933 388	895 362	858 338	817 314	780 292	745 272	712 254	682 238	652 222	625 208	600 196	576 184	5
24LH09	21	24	42000	1248	1212	1177	1146	1096	1044	994	948	903	861	822	786	751	720	690	6
2 121 100			12000	562	530	501	460	424	393	363	337	313	292	272	254	238	223	209	1
24LH10	23	24	44400	1323	1284	1248	1213	1182	1152	1105	1053	1002	955	912	873	834	799	766	7
0411144	05		40000	596	559	528	500	474	439	406	378	351	326	304	285	266	249	234	2
24LH11	25	24	46800	1390 624	1350 588	1312 555	1276 525	1243 498	1210 472	1180 449	1152 418	1101 388	1051 361	1006 337	963 315	924 294	885 276	850 259	8
			33-40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	-
28LH05	13	28	21000	505	484	465	445	429	412	397	382	367	355	342	330	319	309	298	2
0011100	- 10		07000	219	205	192	180	169	159	150	142	133	126	119	113	107	102	97	(
28LH06	16	28	27900	672 289	643 270	618 253	592 238	568 223	546 209	525 197	505 186	486 175	469 166	451 156	436 148	421 140	406 133	393 126	1
28LH07	17	28	31500	757	726	696	667	640	615	591	568	547	528	508	490	474	457	442	4
				326	305	285	267	251	236	222	209	197	186	176	166	158	150	142	1
28LH08	18	28	33750	810	775	744	712	684	657	630	604	580	556	535	516	496	478	462	4
201 1100	01	-00	41550	348	325	305	285	268	252	236	222	209	196	185	175	165	156	148	1-
28LH09	21	28	41550	1000 428	958 400	918 375	879 351	844 329	810 309	778 291	748 274	721 258	694 243	669 228	645 216	622 204	601 193	580 183	5
28LH10	23	28	45450	1093	1056	1018	976	937	900	864	831	799	769	742	715	690	666	643	6
				466	439	414	388	364	342	322	303	285	269	255	241	228	215	204	1
28LH11	25	28	48750	1170	1143	1104	1066	1023	982	943	907	873	841	810	781	753	727	702	6
28LH12	27	28	E2550	498 1285	475 1255	448 1227	423 1200	397 1173	373 1149	351 1105	331 1063	312 1023	294 984	278 948	263 913	249 880	236 849	223 819	7
20LH 12	21	26	53550	1285 545	1255 520	496	476	1173 454	435	408	383	361	340	321	303	285	270	256	2
28LH13	30	28	55800	1342	1311	1281	1252	1224	1198	1173	1149	1126	1083	1041	1002	964	930	897	8
		- 1		569	543	518	495	472	452	433	415	396	373	352	332	314	297	281	2

Shaded areas indicate the bridging requirements.

Example 7 (ASD)

EXAMPLE 5.1 Open-Web Steel Joist Design

A fully exposed roof system for a commercial building, spanning 35 ft, located in Muncie, Indiana, in an urban environment.

IBC specifies a **20 psf snow live load** for Muncie, Indiana, home of Ball State University. Table 1.3 indicates the snow exposure factor: $C_e = 0.9$. Table 1.4 indicates the snow thermal factor: $C_t = 1.0$. Table 1.7 indicates an occupancy importance factor (for Category II): $I_S = 1.0$. Fig. 1.2 indicates the ground snow load: $p_q = 20$ psf

$$P_S = 0.7(0.9)1.0(1.0)20 \text{ psf} = 13.9 \text{ psf}$$

A typical roof construction might consist of:

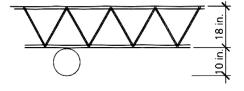
Membrane roofing1.0 psf4 in. average tapered rigid insulation6.0 psfSteel deck (2–4 ft span)1.0 psf

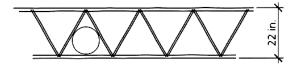
Estimated joist weight:

35 ft span would be a minimum 18 in. joist An average 18 in. joist weight = 9.0 plf

Spaced @ 4 ft-0 in. o.c. 9.0 plf/4 ft 2.3 psf Ceiling suspension system 1.0 psf 1_{2} in. gypsum ceiling 2.0 psf

Mechanical system estimates should also be included; the heavy sprinkler/drain piping running parallel to a joist or pair of joists is especially critical.


Miscellaneous ductwork/electrical 1.0 psf


Total dead load 14.3 psf \times 4 ft o.c. = 57.2 plf Total live load 13.9 psf \times 4 ft o.c. = 55.6 plf Total live load + dead load = 112.8 plf

Use joist load tables to select the best section:

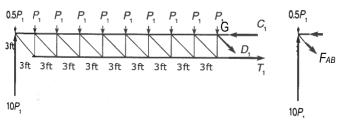
At 35 ft, 18K3 joists carry 149 plf TL and 77 plf LL LL: deflection controls and the weight is 6.6 plf.

At least on the surface, this is the best choice, but depending upon the need to integrate mechanical systems into the joist space, a 20K3 at 6.7 plf or even a 22K4 at 8.0 plf which is both deeper and heavier than the previous selection may be best:

STANDARD LOAD TABLE/OPEN WEB STEEL JOISTS, K-SERIES Based on a Maximum Allowable Tensile Stress of 30 ksi

Joist Designation	18K3	18K4	18K5	18K6	18K7	18K9	18K10	20K3	20K4	20K5	20K6	20K7	20K9	20K10	22K4	22K5	22K6	22K7	22K9	22K10	22K11
Depth (In.)	18	18	18	18	18	18	18	20	20	20	20	20	20	20	22	22	22	22	22	22	22
Approx. Wt. (lbs./ft.)	6.6	7.2	7.7	8.5	9	10.2	11.7	6.7	7.6	8.2	8.9	9.3	10.8	12.2	8	8.8	9.2	9.7	11.3	12.6	13.8
34	158	190	214	233	260	312	370	176	212	239	261	290	349	414	235	265	288	321	386	458	516
	84	98	110	120	132	156	184	105	122	137	149	165	195	229	149	167	182	202	239	280	314
35	149	179	202	220	245	294	349	166	200	226	246	274	329	390	221	249	272	303	364	432	494
	77	90	101	110	121	143	168	96	112	126	137	151	179	210	137	153	167	185	219	257	292

A floor is to be supported by trusses spaced at 5 ft. on center and spanning 60 ft. having a dead load of 53 lb/ft² and a live load of 100 lb/ft². With 3 ft.-long panel points, the depth is assumed to be 3 ft with a span-to-depth ratio of 20. With 6 ft.-long panel points, the depth is assumed to be 6 ft with a span-to-depth ratio of 10. Determine the maximum force in a horizontal chord and the maximum force in a web member. Use factored loads. Assume a self weight of 40 lb/ft.


Table 7.2 Computation of Truss Joint Loads tributary widths Floor Factored Total Factored Node-Truss-Area Factored Load area loads Dead Live totoper 1.2 · P_{dead} + P_{dead} P_{live} Load Node Truss Node Load Wdead $1.6 \cdot P_{\text{live}}$ $1.6 \cdot P_{live}$ Spacing Spacing Α $(=w_{dead} \cdot A)$ $(=w_{live} \cdot A)$ $1.2 \cdot P_{\text{dead}}$ (K) (K/ft^2) (ft) (ft^2) (K) (K) (K) (#/ft2) (K/ft^2) (#/ft2) (ft) (K) Truss 3 ft 3.35 + 0.14 = 3.490.100 5 15 0.795 1.50 0.954 2.40 53 0.053 100 3 deep 6 ft 1.59 3.00 1.908 4.80 6.71 + 0.29 = 7.00100 0.100 30 53 0.053 deep 3 self weight 0.04 k/ft (distributed) $1.2P_{\text{dead}} = 1.2w_{\text{dead}} \cdot tributary \ width = 0.14 \ \text{K}$ $1.2P_{\text{dead}} = 1.2w_{\text{dead}} \cdot tributary \ width = 0.29 \ \text{K}$

NOTE - end panels only have half the tributary width of interior panels 0.5P, P, P, P, P, P_1 P_2 $0.5P_3$ 20 bays \times 3 ft = 60 ft 10P,

FBD 3: Maximum web force will be in the end diagonal (just like maximum shear in a beam)

$$\Sigma F_y = 10P_1 - 0.5P_1 - F_{AB} \cdot \sin 45^\circ = 0$$

 $F_{AB} = 9.5P_1/\sin 45^\circ = 9.5(3.49 \text{ k})/0.707 = 46.9 \text{ k}$

FBD 1 for 3 ft deep truss

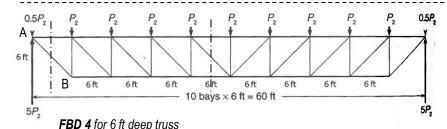
FBD 2 of cut just to the left of midspan

FBD 3 of cut just to right of left support

FBD 2: Maximum chord force (top or bottom) will be at midspan

$$\Sigma M_{G} = -9.5P_{1}(30^{ft}) + P_{1}(27^{ft}) + P_{1}(24^{ft}) + P_{1}(21^{ft}) + P_{1}(18^{ft})$$

$$+ P_{1}(15^{ft}) + P_{1}(12^{ft}) + P_{1}(9^{ft}) + P_{1}(6^{ft}) + P_{1}(3^{ft}) + T_{1}(3^{ft}) = 0$$


$$T_{1} = P_{1}(150^{ft})/3^{ft} = (3.49 \text{ k})(50) = 174.5 \text{ k}$$

$$\Sigma F_y = 10P_1 - 9.5P_1 - D_1 \cdot \sin 45^\circ = 0$$

 $D_1 = 0.5(3.49 \text{ k})/0.707 = 2.5 \text{ k}$ (minimum near midspan)

$$\Sigma F_x = -C_1 + T_1 + D_1 \cdot \cos 45^\circ = 0$$

 $C_1 = 176.2 k$

FBD 6: Maximum web force will be in the end diagonal

$$\Sigma F_y = 5P_2 - 0.5P_2 - F_{AB} \cdot \sin 45^\circ = 0$$

 $F_{AB} = 4.5P_2 \cdot \sin 45^\circ = 4.5(7 \text{ k}) \cdot 0.707 = 44.5 \text{ k}$

0.5P_o 0.5P C_2 6ft 6 ft 6 ft 5P, 5P,

FBD 5 of cut just to the left of midspan

 $\Sigma F_V = 5P_2 - 4.5P_1 - D_s \cdot \sin 45^\circ = 0$

 $D_2 = 0.5(7 \text{ k})/0.707 = 4.9 \text{ k}$ (minimum near midspan)

FBD 5: Maximum chord (top or bottom) force will be at midspan

 $T_2 = P_2(75^{ft})/6^{ft} = (7 \text{ k})(12.5) = 87.5 \text{ k}$

 $\Sigma M_G = -4.5P_2(30^{ft}) + P_2(24^{ft}) + P_2(18^{ft}) + P_2(12^{ft}) + P_2(6^{ft}) + T_2(6^{ft}) = 0$

FBD 6 of cut just to right $\Sigma F_x = -C_2 + T_2 + D_2 \cdot \cos 45^\circ = 0$ of left support

 $C_2 = 92.4 k$

Example 9 (pg 367) + LRFD Example Problem 10.10 (Figure 10.41)

A 24-ft.-tall, A572 grade 50, steel column (W14×82) with an F_y = 50 ksi has pins at both ends. Its weak axis is braced at midheight, but the column is free to buckle the full 24 ft. in the strong direction. Determine the safe load capacity for this column. using ASD and LRFD.

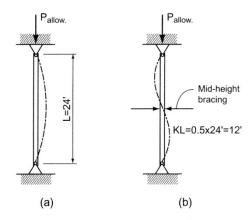
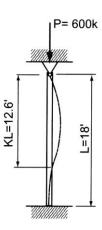
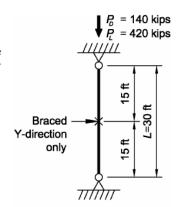



Figure 10.41 (a) Strong axis buckling. (b) Weak axis buckling.

Example 10 (pg 371) + chart method Example Problem 10.14: Design of Steel Columns (Figure 10.48)


Select the most economical W12 \times column 18' in height to support an axial load of 600 kips using A572 grade 50 steel. Assume that the column is hinged at the top but fixed at the base. Use LRFD assuming that the load is a dead load (factor of 1.4)

ALSO: Select the W12 column using the Available Strength charts.

Given:

Redesign the column from Example E.1a assuming the column is laterally braced about the y-y axis and torsionally braced at the midpoint. Use both ASD and LRFD. $F_y = 50 \text{ ksi.}$ (Not using Available Strength charts)

Solution:

ASD:

- 1. $P_a = 140 k + 420 k = 560 k$
- 2. The effective length in the weak (y-y) axis is 15 ft, while the effective length in the strong (x-x) axis is 30 ft. (K = 1, KL = 1×30 ft). To find kL/ r_x and kL/ r_y we can assume or choose values from the wide flange charts. r_y 's range from 1 to 3 in., while r_x 's range from 3 to 14 inches. Let's try r_y = 2 in and r_x = 9 in. (something in the W21 range, say.)

$$kL/r_y \cong 15 \text{ ft}(12 \text{ in/ft})/2 \text{ in.} = 90 \iff GOVERNS \text{ (is larger)}$$

$$kL/r_x \cong 30 \text{ ft}(12 \text{ in/ft})/9 \text{ in.} = 40$$

3. Find a section with sufficient area (which then will give us "real" values for r_x and r_y):

If
$$P_a \le P_n/\Omega$$
, and $P_n = F_{cr} A$, we can find $A \ge P_a \Omega/F_{cr}$ with $\Omega = 1.67$

The tables provided have ϕF_{cr} , so we can get F_{cr} by dividing by $\phi = 0.9$

$$\phi F_{cr}$$
 for 90 is 24.9 ksi, $F_{cr} = 24.9 \text{ ksi}/0.9 = 27.67 \text{ ksi}$ so $A \ge 560 \text{ k}(1.67)/27.67 \text{ ksi} = 33.8 \text{ in}^2$

4. Choose a trial section, and find the effective lengths and associated available strength, F_{cr}:

Looking from the smallest sections, the W14's are the first with a big enough area:

Try a W14 x 120 (A = 35.3 in²) with
$$r_y$$
 = 3.74 in and r_x = 6.24 in.: kL/r_y = 48.1 and kL/r_x = 57.7 (GOVERNS)

 ϕF_{cr} for 58 is 35.2 ksi, $F_{cr} = 39.1$ ksi so A \geq 560 k(1.67)/39.1 ksi = 23.9 in²

Choose a W14 x 90 (Choosing a W14 x 82 would make kL/r_x = 59.5, and A_{req'd} = 24.3 in², which is more than 24.1 in²!)

LRFD:

- 1. $P_u = 1.2(140 \text{ k}) + 1.6(420 \text{ k}) = 840 \text{ k}$
- 2. The effective length in the weak (y-y) axis is 15 ft, while the effective length in the strong (x-x) axis is 30 ft. (K = 1, KL = 1×30 ft). To find kL/ r_x and kL/ r_y we can assume or choose values from the wide flange charts. r_y 's range from 1 to 3 in., while r_x 's range from 3 to 14 inches. Let's try r_y = 2 in and r_x = 9 in. (something in the W21 range, say.)

$$kL/r_y \cong 15 \text{ ft}(12 \text{ in/ft})/2 \text{ in.} = 90 \iff GOVERNS \text{ (is larger)}$$

$$kL/r_x \cong 30 \text{ ft}(12 \text{ in/ft})/9 \text{ in.} = 40$$

3. Find a section with sufficient area (which then will give us "real" values for rx and ry):

If
$$P_u \le \phi P_n$$
, and $\phi P_n = \phi F_{cr} A$, we can find $A \ge P_u/\phi F_{cr}$ with $\phi = 0.9$

$$\phi F_{cr}$$
 for 90 is 24.9 ksi, so A \geq 840 k/24.9 ksi = 33.7 in²

4. Choose a trial section, and find the effective lengths and associated available strength, φF_{cr}:

Looking from the smallest sections, the W14's are the first with a big enough area:

Try a W14 x 120 (A = 35.3 in²) with
$$r_v = 3.74$$
 in and $r_x = 6.24$ in.: $kL/r_v = 48.1$ and $kL/r_x = 57.7$ (GOVERNS)

 ϕF_{cr} for 58 is 35.2 ksi, so A \geq 840 k/35.2 ksi = 23.9 in²

Choose a W14 x 90 (Choosing a W14 x 82 would make kL/r_x = 59.5, and A_{req'd} = 24.3 in², which is more than 24.1 in²!)

Example 6-1:

For the building frame shown in Fig. 6-20, determine the effective column length factor, K, the slenderness ratio, KL/r for each column. Assume the columns buckle and the beams bend about their strong axis.

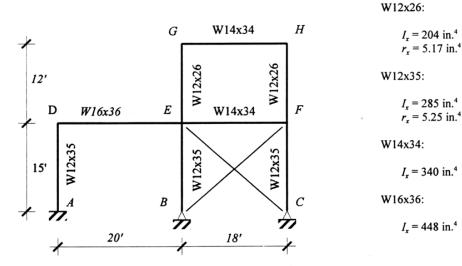


Figure 6-20: Building frame for Example 6-1.

Solution:

Note: The diagonal bracing prevents sidesway of the first story columns only.

$$G_{A} = 1.0 \text{ (fixed support)}$$

$$G_{B} = G_{C} = 10.0 \text{ (pinned support)}$$

$$G_{C} = \frac{\frac{285}{15}}{\frac{448}{20}} = 0.85$$

$$G_{C} = \frac{\frac{285}{15} + \frac{204}{12}}{\frac{448}{20} + \frac{340}{18}} = 0.87$$

$$G_{C} = \frac{\frac{285}{15} + \frac{204}{12}}{\frac{340}{18}} = 1.91$$

$$G_{C} = G_{C} = \frac{\frac{204}{12}}{\frac{340}{18}} = 0.90$$

Column	G_{Top}	G_{Bot}	K		KL/r
AD	0.85	1.0	0.76	Braced	0.76(15)(12)/5.25 = 26.1
BE	0.87	10.0	0.85	Braced	0.85(15)(12)/5.25 = 29.1
CF	1.91	10.0	0.90	Braced	0.90(15)(12)/5.25 = 30.9
EG	0.90	0.87	1.29	Unbraced	1.29(12)(12)/5.17 = 35.9
FH	0.90	1.91	1.43	Unbraced	1.43(12)(12)/5.17 = 39.8

Table 6-1: Column effective length factors and slenderness ratios for Example 6-1.

Investigate the accepatbility of a W16 x 67 used as a beam-column under the unfactored loading shown in the figure. It is A992 steel ($F_y = 50 \text{ ksi}$). Assume 25% of the load is dead load with 75% live load.

SOLUTION:

DESIGN LOADS (shown on figure):

Axial load = 1.2(0.25)(350k)+1.6(0.75)(350k)=525k

Moment at joint = $1.2(0.25)(60^{k-ft}) + 1.6(0.75)(60^{k-ft}) = 90^{k-ft}$

Determine column capacity and fraction to choose the appropriate interaction equation:

$$\begin{split} \frac{kL}{r_x} &= \frac{15 \, ft (12^{\frac{in}{f_f}})}{6.96 in} = 25.9 \quad \text{and} \quad \frac{kL}{r_y} = \frac{15 \, ft (12^{\frac{in}{f_f}})}{2.46 in} = 73 \quad \text{(governs)} \\ P_c &= \phi_c P_n = \phi_c F_{cr} A_g = (30.5 ksi) 19.7 in^2 = 600.85 k \\ \frac{P_r}{P_c} &= \frac{525 \, k}{600.85 \, k} = 0.87 > 0.2 \quad \text{so use} \quad \frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \leq 1.0 \end{split}$$

There is no bending about the y axis, so that term will not have any values.

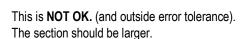
Determine the bending moment capacity in the x direction:

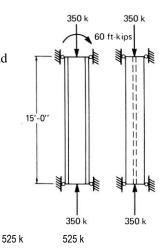
The unbraced length to use the full plastic moment (L_p) is listed as 8.69 ft, and we are over that so of we don't want to determine it from formula, we can find the beam in the Available Moment vs. Unbraced Length tables. The value of ϕM_n at L_b =15 ft is 422 k-ft.

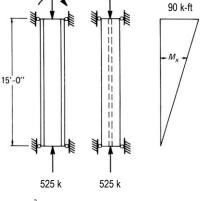
Determine the magnification factor when $M_1 = 0$, $M_2 = 90$ k-ft:

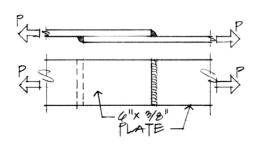
$$C_m = 0.6 - 0.4 \frac{M_1}{M_2} = 0.6 - \frac{0^{k-ft}}{90^{k-ft}} = 0.6 \le 1.0$$

$$P_{e1} = \frac{\pi^2 EA}{\left(\frac{Kl}{r}\right)^2} = \frac{\pi^2 (30x10^3 ksi)19.7 in^2}{\left(25.9\right)^2} = 8,695.4k$$


$$B_1 = \frac{C_m}{1 - \left(\frac{P_u}{P_{e1}}\right)} = \frac{0.6}{1 - \left(\frac{525k}{8695.4k}\right)} = 0.64 \ge 1.0$$
 USE 1.0 Mu = (1)90 k-ft


Finally, determine the interaction value:


$$\frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) = 0.87 + \frac{8}{9} \left(\frac{90^{k-ft}}{422^{k-ft}} \right) = 1.06 \le 1.0$$
 This is **NOT OK.** (and outside The section should be larger.


Example 14

10.9 Determine the maximum load carrying capacity of this lap joint., assuming A36 steel with E60XX electrodes.

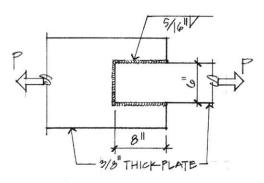
10.7 Determine the capacity of the connection in Figure 10.44 assuming A36 steel with E70XX electrodes.

Solution:

Capacity of weld:

For a $\frac{5}{16}$ " fillet weld, $\phi S = 6.96$ k/in

Weld length = 8 in + 6 in + 8 in = 22 in.


Weld capacity = $22'' \times 6.96$ k/in = 153.1 k

Capacity of plate:

$$\phi P_n = \phi F_y A_g \quad \phi = 0.9$$

Plate capacity = $0.9 \times 36 \text{ k/in}^2 \times 3/8'' \times 6'' = 72.9 \text{ k}$

∴ Plate capacity governs, $P_{\text{allow}} = 72.9 \text{ k}$

The weld size used is obviously too strong. What size, then, can the weld be reduced to so that the weld strength is more compatible to the plate capacity? To make the weld capacity \approx plate capacity:

 $22'' \times \text{(weld capacity per in.)} = 72.9 \text{ k}$

Weld capacity per inch = $\frac{72.9 \text{ k}}{22 \text{ in}}$ - 3.31 k/in.

From Available Strength table, use 3/16'' weld $(\phi S = 4.18 \text{ k/in.})$

Minimum size fillet = $\frac{3}{16}$ " based on a $\frac{3}{8}$ " thick plate.

Example 16

10.5 Using the AISC framed beam connection bolt shear in Table 7-1, determine the shear adequacy of the connection shown in Figure 10.28. What thickness and angle length are

required? Also determine the bearing capacity of the wide flange sections.

Factored end beam reaction = 90 k.

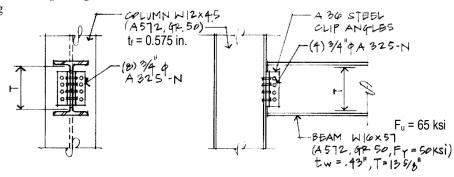


Figure 10.28 Typical beam-column connection.

10.2 The butt splice shown in Figure 10.22 uses two 8 x $\frac{3}{8}$ " plates to "sandwich" in the $8 \times \frac{1}{2}$ " plates being joined. Four \%"\phi A325-SC bolts are used on both sides of the splice. Assuming A36 steel and standard round holes, determine the allowable capacity of the connection.

0 CENTER PLATE

SOLUTION:

Shear, bearing and net tension will be checked to determine the critical conditions that governs the capacity of the connection.

Shear: Using the AISC available shear in Table 7-3 (Group A):

$$\phi R_n = 26.4 \text{ k/bolt x 4 bolts} = 105.6 \text{ k}$$

Bearing: Using the AISC available bearing in Table 7-4:

There are 4 bolts bearing on the center (1/2") plate, while there are 4 bolts bearing on a total width of two sandwich plates (3/4" total). The thinner bearing width will govern. Assume 3 in. spacing (center to center) of bolts. For A36 steel, $F_u = 58$ ksi.

$$\phi R_n = 91.4 \text{ k/bolt/in. x } 0.5 \text{ in. x } 4 \text{ bolts} = 182.8 \text{ k} \text{ (Table 7-4)}$$

With the edge distance of 2 in., the bearing capacity might be smaller from Table 7-5 which says the distance should be $2\frac{1}{4}$ in for full bearing (and we have 2 in.).

$$\phi R_0 = 89.6 \text{ k/bolt/in. x } 0.5 \text{ in. x } 4 \text{ bolts} = 179.2 \text{ k}$$

Tension: The center plate is critical, again, because its thickness is less than the combined thicknesses of the two outer plates. We must consider tension yielding and tension rupture:

$$\phi R_n = \phi F_v A_q$$
 and $\phi R_n = \phi F_u A_e$ where $A_e = A_{net} U$

$$A_g = 8 \text{ in. } x \frac{1}{2} \text{ in.} = 4 \text{ in}^2$$

The holes are considered 1/8 in. larger than the bolt hole diameter = (7/8 + 1/8) = 1.0 in.

$$A_n = (8 \text{ in.} - 2 \text{ holes } x \ 1.0 \text{ in.}) \ x \frac{1}{2} \text{ in.} = 3.0 \text{ in}^2$$

The whole cross section sees tension, so the shear lag factor U = 1

$$\phi F_{\nu} A_g = 0.9 \text{ x } 36 \text{ ksi x } 4 \text{ in}^2 = 129.6 \text{ k}$$

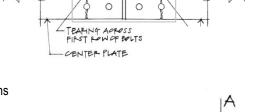
$$\phi F_u A_e = 0.75 \text{ x } 58 \text{ ksi x } (1) \text{ x } 3.0 \text{ in}^2 = 130.5 \text{ k}$$

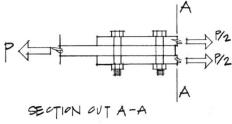
Block Shear Rupture: It is possible for the center plate to rip away from the sandwich plates leaving the block (shown hatched) behind:

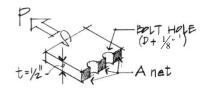
$$\phi R_n = \phi(0.6F_u A_{nv} + U_{bs} F_u A_{nt}) \le \phi(0.6F_v A_{qv} + U_{bs} F_u A_{nt})$$

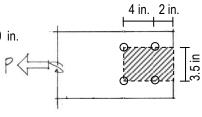
where A_{nv} is the area resisting shear, A_{nt} is the area resisting tension, A_{gv} is the gross area resisting shear, and U_{bs} = 1 when the tensile stress is uniform.

$$A_{gv} = (4 + 2 \text{ in.}) \times \frac{1}{2} \text{ in.} = 3 \text{ in}^2$$


$$A_{nv} = A_{gv} - 1\frac{1}{2}$$
 holes area = $3 \text{ in}^2 - 1.5 \text{ x } 1 \text{ in. x } \frac{1}{2} \text{ in. = } 2.25 \text{ in}^2$


$$A_{nt} = 3.5 \text{ in. } x \text{ t} - 1 \text{ holes} = 3.5 \text{ in. } x \frac{1}{2} \text{ in} - 1 \text{ x} 1 \text{ in. } x \frac{1}{2} \text{ in.} = 1.25 \text{ in}^2$$


$$\phi(0.6F_uA_{nv} + U_{bs}F_uA_{nt}) = 0.75 \text{ x } (0.6 \text{ x } 58 \text{ ksi x } 2.25 \text{ in}^2 + 1 \text{ x } 58 \text{ ksi x } 1.25 \text{ in}^2) = 113.1 \text{ k}$$


$$\phi(0.6F_yA_{gv} + U_{bs}F_vA_{nt}) = 0.75 \text{ x} (0.6 \text{ x} 36 \text{ ksi x} 3 \text{ in}^2 + 1 \text{ x} 58 \text{ ksi x} 1.25 \text{ in}^2) = 103.0 \text{ k}$$

The maximum connection capacity (*smallest value*) is governed by block shear rupture:

The steel used in the connection and beams is A992 with $F_y = 50$ ksi, and $F_u = 65$ ksi. Using A490-N bolt material, determine the maximum capacity of the connection based on shear in the bolts, bearing in all materials and pick the number of bolts and angle length (not staggered). Use A36 steel for the angles.

W21x93: d=21.62 in, $t_{\rm w}=0.58$ in, $t_{\rm f}=0.93$ in

W10x54: $t_f = 0.615$ in

TOP & BOTTOM BEAM W2|x92 COLUMN W10x54

SOLUTION:

The maximum length the angles can be depends on how it fits between the top and bottom flange with some clearance allowed for the fillet to the flange, and getting an air wrench in to tighten the bolts. This example uses 1" of clearance:

Available length = beam depth - both flange thicknesses - 1" clearance at top & 1" at bottom

$$= 21.62 \text{ in} - 2(0.93 \text{ in}) - 2(1 \text{ in}) = 17.76 \text{ in}.$$

With the spaced at 3 in. and 1 1/4 in. end lengths (each end), the maximum number of bolts can be determined:

Available length ≥ 1.25 in. + 1.25 in. + 3 in. x (number of bolts – 1)

number of bolts \leq (17.76 in - 2.5 in. - (-3 in.))/3 in. = 6.1, so 6 bolts.

It is helpful to have the All-bolted Double-Angle Connection Tables 10-1. They are available for ¾", 7/8", and 1" bolt diameters and list angle thicknesses of ¼", 5/16", 3/8", and ½". Increasing the angle thickness is likely to increase the angle strength, although the limit states include shear yielding of the angles, shear rupture of the angles, and block shear rupture of the angles.

For these diameters, the available **shear** (double) from Table 7-1 for 6 bolts is (6)45.1 k/bolt = 270.6 kips, (6)61.3 k/bolt = 367.8 kips, and (6)80.1 k/bolt = 480.6 kips.

Tables 10-1 (not all provided here) list a bolt and angle available strength of 271 kips for the ¾" bolts, 296 kips for the 7/8" bolts, and 281 kips for the 1" bolts. It appears that increasing the bolt diameter to 1" will not gain additional load. <u>Use 7/8" bolts.</u>

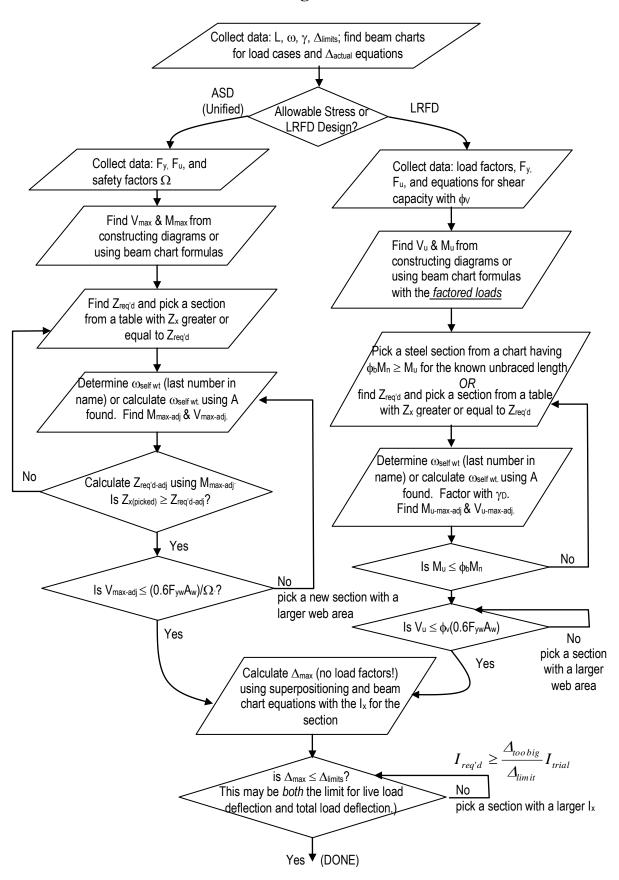
Beam	<i>F_y</i> = 50 ksi <i>F_u</i> = 65 ksi	0 l ij.	Ta All-B	ble 10 olted	•			-	jle		⁷ /8	
Angle	$F_y = 36 \text{ ksi}$ $F_u = 58 \text{ ksi}$	2.000	de archi	Con:	nec			ngth, k	ips	- 13 - 13	Bol	ts :
	6 Rows	88.18.1	1.024.6				An	gle Thi	ckness	, in.	entil i	
W4	0, 36, 33, 30, 27,	Bolt Group	Thread Cond.	Hole Type	1	/4	5	16	3	/8	S. 1	/2
	24, 21	Стопр	Collu.	турс	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	\$200		N	STD	98.6	148	123	185	148	222	195	292
			X	STD	98.6	148	123	185	148	222	197	296
			00	STD	98.6	148	106	159	106	159	106	159
	Varies	Group	SC Class A	OVS	90.1	135	90.1	135	90.1	135	90.1	135
F	ngh in	Α	Class A	SSLT	97.3	146	106	159	106	159	106	159
	90 - 16		00	STD	98.6	148	123	185	148	222	176	264
	. 8		SC Class D	OVS	93.5	140	117	175	140	210	150	225
	3		Class B	SSLT	97.3	146	122	182	146	219	176	264
.¥I	, · · ·	\$57 -	N	STD	98.6	148	123	185	148	222	197	296
	¥ 7 7 5 5	1.7	X	STD	98.6	148	123	185	148	222	197	296
183 = 15	1	881	SC	STD	98.6	148	123	185	133	199	133	199
39	1	Group	Class A	OVS	93.5	140	113	169	113	169	113	169
1	Th.	В	UidSS A	SSLT	97.3	146	122	182	133	199	133	199
		1 [SC	STD	98.6	148	123	185	148	222	197	296
			Class B	OVS	93.5	140	117	175	140	210	187	281
		, ·	Class B	SSLT	97.3	146	122	182	146	219	195	292

 $\phi R_n = 367.8$ kips for double shear of 7/8" bolts

 $\phi R_n = 296$ kips for limit state in angles

We also need to evaluate **bearing** of bolts on the beam web, and column flange where there are bolt holes. Table 7-4 provides available bearing strength for the material type, bolt diameter, hole type, and spacing per inch of material thicknesses.

a) Bearing for beam web: There are 6 bolt holes through the beam web. This is typically the critical bearing limit value because there are two angle legs that resist bolt bearing and twice as many bolt holes to the column. The material is A992 (F_u = 65 ksi), 0.58" thick, with 7/8" bolt diameters at 3 in. spacing.


 $\phi R_n = 6 \text{ bolts} \cdot (102 \text{ k/bolt/inch}) \cdot (0.58 \text{ in}) = 355.0 \text{ kips}$

b) Bearing for column flange: There are 12 bolt holes through the column. The material is A992 (F_u = 65 ksi), 0.615" thick, with 1" bolt diameters.

 $\phi R_n = 12 \text{ bolts} \cdot (102 \text{ k/bolt/inch}) \cdot (0.615 \text{ in}) = 752.8 \text{ kips}$

Although, the bearing in the beam web is the smallest at 355 kips, with the shear on the bolts even smaller at 324.6 kips, the maximum capacity for the simple-shear connector is 296 kips limited by the critical capacity of the angles.

Beam Design Flow Chart

Listing of W Shapes in Descending order of Z_x for Beam Design

$Z_x - US$	$I_x - US$		$I_x - SI$	$Z_x - SI$	$Z_x - US$	$I_x - US$		$I_x - SI$	$Z_x - SI$
$(in.^3)$	(in. ⁴)	Section	(10^6mm.^4)	(10^3mm.3)	$(in.^3)$	(in. ⁴)	Section	(10^6mm.^4)	(10^3mm.3)
514	7450	W33X141	3100	8420	289	3100	W24X104	1290	4740
511	5680	W24X176	2360	8370	287	1900	W14X159	791	4700
509	7800	W36X135	3250	8340	283	3610	W30X90	1500	4640
500	6680	W30X148	2780	8190	280	3000	W24X103	1250	4590
490	4330	W18X211	1800	8030	279	2670	W21X111	1110	4570
487	3400	W14X257	1420	7980	278	3270	W27X94	1360	4560
481	3110	W12X279	1290	7880	275	1650	W12X170	687	4510
476	4730	W21X182	1970	7800	262	2190	W18X119	912	4290
468	5170	W24X162	2150	7670	260	1710	W14X145	712	4260
467	6710	W33X130	2790	7650	254	2700	W24X94	1120	4160
464	5660	W27X146	2360	7600	253	2420	W21X101	1010	4150
442	3870	W18X192	1610	7240	244	2850	W27X84	1190	4000
437	5770	W30X132	2400	7160	243	1430	W12X152	595	3980
436	3010	W14X233	1250	7140	234	1530	W14X132	637	3830
432	4280	W21X166	1780	7080	230	1910	W18X106	795	3770
428	2720	W12X252	1130	7010	224	2370	W24X84	986	3670
418	4580	W24X146	1910	6850	221	2070	W21X93	862	3620
415	5900	W33X118	2460	6800	214	1240	W12X136	516	3510
408	5360	W30X124	2230	6690	212	1380	W14X120	574	3470
398	3450	W18X175	1440	6520	211	1750	W18X97	728	3460
395	4760	W27X129	1980	6470	200	2100	W24X76	874	3280
390	2660	W14X211	1110	6390	198	1490	W16X100	620	3240
386	2420	W12X230	1010	6330	196	1830	W21X83	762	3210
378	4930	W30X116	2050	6190	192	1240	W14X109	516	3150
373	3630	W21X147	1510	6110	186	1530	W18X86	637	3050
370	4020	W24X131	1670	6060	186	1070	W12X120	445	3050
356	3060	W18X158	1270	5830	177	1830	W24X68	762	2900
355	2400	W14X193	999	5820	175	1300	W16X89	541	2870
348	2140	W12X210	891	5700	173	1110	W14X99	462	2830
346	4470	W30X108	1860	5670	172	1600	W21X73	666	2820
343	4080	W27X114	1700	5620	164	933	W12X106	388	2690
333	3220	W21X132	1340	5460	163	1330	W18X76	554	2670
327	3540	W24X117	1470	5360	160	1480	W21X68	616	2620
322	2750	W18X143	1140	5280	157	999	W14X90	416	2570
320	2140	W14X176	891	5240	153	1550	W24X62	645	2510
312	3990	W30X99	1660	5110	150	1110	W16X77	462	2460
311	1890	W12X190	787	5100	147	833	W12X96	347	2410
307	2960	W21X122	1230	5030	147	716	W10X112	298	2410
305	3620	W27X102	1510	5000	146	1170	W18X71	487	2390
290	2460	W18X130	1020	4750				((continued)

Listing of W Shapes in Descending order of Z_x for Beam Design (Continued)

$Z_x - US$ (in. ³)	$I_x - US$ (in. ⁴)	Section	$I_{x} - SI$ (10^{6}mm.^{4})	$\frac{Z_x - SI}{(10^3 \text{mm.3})}$	$Z_x - US$ (in. ³)	$I_x - US$ (in. ⁴)	Section	$\frac{I_x - SI}{(10^6 \text{mm.}^4)}$	$Z_{x} - SI$ (10^{3}mm.3)
144	1330	W21X62	554	2360	66.5	510	W18X35	212	1090
139	881	W14X82	367	2280	64.2	348	W12X45	145	1050
134	1350	W24X55	562	2200	64.0	448	W16X36	186	1050
133	1070	W18X65	445	2180	61.5	385	W14X38	160	1010
132	740	W12X87	308	2160	60.4	272	W10X49	113	990
130	954	W16X67	397	2130	59.8	228	W8X58	94.9	980
130	623	W10X100	259	2130	57.0	307	W12X40	128	934
129	1170	W21X57	487	2110	54.9	248	W10X45	103	900
126	1140	W21X55	475	2060	54.6	340	W14X34	142	895
126	795	W14X74	331	2060	54.0	375	W16X31	156	885
123	984	W18X60	410	2020	51.2	285	W12X35	119	839
119	662	W12X79	276	1950	49.0	184	W8X48	76.6	803
115	722	W14X68	301	1880	47.3	291	W14X30	121	775
113	534	W10X88	222	1850	46.8	209	W10X39	87.0	767
112	890	W18X55	370	1840	44.2	301	W16X26	125	724
110	984	W21X50	410	1800	43.1	238	W12X30	99.1	706
108	597	W12X72	248	1770	40.2	245	W14X26	102	659
107	959	W21X48	399	1750	39.8	146	W8X40	60.8	652
105	758	W16X57	316	1720	38.8	171	W10X33	71.2	636
102	640	W14X61	266	1670	37.2	204	W12X26	84.9	610
101	800	W18X50	333	1660	36.6	170	W10X30	70.8	600
97.6	455	W10X77	189	1600	34.7	127	W8X35	52.9	569
96.8	533	W12X65	222	1590	33.2	199	W14X22	82.8	544
95.4	843	W21X44	351	1560	31.3	144	W10X26	59.9	513
92.0	659	W16X50	274	1510	30.4	110	W8X31	45.8	498
90.7	712	W18X46	296	1490	29.3	156	W12X22	64.9	480
87.1	541	W14X53	225	1430	27.2	98.0	W8X28	40.8	446
86.4	475	W12X58	198	1420	26.0	118	W10X22	49.1	426
85.3	394	W10X68	164	1400	24.7	130	W12X19	54.1	405
82.3	586	W16X45	244	1350	23.1	82.7	W8X24	34.4	379
78.4	612	W18X40	255	1280	21.6	96.3	W10X19	40.1	354
78.4	484	W14X48	201	1280	20.4	75.3	W8X21	31.3	334
77.9	425	W12X53	177	1280	20.1	103	W12x16	42.9	329
74.6	341	W10X60	142	1220	18.7	81.9	W10X17	34.1	306
73.0	518	W16X40	216	1200	17.4	88.6	W12X14	36.9	285
71.9	391	W12X50	163	1180	17.4 17.0	61.9	W8X18	25.8	279
70.1	272	W8X67	113	1150	16.0	68.9	W10X15	28.7	262
69.6	428	W14X43	178	1140	13.6	48.0	W8X15	20.0	223
66.6	303	W10X54	126	1090	12.6	53.8	W10X12	22.4	206
					11.4	39.6	W8X13	16.5	187
					8.87	30.8	W8X10	12.8	145

Available Critical Stress, $\phi_c F_{cr}$, for Compression Members, ksi ($F_y = 36$ ksi and $\phi_c = 0.90$)

KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$
1	32.4	41	29.7	81	22.9	121	15.0	161	8.72
2	32.4	42	29.5	82	22.7	122	14.8	162	8.61
2 3	32.4	43	29.4	83	22.5	123	14.6	163	8.50
4	32.4	44		84	22.3		14.4	164	8.40
5	32.4	45	29.1	85	22.1	125	14.2	165	8.30
6	32.3	46	29.0	86	22.0	126	14.0	166	8.20
7	32.3	47	28.8	87	21.8	127	13.9	167	8.10
8	32.3	48	28.7	88	21.6	128	13.7	168	8.00
9	32.3	49	28.6	89 90	21.4	129	13.5	169	7.91
10	32.2	50	28.4	90	21.2	130	13.3	170	7.82
11	32.2	51	28.3	91	21.0	131	13.1	171	7.73
12	32.2	52	28.1	92	20.8	132	12.9	172	7.64
13	32.1	53		93	20.5		12.8	173	7.55
14	32.1	54	27.8	94	20.2	12/	12.6	174	7.46
15	32.0	55	27.6	95	20.3	135	12.4	175	7.38
16	32.0	56	27.5	96	19.9	136	12.2	176	7.29
17	31.9	57	27.3	97	19.7	137	12.0	177	7.21
18	31.9	58	27.1	98	19.5 19.3	138	11.9	178	7.13
19	31.8	59	27.0	99			11.7	179	7.05
20	31.7	60	26.8	100	19.1	140	11.5	180	6.97
21	31.7	61	26.6	101	18.9	141	11.4	181	6.90
22	31.6	62	26.5	102	18.7	142	11.2	182	6.82
23	31.5	63	26.3	103	10 5	1/2	11.0	183	6.75
24	31.4	64	26.1	104	18.3	144	10.9	184	6.67
	31.4	65	25.9	105	18.1	145	10.7		6.60
26	31.3	66	25.8	106	17.9	146	10.6	186	6.53
27	31.2	67	25.6	107	17.7 17.5	147	10.5	187	6.46
28	31.1	68	25.4	108	17.5	148	10.3	188	6.39
29	31.0	69	25.2	109	17.3		10.2	189	
	30.9	70	25.0	110	17.1		10.0	190	6.26
31	30.8	71	24.8	111	16.9	151	9.91	191	6.19
32	30.7	72	24.7	112	16.7	152	9.78	192	6.13
33	30.6	73	24.5	113	16.5	153	9.65	193	6.06
34	30.5	74	24.3	114	16.3	154	9.53	194	6.00
35	30.4	75	24.1	115	16.2	155	9.40	195	5.94
36	30.3	76	23.9	116 117 118	16.0	156	9.28	196 197 198	5.88
37	30.1	77	23.7	117	15.8	157	9.17	197	5.82
38	30.0	78	23.5	1.10	10.0	158	9.05	100	0.70
39	29.9	79	23.3	119	15.4	159	8.94	199	5.70
40	29.8	80	23.1	120	15.2	160	8.82	200	5.65

Available Critical Stress, $\phi_c F_{cr}$, for Compression Members, ksi (F_y = 50 ksi and ϕ_c = 0.90)

KL/r	$\phi_c F_{cr}$								
1	45.0	41	39.8	81	27.9	121	15.4	161	8.72
2	45.0	42	39.6	82	27.5	122	15.2	162	8.61
3	45.0	43	39.3	83	27.2	123	14.9	163	8.50
4	44.9	44	39.1	84	26.9	124	14.7	164	8.40
5	44.9	45	38.8	85	26.5	125	14.5	165	8.30
6	44.9	46	38.5	86	26.2	126	14.2	166	8.20
7	44.8	47	38.3	87	25.9	127	14.0	167	8.10
8	44.8	48	38.0	88	25.5	128	13.8	168	8.00
9	44.7	49	37.8	89	25.2	129	13.6	169	7.91
10	44.7	50	37.5	90	24.9	130	13.4	170	7.82
11	44.6	51	37.2	91	24.6	131	13.2	171	7.73
12	44.5	52	36.9	92	24.2	132	13.0	172	7.64
13	44.4	53	36.6	93	23.9	133	12.8	173	7.55
14	44.4	54	36.4	94	23.6	134	12.6	174	7.46
15	44.3	55	36.1	95	23.3	135	12.4	175	7.38
16	44.2	56	35.8	96	22.9	136	12.2	176	7.29
17	44.1	57	35.5	97	22.6	137	12.0	177	7.21
18	43.9	58	35.2	98	22.3	138	11.9	178	7.13
19	43.8	59	34.9	99	22.0	139	11.7	179	7.05
20	43.7	60	34.6	100	21.7	140	11.5	180	6.97
21	43.6	61	34.3	101	21.3	141	11.4	181	6.90
22	43.4	62	34.0	102	21.0	142	11.2	182	6.82
23	43.3	63	33.7	103	20.7	143	11.0	183	6.75
24	43.1	64	33.4	104	20.4	144	10.9	184	6.67
25	43.0	65	33.0	105	20.1	145	10.7	185	6.60
26	42.8	66	32.7	106	19.8	146	10.6	186	6.53
27	42.7	67	32.4	107	19.5	147	10.5	187	6.46
28	42.5	68	32.1	108	19.2	148	10.3	188	6.39
29	42.3	69	31.8	109	18.9	149	10.2	189	6.32
30	42.1	70	31.4	110	18.6	150	10.0	190	6.26
31	41.9	71	31.1	111	18.3	151	9.91	191	6.19
32	41.8	72	30.8	112	18.0	152	9.78	192	6.13
33	41.6	73	30.5	113	17.7	153	9.65	193	6.06
34	41.4	74	30.2	114	17.4	154	9.53	194	6.00
35	41.1	75	29.8	115	17.1	155	9.40	195	5.94
36	40.9	76	29.5	116	16.8	156	9.28	196	5.88
37	40.7	77	29.2	117	16.5	157	9.17	197	5.82
38	40.5	78	28.8	118	16.2	158	9.05	198	5.76
39	40.3	79	28.5	119	16.0	159	8.94	199	5.70
40	40.0	80	28.2	120	15.7	160	8.82	200	5.65

Bolt Strength Tables

Table 7-1 Available Shear Strength of Bolts, kips

No	minal Bolt	Diamete	r, <i>d</i> , in.		5	/8	3,	/4	7	/8	ohusi	1
	Nominal B	olt Area	in.2	V m	0.3	307	0.4	142	0.6	601	0.	785
ASTM	Thread	F_{nv}/Ω (ksi)	φ <i>F_{nv}</i> (ksi)	Load-	r _n /Ω	φr _n	r _n /Ω	φrn	r _n /Ω	φr _n	r _n /Ω	φ r _n
Desig.	Cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group	Chiyago	27.0	40.5	S	8.29 16.6	12.4 24.9	11.9 23.9	17.9 35.8	16.2 32.5	24.3 48.7	21.2 42.4	31.8 63.6
8+, E-(04, X . gq	34.0	51.0	S	10.4 20.9	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0 80.1
Group	N (M	34.0	51.0	S	10.4 20.9	15.7 31.3	15.0 30.1	22.5 45.1	20.4 40.9	30.7 61.3	26.7 53.4	40.0 80.1
gn (<mark>B</mark> uid	ers, Desi X	42.0	63.0	D	12.9 25.8	19.3 38.7	18.6 37.1	27.8 55.7	25.2 50.5	37.9 75.7	33.0 65.9	49.5 98.9
A307	in <u>z</u>	13.5	20.3	S D	4.14 8.29	6.23 12.5	5.97 11.9	8.97 17.9	8.11 16.2	12.2 24.4	10.6 21.2	15.9 31.9
niba No	minal Bolt	Diamete	er, <i>d</i> , in.	ons to	nanect	1/8 gni	rrEram	y grani 8	" . (4 8	3/8	n. D.	1/2
	Nominal B	olt Area	in. ²	1-08	0.9	994	istella.	23	1.	48	mat S	77
ASTM	Thread	F _{nv} /Ω (ksi)	φ <i>F_{nv}</i> (ksi)	Load-	r_n/Ω	φ r _n	r_n/Ω	φ r _n	r_n/Ω	φ r _n	r _n /Ω	φ r _n
Desig.	Cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group	N	27.0	40.5	S D	26.8 53.7	40.3 80.5	33.2 66.4	49.8 99.6	40.0 79.9	59.9 120	47.8 95.6	71.7 143
Α	x	34.0	51.0	S D	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181
Group	N	34.0	51.0	S D	33.8 67.6	50.7 101	41.8 83.6	62.7 125	50.3 101	75.5 151	60.2 120	90.3 181
В	. X	42.0	63.0	S D	41.7 83.5	62.6 125	51.7 103	77.5 155	62.2 124	93.2 186	74.3 149	112 223
A307	-	13.5	20.3	S	13.4 26.8	20.2 40.4	16.6 33.2	25.0 49.9	20.0 40.0	30.0 60.1	23.9 47.8	35.9 71.9

Table 7-2 Available Tensile Strength of Bolts, kips

Nominal Bo	It Diameter,	d, in.	5,	/8	3	/4	7	/8		1
Nominal	Bolt Area, in	.2	0.3	307	0.	442	0.0	301	0.	785
ASTM Desig	F_{nt}/Ω (ksi)	φ <i>F_{nt}</i> (ksi)	r_n/Ω	φ r _n	r_n/Ω	φr _n	r_n/Ω	φ r _n	r_n/Ω	φ r _n
=:	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	45.0	67.5	13.8	20.7	19.9	29.8	27.1	40.6	35.3	53.0
Group B	56.5	84.8	17.3	26.0	25.0	37.4	34.0	51.0	44.4	66.6
A307	22.5	33.8	6.90	10.4	9.94	14.9	13.5	20.3	17.7	26.5
Nominal Bo	lt Diameter,	d, in.	2 84	1/8 88	91 1	1/4	3.65 1	3/8	145-1	1/2
Nominal	Bolt Area, in	1.2	0.9	994	1	.23	1	48	- 1	.77
ASTM Desig	F _{nt} /Ω (ksi)	φ <i>F_{nt}</i> (ksi)	r_n/Ω	φ r _n	r _n /Ω	φ r _n	r_n/Ω	φ r _n	r _n /Ω	φ r _n
7.0-1	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	45.0	67.5	44.7	67.1	55.2	82.8	66.8	100	79.5	119
Group B	56.5	84.8	56.2	84.2	69.3	104	83.9	126	99.8	150
A307	22.5	33.8	22.4	33.5	27.6	41.4	33.4	50.1	39.8	59.6
ASD	LRFD	10 11 10 2 12 1 1 1	Hora H. dr	ro to mun	The same of the sa	Design Design		Loading	99	Hole Ty
$\Omega = 2.00$	$\phi = 0.75$	85								

	S	Table 7-3 (continued) Slip-Critical Connections	ole 7- itica	% <u>₹</u>	Table 7-3 (continued) Critical Connect	octio	ns	Group Bolts	ip B
	~ <u>D</u>	Available Shear Strength, kips (Class A Faying Surface, μ = 0.30)	le Sh Fayin	ear S ig Sur	trengt face,	th, kip		A490, A490M F2280 A354 Grade BD	90M de BC
-	1		5	Group B Bolts	lts			Bott	-21
10 Aug 17		(Alan III)	100 OF	Non	Nominal Bolt Diameter, d, in.	Diameter,	d, in.	01.35	S17
8	1910	8/9	8	0.00 Miles	3/4	34 441.7	8/2	Ī	-
		2000	0.25	Minimum	Minimum Group B Bolt Pretension, kips	Bolt Prete	nsion, kip	8	
Hole lype	Loading	24			35	7	49		64
516		Ω/″3	φŁu	r _n /Ω	φŁ	r_n/Ω	φŁ	Ω/a	φŁ
- le		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	sa	5.42	8.14	7.91	11.9	11.1	16.6	14.5	21.7
OVS/SSLP	S	4.62	6.92	6.74	10.1	9.44	14.1	12.3	18.4
	0	3.80	5.70	5.54	8.31	7.76	11.6	10.1	15.2
TST	0	7.60	11.4	11.1	16.6	15.5	23.3	20.3	30.4
8	3	10000		Non	Nominal Bolt Diameter, d, in.	Diameter,	d, in.	Ke12.0	187.6
		11/8	8,	100000	11/4	10000	13/8	427	11/2
100		200		Minimum	Minimum Group B Bolt Pretension, kips	Bolt Prete	nsion, kip	S	
Hole Type	Loading	80	0	2000	102	100 000	121	ĺ	148
3 (2)		Ω/"	φŁu	Ω/″J	φľ	Ω/uJ	or _n	r _n /Ω	φľ
40		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSIT	s	18.1	27.1	23.1	34.6	27.3	41.0	33.4	50.2
0	Q	36.2	54.2	46.1	69.2	54.7	82.0	6.99	90
OVS/SSLP	s o	15.4	23.1	19.6	29.4	23.3	34.9	28.5	42.6
3	S	12.7	19.0	16.2	24.2	19.2	28.7	23.4	35.1
151	0	25.3	38.0	32.3	48.4	38.3	57.4	6.9	70.2
STD = standard hole 0VS = oversized hole SSLT = short-slotted h	= standard hole = oversized hole = short-slotted hole transverse to the line of force	sverse to th	e line of fo	orce		S = single shear D = double shea	= single shear = double shear	on In.	Se Section
SSLP = short-s LSL = long-sl	 short-slotted hole parallel to the line of force long-slotted hole transverse or parallel to the line of force 	allel to the lin sverse or par	ne of force allel to th	e line of fo	ice				
Hole Type	ASD	LRFD	Note: Slip	o-critical bol	Note: Slip-critical bolt values assume no more than one fi	ume no mor	e than one t	Note: Slip-critical bolt values assume no more than one filler has been provided by the hard plant added to distribute loads in the fillers	n provide
STD and SSLT	$\Omega = 1.50$	$\phi = 1.00$	See AISC	Specification of the state of t	no Sections	13.8 and J5	for provision	or botts nave been added to distribute loads in the micros. See AISC Specification Sections J3.8 and J5 for provisions when fillers	50
0VS and SSLP	$\Omega = 1.76$	$\phi = 0.85$	are present.	ent. B faving su	rfaces multi	into the tabu	lated availa	are present. For Class 8 faving surfaces, multiply the fabrulated available strength by 1.67.	bv 1.67
IS	0-214	φ = 0.70	5 5	oc filling on	anders, mark	and and fide	naron avail	infance our	

Group A Bolts		Table 7-3 Slip-Critical Connections	ritic, L	Table 7-3	-3 onne	ctio	Su		
A325, A325M F1858 A354 Grade BC		Available Shear Strength, kips (Class A Faying Surface, μ = 0.30)	ole Sh Fayir	ear S ng Sur	treng rface,	th, kip	.30)		
A449	September 1	THE GLASS	25	Group A Bolts	olts				
ESI DO	PONT ROLL FOR	2 4	SAN.0	Non	Nominal Bolt Diameter, d, in.	Diameter,	ď, in.		8
ALC: TAX		6	8/9	15	3/4		8/2		-
Lolo Tono	- Contract			Minimum	Group A	Bolt Prete	Minimum Group A Bolt Pretension, kips		
note Type	Loadilly	Tunaba.	19		28		39		21
0.000		Ω/uJ	φŁ	Ω/u ₁	φŁu	Ω/"	φŁ	Ω/uJ	φ r ⁿ
K	120%	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	s a	4.29	6.44	6.33	9.49	17.6	13.2	11.5	17.3
OVS/SSLP	s	3.66	5.47	5.39	8.07	7.51	11.2	9.82	14.7
TST	s a	3.01	4.51	4.44	6.64	6.18	9.25	8.08	12.1
THE STATE OF THE S				Non	Nominal Bolt Diameter,	Diameter,	o,		
10		11	11/8	-	11/4	100	13/8	-	11/2
		0.350		Minimum	Group A	Bolt Prete	Minimum Group A Bolt Pretension, kips		
Hole Iype	Loading	ū	26		1	-	85	-	103
The party of		Γ ₀ /Ω	φŁ	Ω/u ₁	φŁ	Ω/″	φŁ	Γη/Ω	φŁ
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	s a	12.7	19.0	16.0	24.1	19.2	28.8	23.3	34.9
0VS/SSLP	s a	10.8	16.1	13.7	20.5	16.4	24.5	19.8	29.7
TST	sa	8.87	13.3	11.2	16.8	13.5	20.2	16.3	24.4
STD = standard hole OVS = oversized hole SSLT = short-slotted hole transverse to the line of for SSLP = short-slotted hole parallel to the line of force LSL = long-slotted hole transverse or parallel to the	= standard hole = oversized hole = short-slotted hole = short-slotted hole transverse to the line of force = short-slotted hole parallel to the line of force = long-slotted hole transverse or parallel to the line of force	sverse to the	e line of force of force rallel to the	orce se line of fo	92	S = single shear D = double shear	s shear e shear		818-
Hole Type	ASD	LRFD	Note: Slip	-critical bolt	t values assi	ume no mor	e than one fi	Note: Slip-critical bolt values assume no more than one filler has been provided	provided r
STD and SSLT	$\Omega = 1.50$	φ = 1.00	See AISC	ave been ac Specificatio	ded to distr	3.8 and J5	in the fillers. for provision	or botts have been added to distribute loads in the fillers. See AISC <i>Specification</i> Sections J3.8 and J5 for provisions when fillers	S
OVS and SSLP	$\Omega = 1.76$	$\phi = 0.85$	are present	nt. D faving eur	doose multi	ally the take	delicate betal	de otronostic d	1 67
TST	$\Omega = 2.14$	φ = 0.70	TUI CIBSO	D Idyling ou	Haces, mun	ply the tau	lateo avallar	ror class 6 laying surfaces, muruply the tabulated available strength by 1.67.	Jy 1.57.

γype Spacing, S	Spacing, spin. F _{to} ksi 11/s			(E) (B) (B)	Refu Dian	Burmak	Nomi	nal Bolt D	Nominal Bolt Diameter, d, in.	ď, in.		
Spacing, f_{uv} KSi f_{uv}	Spacing. F _n KSI r_0/Ω ϕr_n r_0/Ω σr_0	-	Bolt			1/8	ŀ	1/4		13/8	58	11/2
22/3 db 656 7.31 94.6 70.3 105 77.6 116 84.8 13 10. 22/3 db 656 70.7 106 78.8 118 86.9 130 95.1 1 22/3 db 656 58.5 87.8 6.9 99.9 74.8 112 82.9 3 in. 656 58.5 87.8 6.6 99.9 74.8 112 85.3 3 in. 656 65.3 97.9 7.25 10.9 7.98 12.0 8.70 22/3 db 656 58.9 88.4 65.7 10.9 79.8 12.0 8.70 22/3 db 656 58.9 88.4 65.7 10.9 79.8 12.0 8.70 22/3 db 656 87.8 11.0 8.13 12.2 8.94 13.4 9.75 3 in. 656 65.3 97.9 7.25 10.9 7.98 12.0 8.70 22/3 db 656 87.8 88.4 65.7 98.5 72.4 10.9 79.2 3 in. 656 65.3 97.9 7.25 10.9 7.98 12.0 8.70 22/3 db 65 88.9 88.4 65.7 98.5 72.4 10.9 79.2 3 in. 65 65.9 88.4 65.7 98.5 72.4 10.9 79.2 3 in. 65 65.3 97.9 7.25 146 10.7 141 10.4 5 ≥ 5 lui	22/3 db 655 63.1 94.6 70.3 105 77.6 116 84.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hole Type	Spacing, S. in.	F _u , KSI	r,/Ω	ofn.	Ω/uJ	φŁu	Ω/"	φr _n	Ω/uJ	0
$22/3$ db 58 63.1 94.6 70.3 105 77.6 116 84.8 1 3 in. 56 66.7 70.7 106 78.8 118 86.9 130 96.1 1 2 2 3 db 66 67 70.7 106 76.7 100 74.0 1 2 2 3 db 65 58.5 87.8 66.6 99.9 74.8 112 82.9 1 2 2 3 db 65 58.5 87.8 —	22/3 db 655 63.1 94.6 70.3 105 77.6 116 84.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1881	\$\$4 GH	88	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	E
3 in. 66 63.1 94.6 — — — — — — — — — — — — — — — — — — —	3 in.	CTS	22/3 db	58 65	63.1	94.6	70.3	105 118	77.6	116	84.8 95.1	127
$22/3$ db 58 52.2 78.3 59.5 89.2 66.7 100 74.0 1 3 in. 58 58.5 87.8 66.6 99.9 74.8 112 82.9 1 $2^2/3$ db 66 58.5 87.8 — — <td>22/3 db 58 52.2 78.3 59.5 99.9 74.0 112 82.9 112 82.9 112 112</td> <td>SSLT</td> <td>3 in.</td> <td>58</td> <td>63.1</td> <td>94.6 106</td> <td>1.1</td> <td>TI</td> <td>11</td> <td>11</td> <td>11</td> <td># L</td>	22/3 db 58 52.2 78.3 59.5 99.9 74.0 112 82.9 112 82.9 112	SSLT	3 in.	58	63.1	94.6 106	1.1	TI	11	11	11	# L
3in. 58 52.2 78.3 — <t< th=""><td>22/3 d_b 65 58.5</td><td>33</td><td>2²/₃ d_b</td><td>58</td><td>52.2 58.5</td><td>78.3</td><td>59.5</td><td>89.2 99.9</td><td>66.7</td><td>100</td><td>74.0</td><td>111</td></t<>	22/3 d _b 65 58.5	33	2 ² / ₃ d _b	58	52.2 58.5	78.3	59.5	89.2 99.9	66.7	100	74.0	111
$2 \ell_{3} s d_{b}$ 58 544 81.6 61.6 92.4 68.9 103 76.1 11.0 $31n$. 66 60.9 91.4 691.1 104 77.2 11.6 85.3 11.0 $2^{2}/3 s d_{b}$ 66 66.5 9.79 7.25 10.9 7.98 12.0 8.70 $2^{2}/3 s d_{b}$ 66 66.5 9.79 7.25 10.9 7.98 12.0 8.70 13.4 9.75 13.4 9.75 13.4 9.75 13.4 9.75 13.4 9.75 13.4 9.75 13.4 9.75 13.4 <t< th=""><td>$2 \ell_{13} s d_b$ 58 544 81.6 61.6 92.4 68.9 103 76.1 1 3 in. 66 60.9 91.4 69.1 104 77.2 116 85.3 1 $2^2 l_3 d_b$ 66 60.9 91.4 69.1 104 77.2 116 85.3 1 $2^2 l_3 d_b$ 66 6.3 9.79 7.25 10.9 7.98 12.0 8.70 9.75 1 $2^2 l_3 d_b$ 66 6.53 9.79 7.25 10.9 7.98 1.20 8.70 1 $2^2 l_3 d_b$ 66 $5.8.9$ 88.4 —</td><td>SSLP</td><td>3 in.</td><td>58</td><td>52.2 58.5</td><td>78.3</td><td>11</td><td>LI</td><td>11</td><td>П</td><td>11</td><td></td></t<>	$2 \ell_{13} s d_b$ 58 544 81.6 61.6 92.4 68.9 103 76.1 1 3 in. 66 60.9 91.4 69.1 104 77.2 116 85.3 1 $2^2 l_3 d_b$ 66 60.9 91.4 69.1 104 77.2 116 85.3 1 $2^2 l_3 d_b$ 66 6.3 9.79 7.25 10.9 7.98 12.0 8.70 9.75 1 $2^2 l_3 d_b$ 66 6.53 9.79 7.25 10.9 7.98 1.20 8.70 1 $2^2 l_3 d_b$ 66 $5.8.9$ 88.4 —	SSLP	3 in.	58	52.2 58.5	78.3	11	LI	11	П	11	
3in. 58 544 81.6 — <th< th=""><td>3 in. 58 544 81.6 — <t< td=""><td>910</td><td>22/3 db</td><td>58 65</td><td>54.4</td><td>81.6 91.4</td><td>61.6</td><td>92.4</td><td>68.9 77.2</td><td>103</td><td>76.1 85.3</td><td>114</td></t<></td></th<>	3 in. 58 544 81.6 — <t< td=""><td>910</td><td>22/3 db</td><td>58 65</td><td>54.4</td><td>81.6 91.4</td><td>61.6</td><td>92.4</td><td>68.9 77.2</td><td>103</td><td>76.1 85.3</td><td>114</td></t<>	910	22/3 db	58 65	54.4	81.6 91.4	61.6	92.4	68.9 77.2	103	76.1 85.3	114
$2\ell_{13}$ db 58 6.53 9.79 7.25 10.9 7.98 12.0 8.76 3 in. 58 6.53 9.79 7.25 10.9 7.98 12.0 8.79 9.75 $2^{2/3}$ db 665 58.9 88.4 68.5 68.6 97.0 70.7 1 $2^{2/3}$ db 65 58.9 88.4 65.7 98.5 72.4 109 70.7 1 3 in. 66 58.9 88.4 6.7 131 96.7 144 104 1 s > sum 66 87.8 17 87.0 131 96.7 144 104 1 s > sum 66 87.8 17 87.5 109 79.8 120 49/16 s > sum 66 87.3 110 81.3 122 89.4 134 97.5 1 strength 66 73.1 41/16 43/16 43/16 43/16 43/16 43/1	22/3 db 665 7.31 11.0 8.13 12.2 8.94 13.4 9.75 31.0 8.75 31.0 8.75 11.0 8.13 12.2 8.94 13.4 9.75 31.0 665 58.9 88.4 65.7 98.5 72.4 109 79.2 11.0 $\frac{2}{2}$ 3 10. 66 58.9 88.4 65.7 98.5 72.4 109 79.2 11.0 $\frac{2}{2}$ 3 10. 66 58.9 88.4 65.7 98.5 72.4 109 79.2 11.0 8.7 97.5 11.0 $\frac{2}{2}$ 3 10. 66 58.9 88.4 65.7 98.5 14.4 10.4 10.4 11.2 8.2 $\frac{2}{2}$ 3 10. 66 65.3 97.9 12.5 10.9 97.5 14.4 10.4 11.7 $\frac{2}{2}$ 3 10. 66 65.3 97.9 12.5 10.9 13.1 95.7 14.1 10.4 11.7 11.0 87.0 13.1 12.2 89.4 13.4 97.5 11.0 $\frac{2}{2}$ 3 13.4 4 13.4 4 13.4 10.4 11.1 $\frac{2}{2}$ 3 13.4 4 13.4 4 13.4 10.4 11.1 $\frac{2}{2}$ 3 13.4 4 13.4 4 13.4 $\frac{2}{2}$ 3 13.4 4 13.4 4 13.4 $\frac{2}{2}$ 3 13.4 4 13.6 $\frac{2}{2}$ 3 13.4 5 13.2 89.4 13.4 4 13.6 $\frac{2}{2}$ 3 13.4 5 13.5 $\frac{2}{2}$ 3 13.5 5 1	SAO	3 in.	82 83	54.4 60.9	81.6 91.4	1.1	H	11	П	1.1	3
3 in. 58 6.53 9.79 — <	3 in. 22/3 db 3 in. s ≥ s _{full} strength i.in. pacing = 22/ card hole ct-slotted hole cirestoted hole cir		22/3 db	58	6.53	9.79 11.0	7.25	10.9	7.98	12.0	8.70 9.75	13
$2 \ell_{33} d_b$ 58 52.6 78.8 58.6 67.9 64.6 97.0 70.7 3 in. 56 56.9 88.4 65.7 88.5 72.4 109 79.2 s in. 56 58.9 88.4 — — — — — $s \ge s_{hull}$ 56 58.9 88.4 — — — — — $s \ge s_{hull}$ 56 78.3 117 87.0 131 99.7 144 104 $s \ge s_{hull}$ 56 87.8 132 97.5 146 107 117 s $\ge s_{hull}$ 56 73.1 110 81.3 122 89.4 134 97.5 strength Ovs 31/16 41/16 47/16 47/16 49/16 s SLIP 33/4 41/16 41/16 41/16 41/16 41/16 s SLIP 33/4 41/16 41/16 41/16 41/16 41/16 <tr< th=""><td>3 in. 3 in. \$ ≥ \$full \$ ≥ \$full \$ > \$ ≥ \$full \$ \$ \$ \$ \$ \$ \$ </td><td>ראַר</td><td>3 in.</td><td>58</td><td>6.53</td><td>9.79</td><td>11</td><td>H</td><td>11</td><td>1-1</td><td>11</td><td>1 1</td></tr<>	3 in. 3 in. \$ ≥ \$full \$ ≥ \$full \$ > \$ ≥ \$full \$ \$ \$ \$ \$ \$ \$	ראַר	3 in.	58	6.53	9.79	11	H	11	1-1	11	1 1
3 in. 56 52.6 78.8 — —	3 in. \$\instructure{S} \gequiv \instructure{S} \leftilde{S} \text{full} \text{full} \text{strength} \text{hin.} \text{pacing}^a = \frac{2}{2} \text{full} \text{dard hole} \text{dard hole} \text{dard hole} \text{-*slotted hole} \text{-*slotted hole} \text{-*slotted hole} \text{-*slotted hole} \text{cash to the contact hole} \text{-*slotted hole} \text{-*slotted hole} \text{-*slotted hole} \text{cash to the contact hole} \text{-*slotted hole} -*slotted	1	22/3 db	58 65	52.6 58.9	78.8	58.6 65.7	87.9 98.5	64.6	97.0	70.7	118
$s \ge s_{full}$ 58 78.3 117 87.0 131 95.7 144 104 $s \ge s_{full}$ 66 87.8 132 97.5 146 107 161 117 set 65.3 97.9 72.5 109 79.8 120 87.0 stronglability SSLT 37/16 41/16 41/16 43/16 43/16 49/16 in. SSLP 33/4 41/8 41/2 41/2 41/8 pacings = 22/2d, in. 3 35/16 55/8 63/16 63/16 63/16	s ≥ s _{full} for full strength , in. pacing* = 2 ² f, dard hole t-slotted hole t-siotted hole siscated hole siscated hole solotted hole c	7	3 in.	58 65	52.6 58.9	78.8 88.4	11	1 50 5	11	11	11	100
sut se solution	aring strength straing strength straing at ength e straing at ength straing at ength e straing at ength straing at ength e straing at ength e straing at ength straing at ength e straing	SSLP, OVS, LSLP		82 82 82	78.3 87.8	117	87.0 97.5	131 146	95.7	144	104	157
	secing for full shun', in. shun', in. shun', in. shun', in. short-slotted hole short-slotted hole so oversized hole one-sized hole one-sized hole so oversized hole one-sized hole so oversized hole one-sized hole so oversized hol	LSLT	S ≥ Sfull	58 65	65.3	97.9	72.5	109	79.8	120	87.0	13
aring strength OVS $3^{1}/_{16}$ $4^{1}/_{16}$ $4^{7}/_{16}$ $s_{pull}^{a_1}$ in. SSLP $3^{3}/_{4}$ $4^{1}/_{6}$ $4^{1}/_{2}$ LSLP $5^{1}/_{16}$ $5^{5}/_{8}$ $6^{3}/_{8}$ $6^{3}/_{8}$ num Spacing = $2^{2}/_{3}d_{1}$ in. 3 $3^{5}/_{16}$ $3^{1}/_{16}$	strangth strain strength strain in. strain in. strain in. strangth in. strangth lole short-slotted hole short-slotted hole onersized hole long-slotted hole of long-slotted hole of long-slotted hole of	Spacing	for full	STD, SSLT, LSLT	37,	91,	31	3/16	43	/16	49	116
Srul*, In. SSLP $33/4$ $41/6$ $41/2$ LSLP $51/16$ $55/6$ $63/16$ num Spacing* = $2^2/3d$, in. 3 $35/16$ $31/1/6$	S _{full} *, III. Turn Spacing* = 2²/; standard hole = short-slotted hole = oversized hole = long-slotted hole = long-slotted hole = long-slotted hole or	pearing	strength	OVS	31	1/16	41	16	47	/16	41	3/16
LSLP $51/16$ $55/6$ $63/16$ num Spacing* = $2^2/3 d$, in. 3 $35/16$ $31/1/6$	num Spacing ^a = 2²/, = standard hole = short-slotted hole = oversized hole = oversized hole = long-slotted hole c = long-slotted hole c	Stull	, E	SSLP	33	/4	41	8/	41	12	47	8/
num Spacing ^a = $2^2/_3 d$, in. 3 35/16 31/16	unm Spacinga = 2 ⁴ / ₁ = standard hole = short-slotted hole = short-slotted hole = oversized hole = long-slotted hole = long-slotted hole = long-slotted hole = long-slotted hole			LSLP	51	/16	55	8/	63	/16	63	4
	= standard hole = short-slotted hole = short-slotted hole = oversized hole = long-slotted hole = long-slotted hole callong-slotted hole	Minimum S	pacing ^a = 2	7/3d, in.	က		35	116	31	1/16	4	
		ASD	LRFD		tes spacing	less than m	inimum sp	acing requir	ed per AISC	. Specificat	ion Section	13.3.

Specing, f _a ksi			(0.8.0)	kip	kips/in.	thickness	ness				
Spacing. F _n ksl π/Ω φ/n π/Ω						Nom	inal Bolt (Diameter,	d, in.		
Stin	Holo Tuno	Bolt	F Vei		2/8	B.qsorg	3/4		8/2		-
SLT 3in. 656 34.1 51.1 41.3 62.0 48.6 72.9 55.8 68.1 10.2 52/3 dp 655 34.1 51.1 41.3 62.0 54.4 81.7 62.6 65.8 10.2 10.2 65.8 81.2 57.3 46.3 69.5 54.4 81.7 62.6 65.8 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	adkı alou	s, in.	E VS	Ω/uJ	φŁ	Γη/Ω	φŁ	r _n /Ω	φr _n	r _n /Ω	or,
SLT 3in. 66 34.1 51.1 41.3 62.0 48.6 72.9 55.8 68.1 3in. 66 48.8 73.1 58.5 87.8 68.3 102 70.7 52.6 11.8 5.8 43.8 73.1 58.5 87.8 68.3 102 70.7 52.6 11.8 5.8 43.8 73.1 58.5 87.8 68.3 102 70.7 52.6 11.8 5.8 43.8 73.1 58.5 87.8 68.3 102 70.7 52.8 11.8 5.8 43.8 65.3 102 65.8 11.8 58.7 102 70.7 52.8 11.8 58.8 11.8 58.7 102 70.7 52.8 11.8 58.7 102 70.7 52.8 11.8 58.7 102 70.7 52.8 11.8 58.7 102 70.7 52.8 11.8 58.7 102 70.7 52.8 11.8 58.7 102 70.7 52.8 11.8 58.7 102 70.7 52.8 11.8 58.7 102 70.7 52.8 11.8 58.7 102 70.7 52.8 11.8 58.7 102 70.7 52.8 11.8 58.7 102 70.7 52.8 11.8 58.7 102 70.7 52.8 11.8 58.7 102 70.7 52.8 11.8 58.7 102 70.9 52.7 10.8 70.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 1			9.6	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
SLP 3in. 56 43.5 65.3 52.2 78.3 60.9 914 674 11 1 SLP 3in. 65 48.8 73.1 58.5 87.8 68.3 102 75.6 11 SLP 3in. 65 48.8 73.1 58.5 87.8 60.9 91.4 67.1 70.7 87.1 70.7 87.8 87.8 88.3 10.2 70.8 87.8 88.3 10.2 65.8 87.8 68.3 10.2 65.8 87.8 68.3 10.2 65.8 87.8 68.3 10.2 65.8 87.8 68.3 10.2 65.8 87.8 68.3 10.2 65.8 87.8 65.3 10.2 65.3 87.8 65.3 60.0 10.2 65.3 60.0 10.	STD	22/3 db	58 65	34.1	51.1	41.3	62.0	48.6	72.9	55.8 62.6	83.7
SLP 3in, 65 30.9 46.3 39.0 58.5 47.1 63.1 47.1 77.7 52.8 77.1 52.8 73.1 58.5 52.2 78.3 69.9 91.4 58.7 52.8 73.1 58.5 52.2 78.3 68.3 102. 66.3 89.3 102. 65.3 102. 65.8 102. 65.3 102. 65.8 102. 65.3 102. 65.8 102. 65.3 102. 65.	SSLT	3 in.	28	43.5	65.3	52.2	78.3	60.9	91.4	67.4	101
SLY 3 in. 656 48.8 73.1 58.5 87.8 60.9 91.4 58.7 65.8 87.8 68.3 102 65.8 97.8 68.3 102 65.8 97.8 68.3 102 65.8 97.8 68.3 102 65.8 97.8 68.3 102 65.8 97.8 98.8 91.4 65.8 97.8 98.8 91.4 65.8 97.8 98.8 91.4 65.8 97.8 98.8 91.4 65.8 97.8 98.8 91.4 65.8 97.8 98.8 91.4 65.8 97.8 98.8 91.4 65.8 97.8 98.8 91.4 65.8 97.8 98.8 91.4 65.8 97.8 98.8 91.4 65.8 97.8 98.8 91.4 65.8 97.8 98.8 91.4 65.8 97.8 98.8 91.4 65.8 97.8 98.8 91.4 65.8 97.8 98.8 91.4 65.8 97.8 98.8 91.4 65.8 97.8 98.8 97.8 97.8 97.8 97.8 97.8 97	3	22/3 db	58	27.6	41.3	34.8	52.2	42.1	63.1	47.1	70.7
NS 3in. 58 29.7 44.6 37.0 55.5 44.2 66.3 49.3 75 3in. 65 33.3 50.0 41.4 62.2 78.3 60.9 19.4 60.9 15.5 10.2 68.3 10.2 69.0 10.3 69.0 10	SSL	3 in.	58	43.5	65.3	52.2 58.5	78.3	60.9	91.4	58.7	88.1
SLT S $\geq s_{full}$ 66 48.8 73.1 58.5 87.8 60.9 91.4 60.9 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0	Si C	22/3 db	65	29.7	44.6	37.0	55.5 62.2	44.2	66.3	49.3	74.0
SLP 31n. 66 4.06 6.09 4.88 7.31 5.69 8.53 6.50 8 7.61 5.80 3.1n. 66 4.06 6.09 4.88 7.31 5.69 8.53 6.50 8.55 6.50 8.51 6.50 8.51 6.50 8.51 6.50 8.51 6.50 8.52 6.50 8.51 6.50 8.52 6.50 8.51 6.50 8.52 6.50 8.	SA	3 in.	65 65	43.5	65.3	52.2	78.3	60.9	91.4	60.9	91.4
SLT 3 in. 58 43.5 65.3 39.2 58.7 24.4 17.4 17.4 18.5 18.5 17.1 18.5 1		22/3 db		3.62	5.44 6.09	4.35	6.53	5.08	7.61	5.80	8.70
SLT 3 in. 65 31.8 47.7 38.6 57.9 45.4 68.0 52.1 46.5 57.9 45.4 68.0 52.1 31.0 58 36.3 54.4 43.5 65.3 50.8 76.1 56.2 51.0 51.0 15.0 15.0 15.0 15.0 15.0 15.0	LSLP	3 in.	85 55	43.5	65.3	39.2	58.7	28.3	42.4	17.4	26.1
Secondary Secondary Secon	1	22/3 db		28.4	42.6	34.4	51.7	40.5	68.0	46.5	69.8
Sur, See Sequent See 43.5 Sec.	197	3 in.	92 92	36.3	54.4	43.5	65.3	50.8	76.1	56.2	84.3 94.5
SLT s≥ sfull 65 36.3 54.4 43.5 65.3 50.8 76.1 58.0 Spacing for full 517.0 SLT 115/16 25/16 217/16 31/16 SLM strength 518.1 SLM 21/16 21/17 SLM 21/16 SLM 21/17 SLM 21/16 SLM 21/17 SLM	STD, SSLT, SSLP, OVS, LSLP	\sqrt{\sq}\}}}}}}}} \end{\sqrt{\sq}}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sin}}}}}}}}}} \end{\sqit{\sqrt{\sq}}}}}}} \sqrt{\sqrt{\sqrt{\	92	43.5	65.3	52.2 58.5	78.3	60.9	91.4	69.6	104
STD, SSLT, 115/16 $2^5/16$ $2^{1}/16$ $3^1/16$ SSLT, 115/16 $2^{1}/16$ $2^{1}/16$ $3^1/16$ SSLT, 115/16 $3^{1}/16$ $3^{1}/16$ SSLT, 21/16 $3^{1}/16$ $3^{1}/16$ SSLP $2^{1}/16$ $3^{1}/16$ $3^{1}/16$ SSLP $2^{1}/16$ $3^{1}/16$ $3^{1}/16$ $3^{1}/16$ SSLP $2^{1}/16$ $3^{1}/16$	LSLT	\$ ∧ı	85 58	36.3	54.4	43.5	65.3	50.8	76.1	58.0 65.0	87.0
mum Spacing ^a = 2 ² mum Spacing ^a = 2 ² = standard hole = standard hole = short-slotted hole = oversized hole = oversized hole = long-slotted hole	Spacing	for full	STD, SSLT, LSLT	F 6	5/16		/16	211	/16		/16
mum Spacing ^a = 2 ² / ₁ mum Spacing ^a = 2 ² / ₁ e standard hole e short-slotted hole o wersized hole o versized hole e oversized hole e long-slotted hole e long-slotted hole e long-slotted hole of Ing. Spacing hole of the long-slotted hole of	bearing	strength	SAO	21	/16	27	/16	213	1,16	3	1/4
mum Spacing ^a = 2² = standard hole = short-slotted hole = short-slotted hole = oversized hole = oversized hole = long-slotted hole = long-slotted hole = LRFD	Stull	.	SSLP	2	1/8	2	1/2	2	8/	36	/16
astrandard hole = short-slotted hole = short-slotted hole = oversized hole = long-slotted hole = long-slotted hole = long-slotted hole = long-slotted hole SD LRFD	Minimim		LSLP	21	3/16	33	8/8	316	1,16	4 10	1/2
ID LRFD	2 11 11 11 11 11 11 11	dard hole t-slotted hole sized hole -slotted hole -slotted hole	oriented p	transverse parallel to arallel to	to the line of the line of the line of	2 8					12 12 18 18
A - 0.75		LRFD	Note: Spac	ing indicate	ed is from th	ne center of	the hole or	slot to the	center of the	e adjacent	nole of
0 = 0.73	Ω = 2.00	Φ = 0.75	slot in the	line of forcipection	e. Hole defo	rmation is c .10.	onsidered.	When hole o	leformation 5.	is not cons	dereu,

Felge Lair Tiγe				<u> </u>	kips/in. thickness	thick	ness	otomoje		Africants of	1
Type Distance Γ ₀ k ki		Edge		6204	11/8		11/4	Ola meter,	13/8		11/2
11/4	Hole Type	Distance	F _u , KSI	r _n /Ω	or _n	ς/ _n /Ω	φŁ	Ω/uJ	φĽ	1	•
11/4 56 22.8 34.3 20.7 31.0 18.5 27.7 16.3 2.7 16.3 2.7 16.3 2.7 16.3 2.7 16.3 2.7 16.3 2.7 16.3 2.7 16.3 2.7 16.3 2.7 16.3 2.4 6.6 5.0 17.4 6.6 5.0 17.4 6.6 5.0 17.1 18.3 2.4 5.0 17.1 18.3 2.4 5.0 17.1 18.3 2.4 5.0 17.1 18.3 2.4 5.0 17.1 18.3 2.4 5.0 17.1 18.3 2.4 5.0 17.1 18.3 2.4 5.0 17.1 18.3 2.4 5.0 17.1 18.3 27.4 15.8 13.4 12.2 12.0 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 15.8 13.4 2.7 17.1 18.3 27.4 17.1 18.3 27.3 14.1 17.1 17.1 17.1 18.3 27.1 17.1 18.3 27.3 14.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1	E	S		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	5
LP	CTD	11/4	58	22.8	34.3	20.7	31.0	18.5	31.1	16.3	22
LP 2 65 17.4 26.1 15.2 22.8 13.1 19.6 10.9 1 1 2 2 6 14.6 6.9 12.2 1 1 1 6 65 14.6 51.9 1 1 2 1 1 1 1 4 65 20.7 31.1 18.3 27.4 15.8 23.8 13.4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SSLT	2	58	48.9	73.4	46.8	70.1	44.6	66.9	42.4	9 1
1 2 58 43.5 65.3 41.3 62.0 39.2 58.7 37.0 58. 1 4 65 48.8 73.1 46.3 62.5 43.9 65.8 41.4 65 2 65 48.8 73.1 18.3 24.5 14.1 21.2 12.0 13.4 2 65 50.0 31.1 18.3 27.4 15.8 23.8 13.4 23.8 1 4 65 50.0 47.5 71.3 45.1 67.6 60.4 38.1 65 1 4 65 50.0 75.0 47.5 71.3 45.1 67.6 43.7 65.5 1 4 65		11/4	85 58	17.4	26.1	15.2	22.8	13.1	19.6	10.9	
11/4 65 20.7 31.1 18.3 27.4 15.8 23.8 13.4 21.2 12.0 1.2 2.0 2.0 31.1 18.3 27.4 15.8 23.8 13.4 2.0	SSLP	2	58	43.5	65.3	41.3	62.0	39.2	58.7	37.0	0.00
1,1/4 58 44.6 66.9 42.4 63.6 40.2 60.4 38.1 58 11/4 58		11/4	58	18.5	31.1	16.3	24.5	14.1	21.2	12.0	- 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SAN	2	58	44.6	66.9	42.4	63.6	40.2	60.4	38.1	0 0
1,14 2, 65 23.2 34.7 17.1 25.6 11.0 16.5 4.88 14.8		11/4	58	1.1	11	1.1	11	11	11	11	
11/4 665 21.3 32.0 19.3 28.9 17.3 25.9 15.2 2	LSLP	2	58	20.7	31.0	15.2	22.8	9.79	14.7	4.35	
SSLT, Le > Le tull Bearing Strength Ovs SSLT, Strength S	5	11/4	82 28	19.0	28.5	17.2	25.8	15.4	23.1	13.6	22
SSLT, Le \geq Le ρ with GS 87.8 117 87.0 131 95.7 144 104 104 GS 87.8 132 97.5 146 107 161 117 117 118 118 118 118 118 119 119 119 119 119	1351	2	58 65	40.8	61.2	39.0	58.5	37.2	55.7 62.5	35.3	0.00
dge distance distance strong barrier and strong barrier and belong-slotted hole oriented parallel to the line of force are one sized hole oriented transverse to the line of force are one sized hole oriented transverse to the line of force are one-slotted hole oriented transverse to the line of force are one-slotted hole oriented parallel to the line of force are one-slotted hole oriented transverse to the line of force are one-slotted hole oriented parallel to the line of force ar	STD, SSLT, SSLP, OVS, LSLP	-	92	78.3	117	87.0 97.5	131	95.7	144	104	15
dge distance r full bearing strength e ≥ Le tud", in. = standard hole = short-slotted hole = oversized hole = long-slotted hole	LSLT	Le ≥ Le full		65.3	97.9	72.5	109	79.8	120	87.0 97.5	13
e > Le fuil", in. estandard hole estandard hole estor-siotted hole en oversized hole en oversized hole en ong-siotted hole en oversized hole en ong-siotted hole en oversized hole en ong-siotted hole en oversized hole en order hole en oversized h	Edge d	listance bearing	STD, SSLT, LSLT	27,	8		13/16	31,	12	31.	3/16
e ≥ Le funa, in. standard hole = standard hole = short-slotted hole = oversized hole = long-slotted hole c = long-slotted hole c	stre	ngth .	OVS	3	7, 61	es .	91/5	35	8/,8	31	5/16
= standard hole = short-slotted hole = short-slotted hole = oversized hole = long-slotted hole = long-slotted hole c	7 < 97	, full ^a , in.	SSLP	3	288	6	91/5	35	8/8	31	5/16
= standard hole = short-slotted hole = short-slotted hole = oversized hole = long-slotted hole = long-slotted hole or	- 1:	9 32 F	LSLP	31	1/16	8.0	1/16	41,	12	47	.80
LRFD	11 11 11 11 11 11	ndard hole rrt-slotted hole rrt-slotted hole rsized hole g-slotted hole	e oriented e oriented oriented p	transverse parallel to parallel to ransverse	e to the lin the line of the line of to the line	e of force of force force of force					
The state of the s	ASD	LRFD	- indicat	es spacing	less than m	gs muminin	acing requir	ed per AISC	Specificati	ion Section J	13.3.

Edge L _e , in. ASD LRFD ASD	Period	- C 8 2 - S			Ā	S/in.	kips/in. thickness	1622				
Edge f_{ab} ksi f_{ab}	Edge Lege $5/8$ $9/4$ $7/8$ $7/8$ Distance Le, in. ASD LRFD $40/7$ $40/10$	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		II, b. nahna	Ball Dian	tanimo#	Nom	inal Bolt	Diameter,	ď, in.		
Le, in. ASD LRFD A	Lepin. Lepin. Lepin. ASD LRFD ASD ASD ASD ASD ASD ASD ASD ASD ASD AS	C 8 M - O.	ge	io.	100	8/9		3/4	100	8/2	89	-
11/4 58 31.5 47.3 29.4 44.0 27.2 40.8 25.0 25.0 32.9 49.4 30.5 45.7 28.0 25.0 32.9 49.4 30.5 45.7 28.0 25.0 32.9 49.4 30.5 45.7 28.0 25.0 32.9 3	11/4 58 31.5 47.3 29.4 44.0 27.2 40.8 25.0 2	新 3元 · 2元 ·	j.	ion al	Γ_n/Ω	or _n	ι,/Ω	φŁu	r _n /Ω	or _n	r _n /Ω	orn
11/4 656 35.3 29.4 44.0 27.2 40.8 25.0 2 65 48.8 7.3.1 58.5 87.8 35.3 79.9 51.1 2 65 48.8 7.3.1 58.5 87.8 59.7 89.6 57.3 2 65 48.8 73.1 58.5 87.8 59.7 89.6 57.3 2 65 48.8 73.1 58.5 87.8 56.1 84.1 52.4 11/4 65 29.4 44.0 27.2 78.3 50.0 75.0 46.8 2 65 48.8 73.1 58.5 87.8 56.1 84.1 52.4 11/4 65 32.9 49.4 30.5 45.7 88.9 51.1 76.7 47.9 2 65 47.5 71.3 41.4 62.2 37.3 89.9 31.5 47.3 28.1 11/4 65 28.3 39.4 24.5 10.9 16.3 54.4 81.6 2 65 47.5 71.3 41.4 62.2 35.3 53.0 29.3 11/4 65 29.8 36.3 54.4 43.5 65.3 31.5 47.3 28.1 2 65 47.5 71.3 41.4 62.2 35.3 53.0 29.3 11/4 65 89.8 36.3 54.4 43.5 65.3 31.5 47.3 28.1 2 65 40.6 60.9 48.8 73.1 58.5 89.9 11.4 69.6 1 2 65 40.6 60.9 48.8 73.1 58.5 89.9 11.4 69.6 1 2 65 40.6 60.9 48.8 73.1 56.9 89.3 10.2 78.0 1 2 88 36.3 54.4 43.5 65.3 50.8 74.6 50.9 11.4 69.6 1 2 88 36.3 54.4 43.5 65.3 50.8 74.6 50.9 89.1 2 88 36.3 54.4 43.5 65.3 50.8 74.6 50.9 89.1 2 89 36.3 54.4 43.5 65.3 50.8 73.1 56.9 85.3 65.0 2 10.4 11/16 5 80.8 36.3 50.8 73.1 56.9 85.3 65.0 2 10.5 11/16 5 80.9 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 2 10.5 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3 10.4 11.1 11/16 5 80.0 3	11/4	第 号 : ぎの	È	000	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 56 43.5 52.2 78.3 53.3 79.9 51.1 17.4 58 28.3 73.1 73.1 58.5 87.8 59.7 89.6 57.3 89.7 89.8 87.8 87.8 87.8 87.8 87.8 87.8	2.0	4	88 8	31.5	47.3	29.4	44.0	27.2	40.8	25.0	37.5
11/4 65 28.3 42.4 26.1 39.2 23.9 35.9 20.7 4.6 65 31.7 47.5 29.3 43.9 26.8 40.2 23.2 23.9 26.8 40.2 23.2 23.2 20.7 40.8 26.8 40.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 2	11/4 56 28 28.3 42.4 26.1 39.2 23.9 35.9 20.7 28.8 28.3 42.4 26.1 39.2 23.9 35.9 20.7 28.8 28.3 42.4 26.1 39.2 23.9 35.9 20.7 2.9 56 48.8 73.1 58.5 87.8 56.1 75.0 46.8 29.4 44.0 27.2 40.8 25.0 37.5 21.8 41.5 24.4 20.2 22.2 24.4 20.8 29.3 43.9 26.8 43.5 65.3 52.2 78.3 51.1 76.7 47.9 28.8 43.5 65.3 52.2 78.3 51.1 76.7 47.9 28.8 16.3 24.4 30.5 87.8 51.1 76.7 47.9 28.8 16.3 24.4 10.9 16.3 5.4 47.3 24.1 22.1 8.3 60.9 31.4	11		28	43.5	65.3	52.2	78.3	53.3	79.9	51.1	76.7
1/4 58 28.3 42.4 26.1 39.2 23.9 35.9 20.7 2 58 28.1 47.5 29.3 43.9 26.8 40.2 23.2 1/4 58 29.4 44.0 27.2 40.8 56.1 84.1 25.4 2 58 29.4 44.0 27.2 40.8 25.0 37.5 21.8 2 58 29.4 44.0 27.2 40.8 25.0 37.5 21.8 2 58 43.5 65.3 52.2 78.3 51.1 76.7 47.9 2 58 43.5 65.3 52.2 78.3 51.1 76.7 47.9 2 58 16.3 24.5 10.9 16.3 54.4 47.3 47.1 25.4 47.3 2 58 36.3 54.4 43.5 65.3 36.7 37.1 44.4 66.6 44.4 44.1 25.4 <	11/4 58 28.3 42.4 26.1 39.2 23.9 35.9 20.7 2 66 31.7 47.5 29.3 43.9 26.8 49.2 23.2 2 66 31.7 47.5 29.3 43.9 56.9 35.9 40.8 20.8 40.2 23.2 23.2 40.8 20.0 45.0 46.8 20.0 46.9 40.8 56.3 36.9 37.9 24.9 40.8 40.8 40.8 60.0 37.5 21.8 40.8 40.0 27.2 40.8 25.0 37.5 21.8 40.2 23.2 24.5 24.5 36.9 37.5 21.8 40.0 27.2 40.8 87.1 77.3 41.4 62.2 35.3 37.0 36.8 37.0 36.9 37.1 47.3 47.3 47.3 47.3 47.3 47.3 47.3 47.3 47.3 47.3 47.3 47.3 47.3 47.3 47.3 47.3	11		65	48.8	73.1	58.5	87.8	59.7	9.68	57.3	85.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 58 43.5 65.3 52.2 78.3 50.0 75.0 46.8 11/4 56 29.4 44.0 27.2 40.8 56.1 84.1 52.4 52.8 56.1 84.1 52.4 52.8 56.3 52.9 78.3 50.0 75.0 46.8 29.4 44.0 27.2 40.8 25.0 37.5 21.8 25.6 42.8 73.1 58.5 74.1 76.7 47.9 74.9 56 48.8 73.1 58.5 74.1 76.7 47.9 76.7 47.9 74.1 76.7 47.9 74.1 76.7 47.9 74.1 76.7 47.9 74.1 76.7 47.9 74.1 76.7 47.9 74.1 76.7 47.9 74.1 76.7 47.9 74.1 76.7 47.9 74.1 76.7 47.9 74.1 76.7 47.9 74.1 76.7 47.9 74.1 76.7 47.9 74.1 76.7 47.9 74.1 76.7 47.9 74.1 76.7 47.9 74.1 76.7 47.9 76.1 76.1 76.1 76.1 76.1 76.1 76.1 76.1		14	ස ස	31.7	42.4	26.1	39.2	23.9	35.9	20.7	34.7
11/4 58 29.4 44.0 27.2 40.8 25.0 37.5 21.8 28.9 49.4 30.5 45.7 28.0 42.0 24.4 22.5 28.0 42.0 24.4 24.5 28.0 42.0 24.4 24.5 28.0 42.0 24.4 24.5 28.0 42.0 24.4 24.5 28.0 42.0 24.4 24.5 28.0 42.0 24.4 24.5 28.0 31.1 76.7 47.9 28.0 28.3 2	11/4 58 29.4 44.0 27.2 40.8 25.0 37.5 21.8 2 56 49.4 30.5 45.7 28.0 42.0 24.4 2 56 48.8 73.1 58.5 87.8 57.3 85.9 37.6 47.9 24.0 47.9 24.4 47.9 47.9 47.3 47.9 47.3 47.9 47.9 47.3 58.1 47.9 47.3 47.1 47.3 48.1 47.3 47.1 47.3 58.1 47.3 28.1 37.0 29.3 29.3 47.4 87.6 47.3 28.1 38.1 28.3 29.3			28 82 83	43.5	65.3	52.2	78.3	50.0	75.0	46.8	70.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	# 10 F1 43	14	58 65 65	29.4	44.0	27.2	40.8	25.0	37.5	21.8	32.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11/4 56 16.3 24.5 10.9 16.3 5.44 8.16 − − − − − − − − − − − − − − − − − − −			55	43.5	65.3	52.2	78.3	51.1	76.7	47.9	71.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 58 42.4 63.6 37.0 55.5 31.5 47.3 26.1 11/4 58 26.3 39.4 24.5 37.0 55.5 31.5 53.0 29.3 11/4 58 26.3 39.4 24.5 37.4 41.1 25.4 38.1 23.4 28.5 59.5 59.5 59.5 59.5 59.5 59.5 59.5 5	69	14	55 55	16.3	24.5	10.9	16.3	5.44	8.16	11	11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11/4 56 29.5 39.4 24.5 36.7 22.7 34.0 20.8 28.5 44.2 27.4 41.1 25.4 38.1 23.4 42.6 55.8 36.3 29.5 44.2 27.4 41.1 25.4 38.1 23.4 42.6 55.8 36.3 44.4 66.6 42.6 42.6 40.6 60.9 48.8 73.1 49.8 73.1 49.8 73.1 68.0 91.4 69.6 47.7 25.4 43.5 65.3 52.2 78.3 60.9 91.4 69.6 47.7 25.4 48.8 73.1 58.5 87.8 68.3 10.2 78.0 91.4 69.6 60.9 48.8 73.1 56.9 85.3 55.0 78.3 60.9 91.4 69.6 60.9 48.8 73.1 56.9 85.3 55.0 78.0 91.4 69.6 60.9 48.8 73.1 56.9 85.3 55.0 78.0 91.4 69.6 60.9 48.8 73.1 56.9 85.3 55.0 78.0 91.4 69.6 60.9 48.8 73.1 56.9 85.3 55.0 78.0 91.4 69.6 91.4 60.9 60.9 48.8 73.1 56.9 85.3 55.0 79.4 60.9 60.9 48.8 73.1 56.9 85.3 55.0 79.4 60.9 60.9 48.8 73.1 56.9 85.3 55.0 79.4 60.9 60.9 60.9 48.8 73.1 56.9 85.3 55.0 79.4 60.9 60.9 60.9 60.9 60.9 60.9 60.9 60.9			58	42.4	63.6	37.0	55.5	31.5	47.3	26.1	39.2
	Le ≥ Le tuti 65 36.3 54.4 43.5 65.3 44.4 66.6 42.6 65 ≥ Le tuti 65 43.5 65.3 54.4 43.5 65.3 44.4 66.6 47.7 65 ≥ Le tuti 65 48.8 73.1 58.5 87.8 68.3 102 78.0 $L_0 \ge L_e$ tuti 65 48.8 73.1 58.5 87.8 68.3 102 78.0 $L_0 \ge L_e$ tuti 65 40.6 60.9 48.8 73.1 56.9 87.3 65.0 $L_0 \ge L_e$ tuti 65 40.6 60.9 48.8 73.1 56.9 85.3 65.0 $L_0 \ge L_e$ tuti 65 40.6 60.9 48.8 73.1 56.9 85.3 65.0 $L_0 \ge L_e$ $L_0 \ge L_0 \ge L_e$ $L_0 \ge L_0 \ge L_0$ $L_0 \ge$	65	14	58	26.3	39.4	24.5	36.7	22.7	34.0	20.8	31.3
$L_e \ge L_e hull$ 58 43.5 65.3 52.2 78.3 60.9 91.4 69.6 1 $L_e \ge L_e hull$ 58 48.8 73.1 58.5 87.8 68.3 102 78.0 1 stance SST, 40.6 60.9 48.8 73.1 56.9 85.3 55.0 stance SSL, $15/8$ $115/16$ $21/4$ $29/16$ searing USL $11/16$ 2 $25/16$ $25/16$ $25/16$ wight SSLP $11/16$ 2 $25/16$ $27/16$ $27/16$ ISIP $21/16$ $27/16$ $27/16$ $27/16$ $27/16$ $27/16$	$L_{e} \geq L_{e} \textit{hul} \qquad \begin{array}{c} \textbf{58} \\ \textbf{65} \\ \textbf{28} \\ \textbf{20} \\ \textbf{11} \\ \textbf{11} \\ \textbf{10} \\ \textbf{11} \\ \textbf{10} \\ \textbf{11} \\ \textbf{10} \\ \textbf{10} \\ \textbf{11} \\ \textbf{10} $	2		58	36.3	54.4	43.5	65.3	44.4	66.6	42.6	63.9
	L _e ≥ L _e trul 65 48.8 73.1 58.5 87.8 68.3 102 78.0 L _e ≥ L _e trul 65 48.8 73.1 58.5 87.8 68.3 102 78.0 L _e ≥ L _e trul 65 40.6 60.9 48.8 73.1 56.9 85.3 65.0 stance SSLT, 15/8 111/16 2 2 25/16 111/16 2 2 25/16 111/16 2 2 25/16 25/16 111/16 2 2 25/16 25/16 111/16 2 2 2 25/16 111/16 2 2 2 25/16 111/16 2 2 2 25/16 111/16 2 2 2 25/16 2 25/16 111/16 2 2 2 25/16	-		28	43.5	65.3	52.2	78.3	6.09	91.4	9.69	104
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SLT $L_e \ge L_e tull$ 58 36.3 54.4 43.5 65.3 50.8 76.1 58.0 cdge distance SSLT, and bearing strength SSLT, and bearing strength 11/ I_1 and bearing strength 21/ I_1 2 2 2 3 65.0 <td></td> <td>Le full</td> <td>8 8</td> <td>48.8</td> <td>73.1</td> <td>58.5</td> <td>87.8</td> <td>68.3</td> <td>102</td> <td>78.0</td> <td>117</td>		Le full	8 8	48.8	73.1	58.5	87.8	68.3	102	78.0	117
STD, SSL, 15/8 115/16 21/4 SSL, 15/8 115/16 21/4 LSL OWS 111/16 2 25/16 SSL 111/16 2 25/16 ISIP 21/4 27/4 27/6	Edge distanceSSLT, SSLT, Le2 $15/8$ Strong $115/16$ Strong $115/16$ Strong $21/4$ Stronge.e > Le Aul*, in.SSLP SSLP $111/16$ SSLP 2 $111/16$ 2 2 2 2 1 2 2 1 = standard hole 	.40	Le full	58 65	36.3	54.4	43.5	65.3	50.8	76.1	58.0	87.0 97.5
SSLP 111/16 2 25/16 SSLP 111/16 2 25/16 1SIP 21/14 2 25/16	strengthOVS $1^{1}/_{16}$ 2 $2^{5}/_{16}$ $e \ge L_e \mathit{full}^a$, in.SSLP $1^{1}/_{16}$ 2 $2^{5}/_{16}$ LSLP $2^{1}/_{16}$ $2^{7}/_{16}$ $2^{7}/_{16}$ = standard hole= short-slotted hole oriented transverse to the line of force= short-slotted hole oriented parallel to the line of force= long-slotted hole oriented parallel to the line of force= long-slotted hole oriented transverse to the line of force	Edge distance for full bearing		STD, SSLT, LSLT	15,	.00	-	15/16	21/2	830	29	716
SSLP 111/16 2 25/16	$t_0 \ge Le \ t_{ull} p$, in. SSLP $1^{11}/16$ 2 $2^5/16$ $2^7/16$	strength		SAO	11	1/16	2		25	/16	25,	8/
21/15 27/19	= standard hole = short-slotted hole or = short-slotted hole or = oversized hole = long-slotted hole or = long-slotted hole or = long-slotted hole or	Le > Le tulla, in.		SSLP	11	1/16	2	13/2	25	116	21	1/16
2/10	= standard hole = short-slotted hole on = short-slotted hole on = oversized hole = long-slotted hole or = long-slotted hole or			LSLP	21/	16	2	7/16	27/	8,	31/	14
	ASD LRFD — indicates spacing less than minimum spacing required per AISC Specification Section J3.3.	ASD LRF	0	- indicate	s spacing	less than m.	inimum spa	cing requin	ed per AISC	Specificatio	n Section J	3.3.